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Traveling Wave Solutions For The
Sawada-Kotera-Kadomtsev-Petviashivili Equation
And The Bogoyavlensky-Konoplechenko Equation

By % -Expansion Method

Nisha Goyal and R.K. Gupta

Abstract—This paper presents a new function expansion method
for finding traveling wave solutions of a nonlinear equations and
calls it the (%)—expansion method, given by Wang et al re-
cently. As an application of this new method, we study the
well-known Sawada-Kotera-Kadomtsev-Petviashivili equation and
Bogoyavlensky-Konoplechenko equation. With two new expansions,
general types of soliton solutions and periodic solutions for these two
equations are obtained.
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I. INTRODUCTION

HE nonlinear phenomena exist in all the fields including

either the scientific work or engineering fields, such
as fluid mechanics, plasma physics, optical fibers, biology,
solid state physics, chemical kinematics, chemical physics,
and so on. It is well known that many non-linear evolution
equations (NLEEs) are widely used to describe these complex
phenomena. Research on solutions of NLEEs is popular. So,
the powerful and efficient methods to find analytic solutions
and numerical solutions of nonlinear equations have drawn a
lot of interest by a diverse group of scientists. Some of these
approaches are the homogeneous balance method [1,2], the hy-
perbolic tangent expansion method [3,4], the tanh-method [5],
the inverse scattering transform [6], the Bdcklund transform
[7], the Hirota bilinear method [8,9], the generalized Riccati
equation [10,11], the Weierstrass elliptic function method
[12,13], the sine-cosine method [14,15], the Jacobi elliptic
function expansion [16,17], the truncated Painleve expansion
[18], Lie Classical method [19] and so on.

Among the possible exact solutions of NLEEs, certain
solutions for special form may depend only on a single com-
bination of variables such as traveling wave variables. Also
there is a wide variety of approaches to nonlinear problems
for constructing traveling wave solutions. Recently a so-called

%)-expansion method has drawn a lot of attention. The
method was presented by Mingliang Wang in [20] at first. The
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main merits of the %)—expansion method over the other

methods are that it gives more general solutions with some
free parameters and it handles NLEEs in a direct manner with
no requirement for initial/boundary condition or initial trial
function at the outset. The method was soon been applied to
other non-linear problems by several authors [21,22,23].

In this paper, we pay attention to the analytical method for
getting the exact solution of some NLEES. Among the possible
exact solutions of NLEEs, certain solutions for special form
may depend only on a single combination of variables such
as traveling wave variables. Our main goal in this study is
to present the (%)—expansion method for constructing the
traveling wave solutions.

In section II, we describe the (%)-expansion method. In
section III, in order to illustrate the method we apply the
method to two physically important nonlinear evolution equa-
tions, namely, the Sawada-Kotera-Kadomtsev-Petviashivili
equation and the Bogoyavlensky-Konoplechenko equation and
abundant exact solutions are obtained which included the
hyperbolic functions, the trigonometric functions and rational
functions. Finally, we record some concluding remarks.

1. ()-ExpaNsION METHOD

We assume the given nonlinear partial differential equation
for u(zx,y,t) to be in the form

P(uauw7uy7ut7ua;wauyyvuttyua;ty~-~) :07 (D

where P is a polynomial in its arguments. The essence of the

% -expansion method can be presented in the following

steps:

Step 1. Find traveling wave solutions of equation (1)
by taking u(x,y,t) = u(€),§ = x + y — kt and transform
equation (1) to the ordinary differential equation

Q(u7 u/7u//7"') = 07 (2)

where prime denotes the derivative with respect to £ .

Step 2. If possible, integrate equation (2) term by term
one or more times. This yields constants of integration. For
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simplicity, the integration constants can be set to zero.
Step 3. Introduce the solution u(§) of equation (2) in

the finite series form
(G
i , 3
2 ( 6 ) @

=0

u(§) =

where a; are real constants with ay # 0 to be determined, N
is a positive integer to be determined. The function G(§) is the
solution of the auxiliary linear ordinary differential equation

G"(&) + MG (&) + uG (&) =0, )

where \ and p are real constants to be determined.

