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Abstract—Patients with diabetes are susceptible to chronic foot 

wounds which may be difficult to manage and slow to heal. 
Diagnosis and treatment currently rely on the subjective judgement of 
experienced professionals. An objective method of tissue assessment 
is required. In this paper, a data fusion approach was taken to wound 
tissue classification. The supervised Maximum Likelihood and 
unsupervised Multi-Modal Expectation Maximisation algorithms 
were used to classify tissues within simulated wound models by 
weighting the contributions of both colour and 3D depth information. 
It was found that, at low weightings, depth information could show 
significant improvements in classification accuracy when compared 
to classification by colour alone, particularly when using the 
maximum likelihood method. However, larger weightings were 
found to have an entirely negative effect on accuracy. 
 

Keywords—Classification, data fusion, diabetic foot, 
stereophotogrammetry, tissue colour. 
 

I. INTRODUCTION 

LCERATION of the lower limb is a debilitating, 
expensive and potentially fatal consequence of diabetes. 

Current diagnostic and assessment measurements are 
subjective and vary between clinicians [1]. Common practice 
is to focus on two-dimensional (2D) parameters such as 
measurements of perimeter or area, while research suggests 
that making use of the three-dimensional (3D) nature of 
wounds may be more useful [2]. A 3D approach which 
includes knowledge of the different tissues within the wounds 
[3] should provide a more complete wound assessment. This 
study investigated the fusion of depth and colour information 
in the classification of tissues contained within simulated 
wounds. The purpose of this work was to assess how this 
approach of including depth information would impact upon 
the classification process.  This study made up part of a wider 
wound-assessment project by aiding the development of a 
methodology for evaluating real clinical data. 
 

 
Darren Thompson is a PhD student within the School of Computing and 

Information Engineering at the University of Ulster, UK (phone: +44 28 7012 
4698; e-mail: thompson-d6@email.ulster.ac.uk).  

Dr. Philip Morrow is a Reader within the Computer Science Research 
Institute at the University of Ulster, UK (phone: +44 28 70124637; email:  
pj.morrow@ulster.ac.uk).  

Prof. Bryan Scotney is the Director of the Computer Science Research 
Institute at the University of Ulster, UK (phone: +44 28 70124648 email: 
bw.scotney@ulster.ac.uk). 

Dr. John Winder is a Lecturer in Clinical Physiology within the Institute of 
Nursing and Health Research at the University of Ulster, UK (phone: +44 28 
90368440 email: rj.winder@ulster.ac.uk). 

 
Fig. 1 An example of a diabetic foot wound featuring granulation 

tissue (red), slough (yellow) and necrosis (black) 
 

