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Abstract—The objective of this research was to investigate 
biodegradation of water hyacinth (Eichhornia crassipes) to produce 
bioethanol using dilute-acid pretreatment (1% sulfuric acid) results in 
high hemicellulose decomposition and using yeast (Pachysolen 
tannophilus) as bioethanol producing strain. A maximum ethanol 
yield of 1.14g/L with coefficient, 0.24g g-1; productivity, 0.015g l-1h-1 
was comparable to predicted value 32.05g/L obtained by Central 
Composite Design (CCD). Maximum ethanol yield coefficient was 
comparable to those obtained through enzymatic saccharification and 
fermentation of acid hydrolysate using fully equipped fermentor. 
Although maximum ethanol concentration was low in lab scale, the 
improvement of lignocellulosic ethanol yield is necessary for large 
scale production.  
 

Keywords—Acid hydrolysis, Biodegradation, Hemicellulose, 
Pachysolen tannophilus, Water hyacinth. 

I. INTRODUCTION 
ATER hyacinth (Eicchornia crassipes (Mart.) Solms), a 
noxious aquatic weed found in many tropical and sub-

tropical fresh water habitats due to its faster growth rate and 
its utilization as a cheap feed stock for biodegradation into 
fuel ethanol [1]. Bio-ethanol is an alternative fuel that is 
produced almost entirely from food crops. It represents an 
important, renewable liquid fuel for motor vehicles. An 
important advantage of crop-based ethanol is its Green House 
Gas (GHG) benefits [2], [3]. With increasing gap between the 
energy requirement of the industrialized world and inability to 
replenish such needs from the limited sources of energy like 
fossil fuels, ever increasing levels of greenhouse pollution 
from the combustion of fossil fuels in turn aggravate the perils 
of global warming and energy crisis [4]. There is a growing 
interest worldwide to find out new and cheap carbohydrate 
sources for production of bio-ethanol [5]. Production of 
ethanol from renewable sources of lignocellulosic biomass can 
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improve energy security, decrease urban air pollution, and 
reduce accumulation of carbon dioxide in the atmosphere [6]. 

Cellulosic materials are renewable natural biological 
resources and generation of biobased products and bioenergy 
from such substances is important for the development of 
humans [7]. Biological methods for using lignocellulosic 
biomass in ethanolic fermentation are becoming cost-effective. 
The most commonly used microorganism, Saccharomyces 
cerevisiae, can only ferment certain mono- and disaccharides 
(such as glucose, fructose, maltose and sucrose) efficiently 
into ethanol. It cannot convert pentoses, which are also major 
components of lignocellulosic biomass [8]. The yeasts Pichia 
stipitis, Candida shehatae and Candida intermedia can 
assimilate pentoses into ethanol [8]. The conversion of 
cellulose from lignocellulosics to ethanol is more challenging 
than conversion of soluble carbohydrates from food crops [1]. 

In this study Pachysolen tannophilus was used for 
fermentation of water hyacinth, and obtained highest transport 
capacity of glucose, pentose and xylose, reflected in the 
improved yield of ethanol.  

II. MATERIALS AND METHODS 

A. Plant Material and Microorganism 
Fresh water hyacinth plant with long stem was collected 

from a natural pond, Periya kullam (Big Lake), in Coimbatore 
city, Tamil Nadu, India. Water hyacinth Eicchornia crassipes 
(Mart.) Solms has been authenticated by Botanical Survey of 
India (BSI) BSI/SRC/5/23/2012-13/Tech. 464- TNAU 
Coimbatore, Tamil Nadu, India. Water hyacinth was 
thoroughly washed several times with tap water to remove 
adhering dirt, chopped into small pieces (~1-2cm), blended to 
small particles (~3-5mm), and finally dried in a hot air oven at 
105°C for 6h. Dried material was stored at room temperature 
until further process. 

Phloroglucinol (1,3,5-trihydroxybenzene), absolute ethanol 
and potassium dichromate were sourced from Merck. All other 
chemicals and reagents were of analytical grade. Pachysolen 
tannophilus NRRLY-2460 was procured from Agricultural 
Research Service-New York and made to grow in Sabouraud’s 
Dextrose Agar (SDA: neopeptone, 10; and dextrose, 20g/L; 
pH 6.5) at 4°C. Subculture was then performed on Sabouraud 
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Xylose Agar (SXA) medium containing xylose (20 g/L) prior 
to fermentation. 

B. Preparation and Detoxification of Hemicellulose 
Hydrolysate 

About 1000 mL of 1% dilute sulfuric acid was prepared in 
an Erlenmeyer flasks. The flasks were added with 100g of 
water hyacinth and autoclaved at 121°C, 15 lbs for 15 
minutes. The hydrolysate was filtered using whatman paper 
No. 1 to remove the unhydrolysed material. Then 
hemicellulose acid hydrolysate was heated to 60°C and then 
basidified with solid NaOH to get pH 9.0-9.5. Solid Ca(OH)2 
was added in solution to detoxify harmful materials present in 
hydrolysate [9]. Insoluble residues were removed by filtration, 
and supernatant was collected for further use. 

