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Abstract—This research is aimed to describe the application of 

robust regression and its advantages over the least square regression 
method in analyzing financial data. To do this, relationship between 
earning per share, book value of equity per share and share price as 
price model and earning per share, annual change of earning per 
share and return of stock as return model is discussed using both 
robust and least square regressions, and finally the outcomes are 
compared. Comparing the results from the robust regression and the 
least square regression shows that the former can provide the 
possibility of a better and more realistic analysis owing to eliminating 
or reducing the contribution of outliers and influential data. 
Therefore, robust regression is recommended for getting more precise 
results in financial data analysis.  
 

Keywords—Financial data analysis, Influential data, Outliers, 
Robust regression. 

I. INTRODUCTION 
HE assumption of normality is a crucial basis for most 
statistical methods of data analysis. However, various 

papers have shown this is true only with 10%-15% of data. 
This may be attributed to unnormal distribution of errors or 
the effect of outliers in observations [14]. Outliers are the 
observations not fitted to the pattern developed for the 
majority of data [19]-[3]. There are two attitudes in statistical 
modeling in dealing with outliers. The first takes into account 
the outliers and the second eliminates outliers. Many scholars 
believe using robust estimation is necessary where outliers are 
not eliminated from the statistical analysis [14]. 

A statistical method used in analyzing financial data is the 
regression analysis which often employs the least square 
regression (OLS) as its main means. However, as is obvious 
much deviation is experienced in financial data because of 
changes in financial policies and commercial cycles that 
inevitably gives rise to outlier observations in overall data 
[18]. Since the least square regression is vulnerable to such 
outlier observations that will ultimately affect results from this 
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technique [7]-[2], and this will end in wrong conclusion and 
misleading users. The vulnerability of OLS regression to 
outliers may result from the failure to meet substantial 
assumptions required for this model.   

An essential assumption in regression analysis is the 
constancy of the error variance which is called 
homoskedasticity. Outliers, even when the sample is large 
enough, can lead to the accumulation of error variance and 
give rise to hetoskedasticity [23].  

In most cases, especially when data are acquired in a 
continuous period of time, as is true with financial data, the 
correlation of data will be probable [10]. The correlation will 
make errors interdependent in the regression model and reject 
the assumption of independent errors. The rejection of the 
assumption will lead to the inflation of the R square (R2) and 
erroneous significance of the model [23]. This situation 
indispensably necessitates using regression models [10].   

Hence, in analyzing financial data it is necessary to use a 
regression model that is not vulnerable to outliers and prevent 
bias of outcomes. The robust regression is a good substitution 
for the least square regression concerning these data. This 
study seeks to introduce applications of the robust regression 
in financial researches in order to encourage researchers to use 
this technique and ultimately improve the quality of statistical 
analyses in financial researches.  

II.  LITERATURE REVIEW 
In this section, we firstly discuss outliers and their types and 

identification. Subsequent to grasping the concept of outliers, 
we introduce a number of robust regression models that can 
attenuate the role of outliers. To formulate a robust regression 
model we should not restrict out observation to some isolated 
sporadic cases but we must identify outliers and influential 
data in order to reduce or eliminate their effects on the model 
[4].  
 

A. Outliers 
Outliers are the observations concomitant of high error 

residual [11]. The error volume is equal to the difference 
between the observed quantity and the predicted quantity for 
ith observation. This can be derived from: 

 
                            iii yye ˆ−=                             (1) 
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The summation of errors is zero in a regression model but 
the variance of errors can be different. This difference reduces 
the significance of comparing models. To overcome inequality 
of the error variance, their standardized values are used [2]-
[16]. Standardized errors usually have a normal distribution 
with zero mean value and standard deviation of 1. The points 
with standardized error more than 2 or 3 and the standard 
deviation beyond the mean value (zero) are regarded as 
outliers [16]. 

Drawing diagrams is another technique to identify outliers. 
In this method, a distribution diagram or estimated deviation 
diagram is prepared, and the points away from the 
concentration of points or the regression line are outliers [1]. 
Diagram 1 depicts a number of data, as well as an outlier. It 
should be noted where we have a great deal of data we will 
face more constraints in using the schematic presentation.  
 