II. BACKGROUND 

 Foot ulceration (Fig. 1) tends to develop due to vascular or 
neuropathic deficiencies as a result of both type I and type II 
diabetes. Patients suffering from diabetes mellitus are thought 
to have a lifetime risk as high as 25% of developing a chronic 
lower limb wound, with a yearly infection rate of 36.5 per 
1000 [4]. Ulceration and subsequent infection account for 
approximately 25% of all diabetes-related hospital admissions 
in the UK and USA [5], while 15% of foot ulcers result in 
amputation. Extreme cases of infection may even be fatal [6]. 
Diagnosis and treatment of diabetic wounds often lead to long 
hospital stays and multiple operations which have a significant 
economic impact on health services. Better management of 
wound infection would both lower morbidity and reduce costs 
to communities and healthcare systems [4]. The increase in 
prevalence of type II diabetes due to rising levels of obesity 
and infection from MRSA only exacerbate the problem [4].
 Clinical wound measurements tend to include estimates of 
wound length, width or area [6]. These measurements may be 
made on the wound itself or using traditional photographs. 
Temporal changes in these parameters can indicate probable 
healing rates or likely clinical outcomes. They may also 
indicate that current treatment is unsuitable and should be 
changed or adjusted accordingly [3]. In the often extended 
process of wound healing, quantification of the healing rate is 
important in assessing the efficacy of treatments [7]. 
Measurement and assessment of wounds can vary greatly 
between clinicians due to the highly subjective methods 
available to them [1], which typically include measurements 
using rulers and wound tracings [8]. Additionally, Stremitzer 
et al. [1] conclude that objective assessment of wound colours 
is vital and that tissue evaluation is at least as important as 
wound size.  
 Some studies have also highlighted the importance of a 3D 
aspect to wound assessment. Reduction in wound volume 
associated with the development of granulated tissue in the 
wound bed is noted as more significant to wound healing by 
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Flanagan [3], as compared to reduction in area by the growth 
of epithelial tissue.  Therefore the relative amounts of different 
tissue types may be inherently linked to the three-dimensional 
nature of wounds through properties such as their surface area 
and volume. 
  Stereophotogrammetry is an imaging technique which 
builds 3D surfaces from 2D images. Common points are 
automatically tied together from one or more stereoscopic 
image pairs to produce a virtual 3D surface which includes 
colour photographic information. One such system is Di3D, 
developed by Dimensional Imaging, Glasgow 
(http://www.di3d.com). The system has been validated for 
linear measurements on 3D surfaces in various studies [9]-[11] 
and for volume measurement by Thompson et al. [11]. Levels 
of accuracy noted in each of these studies suggest that Di3D 
may allow rapid, relatively inexpensive, non-contact 3D 
assessments of wounds. 
 Algorithms for automated classification of images are 
growing in importance in medical environments. They are 
already employed throughout medical imaging to identify 
anatomical structures and regions of interest [12]. Broadly 
speaking, two main categories of classification algorithm 
exist, known as supervised and unsupervised. Supervised 
algorithms classify image pixels according to class parameters 
such as mean and variance, which are estimated from training 
data samples provided by the user. Unsupervised algorithms 
operate by iterating between classifying the pixels and 
updating the parameters [12], clustering data according to the 
distribution of pixel values within the image [13]. Thus, 
unsupervised algorithms effectively train themselves to extract 
the information which would be provided by the user in a 
supervised method. A traditional reliance on spectral 
information means that image classification tends not to make 
use of other available knowledge. For example, it is known 
that granulation tissue is a deep red colour, whilst it is also 
known that such tissue typically occurs in the base of a 
wound. 3D depth information may aid the classification of 
wound tissues according to their colours.  
 Wannous et al. [14][15] developed a 3D colour wound 
assessment tool for the imaging and classification of wound 
tissues as part of the ESCALE project. A single camera was 
used to take images at different angles, therefore using a more 
time-consuming form of stereophotogrammetry. Tissue 
classification was performed along with surface area and 
volume measurement. However, 3D surfaces were of 
relatively low resolution, reducing the accuracy of these 
measures.  
 In image classification it is practical to perform extensive 
evaluation of algorithms on simulation data, especially in the 
absence of real clinical examples. When real data are limited, 
it would be unwise to ‘tune’ algorithms to perform well on a 
few examples, only to find a large variation when more data 
are gathered. Simulated data allows the testing of algorithm 
performance under known and controlled conditions, which 
are easily manipulated and simple to reproduce [16]. 
Simulation also allows an exactly known segmentation, or 
ground truth, against which the results may be compared. This 

is rarely a feature of classification performed on real data. This 
study therefore required simulated data which modelled 
wound tissue colours as realistically as possible. 
 It was the aim of this work to develop a 3D wound 
assessment method which performed quickly and produced 
high resolution colour 3D surfaces without the requirement for 
brightness correction in a research setting.  The goal was the 
ability to make accurate, reliable and objective measurements 
of tissue types, surface area and volume to provide a complete 
picture of wounds and their healing processes. This study 
explored the potential for 3D tissue classification. 