Step 4. Determine N. This, usually, can be accomplished by
balancing the linear terms of highest order with the highest
order nonlinear terms in equation (2).

Step 5. Substituting (3) together with (4) into equation
(2) yields an algebraic equation involving powers of (Q)

Equating the coefficients of each power of ( ) to zero gives
a system of algebraic equations for a;, A, u and k. Then, we
solve the system with the aid of a computer algebra system,
such as Maple, to determine these constants. On the other
hand, depending on the sign of the discriminant D = \? — 4y
the solutions of equation (4) are well known for us. So, we
can obtain exact solutions of equation (1).

III. APPLICATIONS OF (Q’) METHOD

In this section, we apply the (—)—expanswn method to
solve the Sawada-Kotera-Kadomtsev-Petviashivili equation
and Bogoyavlensky-Konoplechenko equation.

1111 Sawada-Kotera-Kadomtsev-Petviashivili
Equation

The Sawada-Kotera-Kadomtsev-Petviashivili (SKKP) equation
is

(SKKP)

(ut—|—15uumx—|—15uxuw+45u2um+uxmm)x+uyy =0, (5

where u is function of z,y and ¢.
Equation (5) can be written as

Ui + 15Uz Ugzr + 15UUzzze + 1502, + 15U Ug ey

+45u Uy, + 9()uu926 + Ugzzazs + Uyy = 0. ©)

According to the method described above in section 2, we
make the transformation u(x,y,t) = u(),§ = x +y — kt.
Then we get

7ku// + 15u/ " + 15uul/// + 15u//2 + 15ul n + 45u2u//
+90uu’? + u"" + " =0,
@)
where prime denotes the derivative with respect to £.
Now, balancing wu”"" with v gives N = 2. Therefore, we
can write the solution of equation (7) in the form

' I\ 2
u(§) = ap + a1 (%) +az <%) ) ®)

where as # 0 and G = G(§). From equations (4) and (8),
we derive

w'(§) = —2a3 (%)5 (a1 + 2az)) (5)2 _

—a1p,

-+ 200 (%)

(€))

(10051 + 2a1) (&)’
+ (a1 A% + 2a1 1 + 6agAp) (%)

N
u//(g) = 6ay (%) +
+(4a2)? + 8agp + 3a1 ) (%

—(8a1 Ay + 14aa N2 + 16azu? + a1 A\3)
—6asAu? — 2a1 42 — a1 N2,

+a1)\,u, (10)
N\ 0 A\ 4
u” (&) = —24as (%) — (6ay + 54as ) (%)
N3
—(40agp + 38a\? + 12a; ) (%)
2
—(52as A + 8a2 X% + Tay A2 + 8ay 1) (%) (11
) (

G/
¢)

u"(€) = 120a (%)6 + (336022 + 24a1) (%)5

+(330a2A? + 240azp + 60a1 \) (%)4

+(50a1 22 + 130a2\* + 40a1 p + 440az A1) (Q)B

+(15a1 A% + 16as X" + 60a1 Ay + 232a9 A% + 136a241%) (%)2
(

(@A + 2200020 + 120as\i® + 161142 + 30a2 03 )(%)
+16agu® + 14as 2 p? 4+ a1 A3 + Sa A2,

(12)
’ 8 ! 7
W (€) = 5040as (%) + (19440a2X + 7204, ) (%)

N
(2520a1\ + 29400a2)2 + 13440a24) (%)
+(21840a2\% + 38640a2 A + 1680a; 1

S\ D
£3360a1\%) (%) + (4015202021 + 8106a2\* + 420001 At
A\ 4
£12096as4:2 + 21001 A?) (%) 4 (1232a1 42 + 1792002334
£22960a M2 + 602a1 A + 1330as\® + 3584a1A2) (%