 
Fig. 1 Identifying an outlier by means of a diagram 

 
Based on this introduction, if the deviation of an error is too 

large it is designated as an outlier. Therefore, the value of the 
dependent variable is a quantity used to identify outliers. 
Another type of outliers that are called influential data are 
investigated in relation to independent variables, that is, if a 
data much different from the average of data as concerned the 
independent variable it is an influential data [16].  
 

B. Influential Observations 
Sometimes, one or more data have remarkable effect on 

estimated parameters of a regression model. These are known 
as influential data [5]. In other words, influential data are the 
data whose removal from the model will give rise to crucial 
alteration in the model. Though eliminating every observation 
introduces a change in the regression model but when there 
are notable changes (including change in the slope or 
intercept) that observation will be influential [16]. Diagram 2 
shows an influential data beside the regression line. The 
regression line in this diagram has a negative slope, and if the 
influential observation is removed the line’s slope will become 
positive and the intercept will reduce. Evidently, this 
observation has a greater role in determining the estimated 
regression.   

 
Fig.2 The effect of an influential data on the regression equation 

 
The leverage value can be employed to find out influential 

observations. The leverage value is the difference in the 
magnitude of independent variables from their mean value. 
The leverage value for the ith observation is calculated using 
this formula:  
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Where n is the number of observations, xi the ith 
observation,  mean value of observations and Pi the leverage 
value of ith observation.  

Usually, the points with the leverage value two times the 
average of leverage values are known as the points with high 
leverage value (influential) [12]. Of course, some researchers 
admit the points with a leverage value above 0.5 as the 
influential data [4]. Statistical tests have been developed for 
the identification of influential observations. Almost all of 
these tests use the leverage value as a main tool. One of the 
most famous tests is the Cook’s distance measure [8]. The 
Cook’s distance measure uses both the leverage value and the 
error magnitude to measure the extent of influence of the data. 
The equation 3 shows how this test is calculated: 
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In this equation, K is the number of independent variables, 
and Se the standard error of estimation. To know further about 
this technique, the reader is advised to see the Chaterji and 
Hadi paper [5].  

 

C. Robust Regression  
Robust regression is the regression that tries to minimize or 

eliminate the effect of outliers or influential data in order to 
provide a more reliable estimation based on the majority of 
data. In other words, robust regression is an attempt to find 
real results out of most data [16]. Hence, various types of 
robust regression fall in the category of robust estimation 
methods that function through eliminating or moderating the 
effect of outliers [14]. It was noted earlier that the normality of 
errors is one of the primary assumptions in regression models 
but there is always some divergence from this assumption. In 
such cases, robust regression can be a substitute for the least 
square method which is less susceptible to the divergence 
[23]. The OLS regression is not immune to outliers owing to 
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its objective-oriented nature of the OLS. This fact is illustrated 
in the equation 4 that shows the minimum of the summation of 
errors.  

 
   ( )∑ ∑ −−−= 2

11
2
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Where ei stand for error, yi for the dependent variable and 

xi the independent variable and {θ j , j=1,…,m} are the 
parameters estimated by the OLS model [14].  
The model’s susceptibility to the error square is obvious; 
hence outliers significantly contribute to the formation of 
parameters.  

Edge Verst (1887) pioneered the development of the robust 
regression. He pointed out that outliers, owing to becoming 
square, crucially impress the OLS. Therefore, he presented the 
least absolute deviation model (equation 5) [18]. 
 
                                ∑ ieMin                                          (5)       

 
This technique is called the L1 regression model while the 

model in relation 4 is designated as the L2 regression. 
Unfortunately, L1 is highly susceptible to the second-type 
outliers, that are, the data with bad leverage value. The data 
with bad leverage value is the one that besides having a high 
leverage effect (influential) is itself an outlier. In other words, 
it is both far from independent variables and contaminated 
with a large degree of errors [14]. 

Hodges (1967) introduced the concept of breakdown point 
in order to help assessing the robust regression’s stability 
toward outliers. Rosio (1987) defined breakdown point as the 
lowest ratio of outliers that can impair the regression model. 
The higher the breakdown point in a regression model more 
satisfactorily the model functions. For L1 and L2, the 
breakdown point is equal to 1/n. In other words, as the result 
of the existence of an outlier in a set of n data, it can render 
invalid the model by errors [14]. 