III. METHODOLOGY 

 A. Classification algorithms 
 This study made use of one algorithm from each 
classification category: a supervised Maximum Likelihood 
Classifier (MLC) and a form of the unsupervised Expectation 
Maximisation (EM) algorithm. Of the many methods 
available, the two selected were chosen for their relative 
simplicity, popularity and established effectiveness. The 
chosen methods are also widely known and understood within 
the field of image classification. The accommodation of 3D 
depth information into the classification process, and its 
effects, could be suitably demonstrated via these methods. 
This study compared the performance of MLC and EM 
algorithms on simulated wound images while weighting the 
contribution made by a corresponding depth map. 
 MLC assumes a normal distribution of values within each 
class. The probability that a pixel x  belongs to class iω  is 
given by 
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where iμ  is the spectral mean for class iω , iΣ  is the 
corresponding variance-covariance matrix and d is the number 
of dimensions to the data. The parameters iμ  and iΣ  are 
estimated from training samples. From each simulated image, 
training sample areas of approximately 5000 pixels were 
selected for each tissue class, making sure to cover the full 
range of depth. Spectral information was classified according 
to this multivariate form of the MLC (d=3). Probabilities from 
depth were calculated from the univariate form, where iμ  and 
 

 
Fig. 2 Models A, B and C 
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Fig. 3 Colour map and corresponding depth map from model C 

 
iΣ  reduce to single scalar values (d=1). Hence two separate 

probabilities of a pixel belonging to each class were 
calculated: one each from colour and depth. Probability arrays 
for each class and each pixel were produced, and values were 
normalised so that class probabilities for each pixel would sum 
to unity.  
 The EM classification was performed similarly to the Multi-
Modal EM (MMEM) algorithm outlined in Hong et al. [17], 
considering the sources of depth and colour information to be 
two separate modalities. However, in that study, class mean 
and variance values were set to initialise the algorithm before 
proceeding with iteration. In this study, randomly generated 
probabilities provided initialisation, as in the approach by 
Fraley & Raftery in [18]. The algorithm then iterated between 
the E-step of classification according to the probabilities, and 
the M-step of calculating new parameters, including iμ  and

iΣ . A normal distribution was also assumed, calculating new 
probabilities similarly to the MLC algorithm, according to (1). 
Convergence was deemed to have taken place when no pixel 
classification changed between successive iterations.  
 For both algorithms, the separate probabilities from depth 
and colour were combined using a weighted average to obtain 
a final probability Z. In this way, the contribution of the depth 
information to the overall classification could be controlled. 
Given a spectral probability of ZS, a depth probability ZD, and 
the weight of depth contribution W, then we defined a final 
probability Z. 
 
        ( ) SD ZWWZZ −+= 1              (2) 

 
B. Simulation data 
Three wounds of clinically relevant volumes, A, B and C 

were modelled and coated with coloured plasticine in order to 
represent realistic wound structure and physical tissue 
distribution, based on previous experimental experience and 
discussion with experienced podiatrists (Fig. 2). Red 
granulation tissue tends to occur in the central base of the 
wound and is surrounded by purple/violet epithelial growth, 
which is in turn surrounded by healthy skin tissue. Yellowish 
slough and black necrotic tissue, which consist of dead cells, 
may occur anywhere throughout the wound. Model ‘A’ 
represented a wound with simple structure and 4 tissues. In 
order to challenge the algorithms, ‘B’ contained 5 tissues, and 