+(3968a22 + 63a1\° + 3096ao A1 + 117601 A3 + 13320a202 12

N 2
F64as )6 + 1848a3 \i?) (%) + (235220312 + an A® 4 T20a, A2

£3696as \i® + 272a1 1% + 1ldag Ny + 12677 1) (%
+272ao " 4 52a1 A3 % + 62a2 2\ p? + a1 N + 584as A i?
+136a; \p?,
(13)
Substituting equations (9-13) into equation (7), setting the
& ' ,(1=0,1,2,3,4,5,6,7,8) to zero, we
obtain a system of algebraic equations for ag, a;, as, k, A and

coefficients of
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u as follows:
’ 8 «
(%) —378002% ~ 630 5% — 5040z = 0,

L7
(%) . 7204y — 1170 as® A — 3600 ayas — 19440 as)
—11520 as?X — 1350 aja92 = 0,

,\ 6
(%) . 13440 aspt — 29400 as\2 — 10500 ayas)
Z540 as® A2 — 12690 as2\2 — 2520 ag A — 900 agas?

—2475 a1as% ) — 8880 ax?p — 1800 agay — 1080 ax3
—600a12 — 900 a;%as = 0,
(%) —18001° — 1080 agaraz — 360 aga; — 990 az* A p
—3360 a1 2?2 — 1620 a;?X — 2250 ajas?p — 10920 a1 \2as
—1680 aip — 21840 axA® — 1620 a1 2as A — 1620 agas® A
—18840 az?\ 11 — 5040 agas X — 38640 as 1 — 7800 ay i as
—5910 a92X3 — 1125 a1a22)2 = 0,
4
(%) +~6az — 1890 agarash — 2025 aras®A
—15420 a1 A prag — 4695 ai; A3ag — 4950 agas A2
—1440 a12agp — 1440 agas?p — 4200 a1\ 1 — 270 ag2as
—960 as2\* — 12096 asp? — 2100 a1 A3 — 1515 a1 2\2
—450 ag?p? — 6720 az?p® + 6 kay — 315a,3\ — 1140 a1 %
—270 aga;? — 8106 azA* — 900 agas A — 720 agaz?)?
—40152 as A%y — 720 a32aaA? — 3600 agasp
—12480 a2y =
3
G) 10020 — 241 — 1980012\t — 1950 agaz)®
—8280 ag?A u? — 750 agai A? — 3584 a1 A2 — 2490 a2 X3
—900 ajap?p® — 450 aga 2\ — 675 a3 \*ay — 600 agag p
—22960 agA p? — 450 agZas X — 1232 a1 p? — 602 ag A
—9210 a1 M aspr — 6600 agas A it — 810 agaias\?
—1620 agayazpt — 1260 agazX i — 1260 a12a\ p
—17920 as A3 — 5160 ay p2as + 10 kagh — 135 a3 A2
—1330 a2\’ — 90 ag2a; — 555 a12A% + 2 ka; —
270 a3 = 0,
2
(%) 0 —1848 a1 A p? — 135 ap2a A — 180 aga 2 A2
—240 agagA* — 13320 ag A2 — 1176 a1 A3 — 540 ay 2agp®
+8 kagp — 360 aoalzu — 2040 aoa2,u2 — 360 aOQagu
—180 ag2asA? + 3kai A — 3096 as Ay — 960 a1 2\
—540 agaz?u? — 2190 a2 A\2u? + 4 kas A2 — 225a,3\
—1350 agayag A pt — 225 agai A3 — 60 a2 A* — 64 ag A8
—3968 agu® — 600 a;2u? — 1680 ap?i® — 63 a1 \°
—3480 agas A% — 900 agai A it — 5520 ay A p2as
—1545 a1 \3aop — 3ai X — 8agp — 4as\? =0,
(%/) 1 —450 agag N3 — 15 aga A* — 240 agay p?
—90ag?aip — 720 a1 A2 p? — 272 a1 i3 — 960 aq pas
—3696 ao A 13 + 2kaipn — 114 a1 M\ — 126 ag X% — ag A2
—6asAp—2a1p — a1 A% —90a,3u? — 105 a12/\3u
+hkai A2 — 720 a2 X p® — 2352 aa A3 — 480 a2\ p?
—270 ag2as A pn — 270 agay® X jp — 540 agai aop® + 6 kas A i
—1110 a1 A 2aop? — 330 aga; A2 it — 1800 agas A p?
—45 a02a1>\2 = 07
0
%) D —62aM u? — a1 A g — 210 agag A2 p? — 60 az?pt
—60a1?u® — 15a9a1 2 3p — 240 ay A plas + kai\ p
+2kaspu® — 45 a2 22 % — 120 agay A p? — 90 aga, 2 p?
—90ag2agu® — 272 asp* — 52a1 X\3p% — 45 ag%a1 A p
—2app? — 240 agasp® — a N — 136 ay A p?
—584 as N3 = 0,
(14)