There are various types of robust regression that with 
different functions try to provide a stable model. Choosing 
which robust regression is suitable for a case depends on the 
nature of data and the discretion of the persons using the 
regression [14].  

Next to LAD, least trimmed square (LTS) is another type of 
robust regression. This regression, introduced by Rosio for the 
first time in 1984, is a technique to eliminate possible outliers 
[22]. Coefficients in the equation of the least trimmed square 
regression are estimated similar to the ordinary regression 
(lease square). In other words, the coefficients in these two 
types of regression are estimated in a way to minimize the 
summation of the second power of errors. However, in least 
trimmed square, unlike the ordinary regression, not all data is 
used in estimating the regression model but the data 
accompanied with high errors are eliminated [23]. 

The equation 6 explains how data are selected and which 
mechanism is used in least trimmed square to estimate the 
equation [21].  
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Where n  is the number of observations,  iy  the value of 

ith observation,  iŷ  the anticipated value of ith observation, 
q is the number of the data used in least trimmed regression 

equation, and k the number of parameters including the 
intercept.   

To find the data required to estimate the least trimmed 
square regression, the second power of each observation is 
calculated. Then, these values are arranged in an ascending 
order. Finally, the observations with least error square are 
selected and this procedure continues up to the qth 
observation.  

It should be noted that some statistical software programs 
(like S-PLUS), if the data used in estimating the least trimmed 
square regression is less than 90% of the data only the 90% of 
the data are used in estimating the equation. Some researches 
doubt the reliability of such regressions [15] though this 
regression has improved owing to the introduction of another 
initiative called the rapid least trimmed square that was set 
forth by Rosio and Vandersen (1998) [21].  

Another version of robust regression is the iteratively 
reweighted least square that was presented by Jatergi and 
Machler in 1997 [6]. In iteratively reweighted least square 
regression, the points with high leverage value and high error 
are almost prevented from contributing to the outcome in a 
lesser extent in order to reduce their effects on results of the 
regression analysis. In this regression, the weight of ith 
observation is calculated from this equation: 

 

               
),(

)1(
11

2

−−

−
=

j
ii

j
i

iij

rmedrMax
PW

i

               (7)    

 
Where j

iW  denotes the weight of ith observation,  iiP  the 
leverage value of the ith observation, 1−j

ir  the error with the ith 

observation, and 1−j
ii rmed  the average of the absolute value 

of errors.  
As the above equation shows the point with higher leverage 

value and error are given a lower weight and ultimately 
reduces their contribution to the result of the analysis. It 
should be noted that estimating coefficients in the weighted 
regression seeks to minimize the summation of the square of 
weighted errors not minimizing the summation of the square 
of errors.  

D. Comparing forecast models  
After introducing a number of robust regression methods, 

now we try to review the forecasting ability of these models 
concerning an example of financial data as compared to the 
OLS in order to approve the reliability of the outcome of 
robust models. To draw a comparison, we will use accuracy 
indexes, including the root mean square error (RMSE), mean 
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absolute error (MAD), mean absolute percentage error 
(MAPE), and the success rate (SR) that counts the number of 
right forecast of the sign of the true value by the model [18]. If 

tŷ  and ty  are taken as the true value and the anticipated value 
in t period and proportionally calculate the forecast from i+l to 
i+n period then the equations for calculating abovementioned 
indexes will be as follows: 
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This research is developmental and experimental as far as 

the objective is concerned and falls in the category of casual 
correlation researches. It also tries to show the strength and 
capability of robust regression in analyzing financial data. 
Ultimately, it tries to prevent probable bias that may be 
produced by the least square regression in analyzing financial 
data. In this connection, the input of the research is the data 
collected from 135 companies in the Tehran stock exchange in 
the period 1999-2006. These data have been gathered 
cumulatively and include 1080 company-year.  

Financial researches often discuss the relation between 
accounting data and the stock return or stock price. This 
research too considers this relation through the Olsen and 
return models. The Olsen model relates the stock price to 
dividend and the book value of the stock. On the other hand, 
the return model links the stock return to the dividend and its 
annual change. So, it is tried to develop regression models of 
simple least square and two robust regression models, at least 
the least trimmed square and the iteratively reweighted least 
square, and finally draw a comparison between results. The 
two models referred to be of eliminative and outlier’s effect 
reduction, respectively.  