C. Fermentation of Water Hyacinth Hydrolysate to Ethanol 
For preparation of fermentation medium, neopeptone (10g) 

was added to over limed hydrolysate and adjusted solution pH 
to 6.5. This solution was placed in a 2L Erlenmeyer flask, 
filled with distilled water up to 1L, and autoclaved (121°C and 
15lbs) for 15min. Two plates of P. tannophilus on SXA were 
inoculated into fermentation medium and further incubated at 
30°C for 3 weeks. For comparison, Sabouraud Dextrose Broth 
(SDB) and Sabouraud Xylose Broth (SXB) (containing 20g 
dextrose and xylose, respectively) were used as control media. 

Xylose content was determined using Phloroglucinol assay 
[10], [11]. Color reagent [phloroglucinol, 0.5g; glacial acetic 
acid, 100mL; and conc. hydrochloric acid (HCl), 10mL] 
prepared freshly and a stock solution of standard xylose 
(10g/L) was prepared by dissolving D-xylose powder in 
saturated benzoic acid and used in the preparation of 
calibration curve. Sample (200µL) was mixed with color 
reagent (5mL) and subsequently heated at 100°C for 4min. 
Reaction was rapidly cooled down to room temperature in 
water and absorbance at 540nm was recorded in a UV-Vis 
spectrophotometer (Hitachi U-2910, Japan). 

For determination of ethanol content by Dichromate assay 
[12], [13] acid dichromate solution (0.1M Cr2O7

2- in 5M 
H2SO4) was prepared by dissolving of potassium dichromate 
(7.5g) in dilute sulfuric acid and final volume was adjusted to 
250mL with deionized water. To prepare calibration curve, 
ethanol solution (300µL each) was filled into small plastic 
cups and placed into beakers containing acid dichromate 
(3mL). Beakers were tightly sealed with parafilm and kept at 
room temperature for 30 min. Maximum absorbance at 590 
nm was recorded in a UV-Vis spectrophotometer. 

D. Central Composite Design 
Central composite design (CCD) was used in optimization 

of ethanol production. Time (X1, h), pH (X2), temperature (X3, 
°C) were chosen as independent variables (Table I). Ethanol 
concentration (Y, g/L) was used as dependent output 
variables. 20 experiments were performed to optimize 
parameters. Among them, six replications were at center 
points (n0=6), while axial points were determined to be √3. 
Coefficients of polynomial model were calculated as 
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where Y is predicted response, and i, j are linear, quadratic 
coefficients, respectively. B and k are regression coefficient 
and number of factors studied in the experiment, respectively. 

Significance of each coefficient was determined using 
student’s value. Results were analyzed by using MINITAB 
(15.1, PA, USA) software. Three-dimensional plots and their 
respective contour plots were obtained to study interaction of 
one parameter with another. Optimum concentration based on 
hump was identified in three-dimensional plots. 

III. RESULTS AND DISCUSSION 
The production of ethanol from Water hyacinth by P. 

tannophilus through acid pretreatment followed by 
fermentation was successful. Ethanol yield was comparable to 
that of alkali and enzymatic hydrolysis methods. Therefore, 
1% acid concentration in saccharification of water hyacinth 
gave rise of 6-10 times higher xylose. Maximum xylose 
concentration of up to 134 mg/g water hyacinth was found in 
acid hydrolysate. Xylose degradation also generates 
byproducts as a consequence of acid hydrolysis [14]. Acetic 
acid is produced as one of the principal components of 
hemicellulose hydrolysate [15]. Therefore, removal/reduction 
of volatile compounds (furfural and phenol) is performed by 
over liming with Ca(OH)2 and heating at high temperature. 
This resulted in better fermentation of hydrolysate [9]. The 
concentration of ethanol increased with the increase of 
fermentation time and yeast biomass. The viable cell numbers 
increased from 3 x 108 CFU/g substrate (0 h) to 18.5 x 109 
CFU/g substrate (67 h) after which it decreased drastically at 
96 h (1 x 108 CFU/g substrate). The decline in biomass 
concentration could be due to reduced substrate availability 
and the inhibitory effect of ethanol on yeast cells [16], [17]. 