Solving these systems of algebraic equations by Maple gives
Case 1.

k=142 +76p2 + 22024 + 120aou + 15a9A? + 4543,
ay = —2>\, as = —2,
(15)
and p, A and aq arbitrary constants.

Case 2.
k=1+ %aoa% + %a‘f + 45a2,

)\:—%al,agz—?,uzQ (16)

and ap and a; are arbitrary constants.

For Case 1, Substituting the solution set (15) and the
corresponding solutions of (4) into (8), we have the solutions
of equation (7) as follows:

When A2 — 4p > 0, we obtain the hyperbolic function
traveling wave solutions

u1(§) =
C' sinh ( mf) +Cs Cosh( m£>
A2—4 2
apg — 2 \/7 — )\2 _ B
Cy cosh(%g) +Cs sinh( “w £>
A2 —4p C1 Sinh(@f)+02 cosh(@g) \
_2 A
’ Ci cosh <@5> +C3 sinh (@g) 2
%))

When A2 — 4 < 0, we obtain the trigonometric function
traveling wave solutions

U12(§) =
- sin Vau=r? cos du—x?
wo— o [ [0 (525 roncn(L2%)
2 I COS<\/4;L2—A2 5) +Cy sin(\ﬂmzfxz §>
_ in 4p—A2 ) A2 —ap
L [y (o)
C'1 cos <7v4“27k§> +C5 sin <7“1“27k5>
(18)
When A2 — 41 = 0, we obtain the rational function solutions
Cy A
U = — — 19
13(8) CL+ Cof 2 19
where £ = x +y — (1 4+ M + 762 + 22024 + 120aop +

15a0A? + 45a3)t.

For Case 2, Substituting the solution set (16) and the
corresponding solutions of (4) into (8), we have the solutions
of equation (7) as follows:

When A2 — 4y > 0, we obtain the hyperbolic function
traveling wave solutions

u21(§) = Qo
m C1 sinh( A2 74 >+CQ cosh( VA?— 4“5) N
+ay — 5
2 C1 cosh( A2 74“ )+C2 51nh< A2 4“5) 2
\/m C, mnh( 74“ >+ 2005h< VA2 74 §> N
_9 _2A
2 o Cosh( 20 dp g )+02 unh( ECENT §> 2
(20)

o[>
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When A2 — 4y < 0, we obtain the trigonometric function
traveling wave solutions

u22(§) = ao
V4 4“ A2
—C sin & | +C5 cos 3
A/ Ap—A2
+ax 12 <4 x2> ( >\2>_%
C1 cos( E) +C2 bln( 4“ 5)
5 Y —C, sm( dn 2 -2 §> +Cs cos< v ’\274“ §> N
2 Cy cos< Vap—2? 5) +Cso bln( Viu=? §> 2
21
When A? — 41 = 0, we obtain the rational function solutions
Cy A
: = ——— — 22
u23(§) O+ Ope 2 (22)
where \ = —%al,,u =0
and £ =z +y — (1+ 2aga} + Laf + 45ad)t.
6“1 0