To compare the outcome of regression and explain the 
performance of the robust regression model, in addition to 
presenting the modified coefficient, F test ad t test, two 
forecast indexes introduced in section 2-4, have been used. 
Statistical analyses have been carried out using SPSS and S-
PLUS software programs.  

In this research, developing regression models and 
collecting data have been based on two return model and 
Olsen model. The return model illustrates the relation between 
the stock return and accounting profit, and includes dividend 
per stock and fluctuations in the dividend as independent 
variables. This model which was presented by Iston and Harris 
in 1991 [9] can be described as follows: 

 

jtjtjtjtjtjtjt ePEEaPEaaRET +−++= −−− 112110 /)(/    (12) 

 
In this model,   jtRET  is the annual yield of the j  company 

, jtE denotes dividend, 
1−− jtjt EE  changes in dividend per 

stock and 
1−jtP  is the last year’s stock prices . 

Another model, which is known as the Olsen model (price 
model), was introduced by Olsen for the first time in 1995 
[17]. This model explains the relation between the stock price 
and two independent variables – dividend per stock and the 
book value of stocks – and can be shown in the equation 13.  

 
jtjtjtjt eEaBVaaMV +++= 210              (13) 

 
In this model,  

jtMV  is the market value of stocks from the  

j   company at the end of the month of presenting financial 
statements,  

jtBV  stands for the book value of each stock of 

the j  company  in the year t , and 
jtE  is the accounting profit 

reported for each stock of the company  j  in the year t .  
All variables of the research, excluding the book value 

variable, have been calculated for each company. The stock 
return variable has been calculated from the difference 
between the price of a stock at the end of the month of 
presenting financial statements of the company in the last year 
and the price of a stock at the end of the month of presenting 
financial statements in the current year plus yields (including 
the dividend, reward) proportional to the price of a stock price 
at the end of the month of presenting financial statements in 
the last year. In the next section, we will discuss the result of 
employing these various types of regression in estimating 
related models and will compare their performance in order to 
ultimately choose the most favorable regression technique. 

III. FINDINGS 
Results of regression analysis according to the Olsen model 

are displayed in table 1. As can be observed, the adjusted 
determination coefficient in the least square regression is equal 
to 0.474 that shows independent variables of the model 
(dividend arising from each stock and the book value of the 
stocks) explains for 47% of the changes in the dependent 
variable (stock price). Furthermore, the t test shows the 
insignificance of the book value variable at the lever of 5%. In 
other words, there is no relation between the stock price and 
the stock book value in this type of regression analysis.  

Results of the IRLS regression are somewhat different. 
According to this regression and regarding the adjusted 
determination coefficient, more than 70% of the changes in 
stock prices are explained by the dividend and the book value 
of each stock. Additionally, both independent variable 
(dividend per stock and the book value) are significant at the 
lever of 5% error. Therefore, using the iteratively reweighted 
least square regression analysis proves the relation between the 
variables and the stock price. The LTS model allows 
explaining more than 60% in the dependent variable. This 
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model is implemented through the S-Plus software program 
and is not fitted for running t test. It should be noted that all the 
three models are significant from the standpoint of the F- test. 
Therefore, the fitness of the models is approved.  

 
TABLE I  

RESULTS OF THE REGRESSION ANALYSIS FOR THE OLSEN MODEL 

T- Test β   

EPS BV EPS BV R2 Model 

P-
value t P-

value t     

0.00 28.54 0.37 0.89 5.56 0.19 0.47 OLS 

--- --- --- --- 3.56 0.42 0.62 LTS 

0.00 46.59 0.02 2.31 5.09 0.23 0.72 IRLS 
 

The difference between results of these three regressions 
can be explained in the light of reducing the effect of outliers 
and influential data. These data damages the efficiency of the 
model and the lever of significance of one of independent 
variables in the lease square regression. Based on this, if the 
researchers relies on the least square regression to draw result 
he will go wrong and the analysis will end in false findings. 
Consequently, it can be concluded that robust models will 
provide more satisfactory results and we will discuss this later.  
Table 2 shows the result of regression analysis for the return 
model. The adjusted coefficient in the least square regression 
is about 0.14. In other words, only 14% of changes in the 
dependent variable (stock return) can be explained by 
independent variables (dividend for a stock and the book value 
of stocks).  