‘C’ was modelled to be a more irregular shape than A or B.   
The three wound models were imaged and reconstructed using 
the Di3D system and its accompanying software (DiCapture 
v6.1). The software allowed the export of the data as OBJ 
files, constructed from multiple triangular faces in a 3D mesh.  
An OBJ file contains data representing a 3D surface with 
colour photographic texture. These data were used to generate 
a two-dimensional greyscale depth map for each model, along 
with a corresponding 2D colour map (Fig. 3). The result was 
two images for each model; one containing pixels of spectral 
red, green and blue information, and one containing the 
corresponding depth co-ordinate for each colour pixel. 
 In order to realistically simulate typical tissue colour 
distributions, 2D wound images were obtained from Belfast 
City Hospital (e.g. Fig. 1). These were sampled to calculate 
estimations of spectral mean and variance for each relevant 
tissue type. Analyze software (v10.0, Lenexa, Kansas.  
http://www.analyzedirect.com) was used to segment the 
plasticine colour representations and create a binary mask for 
each tissue. Pixels were randomly generated according to a 
normal probability distribution, using the estimated 
parameters, for each tissue mask. The resulting regions were 
combined to form simulated wound images for each model.  
The tissue masks were also used to create a ground truth 
segmentation against which classification results were 
compared. 
 Testing with simulation data involves challenging the 
algorithms with difficult circumstances. To this end, multiple 
simulation images were created for each model wound. In real 
tissues, colour distributions always overlap to varying degrees, 
which makes it difficult for clinicians to consistently assess 
wound tissues. Therefore it was appropriate to model such 
overlap and vary it in a controlled manner. Greater overlap 
was achieved by moving the colour distribution of each tissue 
closer to the others. The spectral means of each class were 
shifted towards a ground spectral mean vector (GSMV) by 
increasing their spectral mean proximity (SMP), using (3), 
according to the approach by Al Momani [19].  This process is 
illustrated in Fig. 4. The GSMV is calculated as the mean 
vector for all tissue classes. If iμ  is the sampled class mean, 
M is the SMP, and S is the GSMV then the updated class 
mean vector 'iμ  is given by the equation 
 
       ( ) 100/' iii M μSμμ −+=          (3) 
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Fig.  8. Results for both MLC (1-3) and EM (4-6) on all models, for W = 0.0, 0.1, 0.2, 0.3. 

 
like slough, has little dependence on depth. 

The MMEM algorithm provided much more variable results 
(Fig. 8.4-8.6). In contrast to the MLC, model B showed the 
only substantial improvements for the lower weightings, again 
when SMP values were high. Model A was largely unaffected, 
although a weight of W=0.3 provided some small reduction in 
accuracy. Model C showed the only case where including 
depth information was actually detrimental to classification 
accuracy.  Fig. 8 shows that at all weightings for this model, 
accuracy quickly drops off compared to colour classification 
alone. 
 For all six sets of results, the consistent pattern was a rapid 
drop in accuracy when weighting was increased beyond a 

certain point. In the MLC cases this occurred beyond W=0.3, 
indicating a consistency not present in the EM results, which 
as Fig. 8 shows, were variable and therefore unpredictable. 
This may have been due to the user-controlled, supervised 
nature of MLC. The choice of training samples for MLC made 
use of knowledge of the models which the user possessed, 
while EM trained itself without such knowledge. 

 
V. CONCLUSION 

 The work presented in this paper shows that the 
incorporation of depth information into the colour 
classification of simulated wounds could be of significant 
benefit, albeit in limited circumstances. The inclusion of depth 
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was particularly effective in cases in which classes were of 
similar colour and therefore difficult to distinguish by spectral 
measurements alone. However, this study has also illustrated 
the importance of optimising the weight given to the depth 
probabilities. The choice of algorithm is also a major concern. 
While results were largely positive for the MLC algorithm, 
EM results were significantly poorer. It was noted however 
that for colour classification alone (W=0), the EM accuracy 
was actually higher, in the order of 1-5%. Therefore another 
choice of method for the depth classification may improve 
both the accuracy and reliability of results.  

Further investigation could overcome many of the problems 
encountered in this study. Future work may involve the 
exclusion of some tissues from the depth classification process 
as it may be counter-productive to include tissues which have 
little or no dependency on depth. The use of other algorithms 
may improve accuracy, whether used alone or combined with 
those tested in this work. It is also possible that non-
parametric models could assist classification, as the 
assumption of a normal distribution may be inappropriate. The 
results of this study do not show obvious overall benefit to the 
inclusion of a weighted depth probability for classification. 
However, important issues and areas for improvement have 
been revealed. Ethical approval has been granted for the 
collection of real wound data, which will allow for more 
thorough evaluation of algorithm performance on a wider 
range of more realistic data. The simulation results from this 
study will inform and influence study design when assessing 
real data. 
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