I11.2 Bogoyavlensky-Konoplechenko Equation
Now, let us consider the following Bogoyavlensky-
Konoplechenko equation in the form

Upt + QUgzzy + BUgzoy +060Uzg Uy +4BUgy Uy +4BUgruy = 0,
(23)

where u is function of z,y and ¢.
We make the transformation u(z,y,t) = u(§),& = v +y — kt.
Then we get

_k'u/// + au//// + ﬂu//// + 6au” A + 85”’ "o O, (24)
where prime denotes differentiation w.r.t £.
Balancing u'u” with v gives N = 1.
Therefore, we can write the solution of equation (24) in the
form
!

u(§) =ag+ a1 (Q (25)

G),al#o

By using equations (4) and (25) we have

u'(§) = —a; (%/)2 —ai )\ (%/) — a1,

W' () = 241 (%)3 + 3ay (%)2 + (@ A2 + 2a1p0) (%)

+ai A,

u"' (&) = —6ay ( ) —12a; A\ (%)3 — a1 (7TA? + 8u) (%)2
—ai (W + 8 ( ) — a1 (Rt 24%),

W"(€) = 24a; (ﬁ) + 60a;\ (%)4 + a1 (50A2 + 40p)

? @ (1523 + 60A) (%)2 Fa (A + 220% + 1612)
&)+ ar (W +8a?),

’

Q\Q

Q\Q

QQ

(26)
Substituting equations (26) into (24), setting coefficients of

(#)0-

0,1,2,3,4,5) to zero, we obtain a system of

, +24aa1\* — 50\ —
’ 2 . .
, (%) : =60 a1+ 6 aarA® + 8barA® + 48 bay A i — 15 aX®

are obtained. The

nonlinear algebraic equations ag, a1, k, A and p as follows:

),
)

(Q’) - 12aay — 24a — 24b+ 16 bay = 0,
—60aX — 600\ 4 30aay A + 40 bay A = 0,

12k 4+ 32bay; A% — 40by — 40 ap + 24 aaq pr + 32bayp

50a\2 = 0,

—60bA g+ 3kX — 156A3 +36aa; A p = 0,
%) 16bar A2 — 22602 — aX* + 12 a1 p® + 16 bay 2

—22aX?p 4+ 12aa; N2 — 16 ap? — bA* + kA2 +2kp — 16 bu® = 0,

N
%) s =8alpu? +8bat A — b3+ kA p 4+ 6aar A p? — aX3p
—8bApu? =0.

27
Solving this system by Maple gives
28(—3+2a1) _
@= g,y 0 =1
o = Bar (N i) (28)
- 3(a1—2) -

Substituting the solution set (28) and the corresponding
solutions of (4) into (25), we have the solutions of equation
(24) as follows:

When A2 — 4y > 0, we obtain the hyperbolic function
traveling wave solutions

u11(§) = ao+
A \/m C1 sinh ( @5) +C cosh ( @E) R
aq A
T\ oo (ST ey (V)
(29)

When A2 — 4 < 0, we obtain the trigonometric function
traveling wave solutions

u12(§) = ag
— sin Va2 cos Vau—x2
+ai ) \/4,11*7/\2 1 ( 2 f) +C2 ( 5 5) A
’ 1 COS(@&)JrCz sin(@g) 2
(30)
When A2 — 4y = 0, we obtain the rational function solutions
Cs A
u =FTA7 9 31
188 = G e 2 G

where £ =z +y — (M)t.

3(a1—2)

IV. DI1SCUSSION AND CONCLUDING REMARKS

In this paper, an implementation of the %)-expansion

method is given by applying it to three nonlinear equations
to illustrate the validity and advantages of the method. As
a result, hyperbolic function solutions, trigonometric func-
tion solutions and rational function solutions with parameters

% )-expansion method is direct, concise

and effective. The performance of this method is reliable,
simple and gives many new exact solutions. The obtained
solutions with free parameters may be important to explain
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some physical phenomena. The paper shows that the devised
algorithm is effective and can be used for many other NPDEs
in mathematical physics.
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