In MTS model, independent variables are able to explain 
the stock return somewhat better. Of course, in the IRLS this 
improvement is remarkable and is about 24%. A comparison 
of regression analyses in the return model shows that reducing 
the impact of outliers and influential data improves the 
efficiency of the model. It must also be noted that using robust 
regression does not always lead to enhancement of results of a 
regression analysis but it helps making the results more 
realistic. Anyway, all the three models are significant with 
respect to the F test.  
 

TABLE II  
RESULTS OF THE REGRESSION ANALYSIS FOR THE RETURN MODEL 

T- Test β 

R2 Model 
EPS/PΔ EPS/P 

EPS/PΔ EPS/P P-
value T P-

value t 

0.0 5.23 0.00 8.06 32.06 110.99 0.139 OLS 
--- --- --- --- 19.08 115.25 0.142 LTS 
0.0 6.86 0.00 11.28 32.24 111.65 0.244 IRLS 

We have used the same criteria of assessment described in 
the previous section in order to scrutinize the performance of 
the developed models. Calculation of the related indexes for 
abovementioned regression models – Olsen model and the 
return model, respectively – are depicted in tables 3 and 4. In 

evaluating the models, the lower RMSE, MAD and MAPE 
indexes the more the SR index the more desirable will be the 
model considered.  

 
TABLE III 

COMPARISON OF OLS, IRLS AND LTS REGRESSION IN OLSEN MODEL 
MAPE SR MAD RMSE Regression 
67.7% 92.2% 4075.77 8008.56 OLS 
50% 93.1% 3760.44 8656.61 LTS 

56.8% 92.2% 3802.18 8087.73 IRLS 
 

As is seen, as MAD, MAPE and SR indexes are concerned 
robust models have functioned better than simple models. On 
the other hand, the result is inversed when RMSE index is 
used as a criterion for comparison. It can be concluded that 
robust model’s performance is less satisfactory when this 
index is measured. However, in order to prevent the 
accumulation of outlier-simulated error in RMSE it is 
recommended to use the MAD index. Some researchers 
approve using this initiative [14].  

 
TABLE IV  

COMPARISON OF OLS, IRLS AND LTS REGRESSIONS IN RETURN MODEL  
MAPE SR MAD RMSE Regression 
21.81% 65.2% 52.92 82.49 OLS 
14.17% 65.5% 50.03 84.98 LTS 
16.75% 65.3% 50.51 83.30 IRLS 

 
As it is observed, the value of SR and LTS indexes for OLS 

regression is approximately 92% and 93%, respectively. The 
most favorable value is 100% and shows all predictions are of 
the same sign with real values. From the value 92% it is 
inferred that in 8% of cases the sign of the predicted value is 
contrary to the sign real values. In other words, the model is 
extremely weak in 8% of cases. The MAD index for OLS, 
LTS and IRLS regressions are 4076, 3760 and 3802, 
respectively that reveals the fact that robust models are more 
suitable. And ultimately, the MAPE index is smaller with 
robust models and approves former deductions. The 
abovementioned indexes produce results similar to the Olsen 
model.  

IV. CONCLUSION 
Regression analysis is an important statistical tool in 

financial researches. Regression analysis must be free from 
bias and bent if realistic results are to be obtained. The least 
square regression, which is used in many financial researches, 
is strongly impressed by outliers and influential data, and in 
case of the existence of such items the conclusion will be 
distorted to a large extent. In order to prevent such faults and 
insufficiencies in results of a research we can identify and 
control outliers and influential data. Unfortunately, this is a 
time-consuming process and naturally reduces the number of 
statistical population and as a constraint hinders generalizing 
results to statistically smaller populations. 

However, there are solutions to overcome this problem; 
robust regression is one of these solutions. Robust regression 
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is aimed at achieving stable and reliable results versus outliers 
and influential data. Findings show that robust regression, 
through reducing or eliminating this type of data, can give rise 
to more logical results and consequently to more precise 
results. Additionally, this research indicates that MAD, MAPE 
and SR indexes are good criteria to evaluate the model’s 
function concerning outliers. Furthermore, it is recommended 
using robust regression in regression analysis of data in 
financial researches. Using this technique can thwart the effect 
of misleading results and improve the quality of statistical 
analyses in financial researches.  
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