A. Response Surface Analysis for Optimization of Three 
Factors 

The experimental results associated to the processing set up 
of each independent variable are listed in Table I five level 
central composite design matrix and experimental responses of 
the dependent variable (ethanol concentration) are listed in 
Table II Second order polynomial equation giving ethanol (Y, 
g/L) as a function of time (X1, h), pH (X2) and temperature 
(X3, °C) were obtained as  

 

Y = -147.239 + 1.136X1 + 8.371X3 - 0.107X2
3 -0.028X1X3 - 

0.114X2X3 
 
In order to simplify the model as well as to enhance the 

effect of significant items, the ones which showed trivial 
effect were eliminated. In new model (Table III), entire item 
showed important effect on ethanol concentration (p<0.05). 
Deviation between observed and predicted ones was less. R2 
of model was found to be 0.95545, implying that model was a 
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good fit that 95.545% of variation could be explained well by 
the model. 

 
TABLE I 

VARIABLES IN EXPERIMENTAL DESIGN 

Variables 
Coded levels 

-1.682 -1 0 1 1.682 
Time 
pH 

28.4 
3.377 

36 
4 

48 
5 

60 
6 

67.6 
6.63 

Temp., °C 26.84 30 35 40 43.16 
 

TABLE II 
CENTRAL COMPOSITE DESIGN (CCD) MATRIX EMPLOYED FOR ETHANOL 

YIELD 
Run no. X1 X2 X3 Ethanol conc., Y (g/L) 

Observed Predicted 
1 -1 -1 -1 24.19 23.27 
2 -1 -1 -1 15.43 13.48 
3 -1 -1 -1 27.92 25.33 
4 -1 -1 -1 28.04 26.82 
5 -1 -1 1 25.98 23.17 
6 -1 -1 1 27.00 24.78 
7 -1 -1 1 23.09 21.03 
8 -1 -1 1 17.89 15.42 
9 -1.682 0 0 31.18 29.76 
10 1.682 0 0 17.09 15.93 
11 0 -1.682 0 26.58 24.21 
12 0 1.682 0 27.02 25.66 
13 0 0 -1.682 20.09 19.48 
14 0 0 1.682 33.59 31.25 
15 0 0 0 30.49 28.16 
16 0 0 0 22.21 20.76 
17 0 0 0 24.31 22.91 
18 0 0 0 16.67 14.45 
19 0 0 0 27.09 25.75 
20 0 0 0 25.48 23.84 

 
TABLE III 

SIGNIFICANCE OF ETHANOL COEFFICIENTS OF ETHANOL PRODUCTION MODEL 
(R2= 0.95455) 

 Regression 
coefficient 

Standard 
error 

t P 

Mean -147.239 22.05961 -6.40616 0.000021 
Time 1.136 0.27446 4.02061 0.001285 

Temp. 8.371 1.08473 7.82760 0.000003 
Temp. ×Temp. -0.107 0.01449 -7.24648 0.000006 
Time × Temp. -0.028 0.00779 -2.94020 0.010782 
pH × Temp. -0.114 0.01029 -9.66839 0.000000 

B. Interactions among Factors 
Surface and contour plots demonstrating the effects of 

different process parameters, two parameters varied at a time 
while keeping the third at middle level, on the ethanol 
concentration were shown in Figs. 1-3. The stationary points 
were examined by analyzing these plots. Generally, circular 
contour plots indicate that the interactions between parameters 
are negligible. On the contrary, elliptical ones indicate the 
evidence of the interactions [18]. 

Fig. 1 showed the effect of temperature and pH on the 
ethanol concentration. The convex response surface suggested 
well-defined optimum variables (temperature and pH) and that 
the ethanol concentration increased to the peak with the 

increase of temperature and pH up to 42ºC and 6, respectively; 
then declined with the further increase of these two 
parameters. This result demonstrated that the response surface 
had a maximum point for ethanol yield. Similar results have 
been obtained by Wilkins et al., [19] who reported that ethanol 
production from simultaneous saccharification and 
fermentation of citrus peel waste by S. cerevisiae was greatest 
when the fermentation temperature and pH were adjusted to 
37ºC and 6.0, respectively. In a relative low pH and medium 
temperature, optimum ethanol production could be attained. 
Between 28-34°C and at maximum time duration (Fig. 2), 
optimum ethanol yield could be attained. An increase in time 
with temperature increased ethanol production, but at high 
temperature (>34°C), ethanol production decreased. Thus 
interaction between pH and time showed little significance. 
Only low pH and long incubation times were found beneficial 
for ethanol production (Fig. 3). Besides the increase in 
temperature accelerates the inhibition effect of ethanol on the 
cell activities, thereby lowering both cell and ethanol yields 
[20]. Therefore, for optimum ethanol production (33.28g/L), 
optimum parameters were found to be: time, 67.60h; pH, 6.45; 
and temp., 34°C. To validate optimum concentration, an 
experiment with specified condition was performed. Resultant 
concentration (32.05g/L) showed that the model was useful to 
predict concentration as well as the optimization of 
experimental conditions. 
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Fig. 1 Interaction effects of Temperature and pH on ethanol 
production: A Surface plot; B Contour plot 
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