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Abstract—All-to-all personalized communication, also known as 

complete exchange, is one of the most dense communication patterns 

in parallel computing. In this paper, we propose new indirect 

algorithms for complete exchange on all-port ring and torus. The new 

algorithms fully utilize all communication links and transmit messages 

along shortest paths to completely achieve the theoretical lower 

bounds on message transmission, which have not be achieved among 

other existing indirect algorithms. For 2D r × c ( r ≤ c ) all-port torus, 

the algorithm has time complexities of optimal transmission cost and 

O(c) message startup cost. In addition, the proposed algorithms 

accommodate non-power-of-two tori where the number of nodes in 

each dimension needs not be power-of-two or square. Finally, the 

algorithms are conceptually simple and symmetrical for every message 

and every node so that they can be easily implemented and achieve the 

optimum in practice. 

 

Keywords—Complete exchange, collective communication, 

all-to-all personalized communication, parallel computing, wormhole 

routing, torus. 

I. INTRODUCTION 

ISTRIBUTED-memory multiprocessors are widely 

employed to solve large scale scientific and engineering 

problems. It is widely recognized that interprocessor 

communication is one of the main bottlenecks in increasing the 

performance of multiprocessors in which the processors are 

linked by an interconnection network. Nowadays, 

multicomputers have provided high performance and scalable 

collective communica- tion [1] pattern, which involves global 

data movement and global control among a group of processors 

and is supported by the Message Passing Interface (MPI). 

Among these patterns, all-to-all personalized communication, or 

simply complete exchange, is the most dense communication 

pattern which requires that each node sends a distinct message 

of the same size to each other processor. Numerous scientific 

and numerical applications exhibit the need of such 

communication patterns, such as matrix algorithms, fast Fourier 

transformation (FFT), and graph algorithms, and are used to 

evaluate the quality of interconnection networks. 

The network considered in this paper is torus, which has a 
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simple, regular topology and a bounded node degree. Because 

torus possesses excellent scalability and satisfies the demand of 

high bandwidth and low latency, it has been adopted by 

commercial machines, such as IBM Bluegene, Cray T3D/T3E, 

and Intel Paragon.  

Complete exchange problem has been extensively studied in 

the past decade. Some researches are developed on the 

cluster-based systems [2]. However, most of these researches 

are designed to handle the topological constraints of the 

underlying networks, such as tori [3 – 8], meshes [9, 10], hyper- 

cubes [11], and multistage networks [12]. General speaking, 

algorithms for complete exchange can be classified into two 

categories: direct or indirect (message-combining) approaches. 

For the direct algorithm [3, 4], each processor directly sends 

those messages to each of the destination processors. For the 

indirect algorithm [5 – 9], messages may be delivered to their 

destination indirectly via intermediate processors in which 

messages are combined to form a larger message. Although the 

direct approach can achieve optimality in transmission cost, the 

startup cost is very high [5]. The indirect approach uses message 

combining to obviously reduce message startup cost. However, 

the indirect approach is very hard to completely achieve the 

theoretical lower bound on message transmission since it incurs 

more traffic in the network. Thus, indirect approach favors short 

messages exchange, while direct approach favors long messages 

exchange. In tori or meshes, the indirect algorithms tend to be 

more efficient than the direct ones.  

Both direct algorithms in [3, 4] achieved the lower bound on 

message transmission of 3 32 d −  on 2 2d d×  torus, but they finish 

the complete exchange operation in 3 32 d −  communication 

steps. To relieve the direct algorithm’s problem, Tseng [5] 

proposed a diagonal-propagation scheme that achieves 3
(2 )

d
O  

transmis- sion time and (2 )dO  startup time. In [6], Suh 

proposed indirect algorithms using message combining on 

2 2d d×  tori with time complexities of ( )O d  due to message 

startup and 3(2 )dO  due to message transmission. However, the 

constant associated with the transmission time is relatively high 

and the effect of this is significant as the size of message is fairly 

large. Tseng [7] used a “gather-then-scatter” technique and 

enforced shortest paths in routing messages to achieve 

asymptotically optimal startup time. Suh[10] presented more 

efficient indirect multidimensional algorithms that the size of 

network needs not be power-of-two and square. 

Existing indirect algorithms can not fully utilize all 

communication links so as to fail in achieving optimality in 

transmission time. In addition, we are not aware of any existing 

algorithms for complete exchange on all-port tori. However, the 

number of algorithms for all-to-all broadcast on all-port tori is 

quite a few, such as [13, 14]. 
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In this paper, we propose new indirect algorithms for 

complete exchange on all-port ring and 2D torus. We use 

message combining to reduce the startup time, fully utilize all 

communication links, and send messages along shortest paths to 

minimize transmission time. Compared with other existing 

algorithms, the proposed algorithms have following features: 

(1) They completely achieve the theoretical lower bounds on 

message transmission; (2) They accommodate non-power-of- 

two tori where the number of nodes in each dimension needs not 

be power-of-two or square; (3) They are conceptually simple 

and symmetrical for every message and every node. 

The rest of this paper is organized as follows. In the next 

section, we present basic system model. We propose the 

algorithm for all-port ring in Sect. 3, the algorithm for 2D 

all-port torus in Sect. 4. Performance analysis and comparison is 

given in Sect. 5. Finally, conclusions are drawn in Sect. 6. 

II. SYSTEM MODEL 

In this paper, we consider multicomputers composed of 

nodes interconnected together by a torus topology. We assume 

the communication model in which each communication 

channel is full-duplex and each node has all-port capability (as 

opposed to the one-port). In other words, a node in the network 

can simultaneously send and receive messages on a channel, and 

at any time each node can exchange messages with all of its 

neighbors simultaneously. This assumption is used in several 

recently constructed multiprocessors in order to fully use all of 

the available bandwidth. Fig. 1 depicts the internal structure of a 

node in 4 4×  all-port torus. Each node is composed of a 

processor, a router which determines the route of messages 

arriving, leaving and passing through the node, and a buffer 

matrix required for complete exchange to store the messages. In 

addition, there are four pairs of first-in-first-out buffers in each 

node for 2D all-port torus, while each input buffer associated 

with an input channel of the node and each output buffer 

associated with an output channel of the node. In our 

algorithms, we assume that a message proceeds only along one 

dimension at a time, which is called as dimension-order routing. 

Proccessor

Memory

Router

 

Fig. 1 The internal structure of a node in 4 4×  all-port torus 

We adopt wormhole routing technique in this paper, which is 

most popular switching technique. The communication latency 

in wormhole switching is almost independent of the number of 

hops between two nodes, if there is no contention in the 

channels. Let st  be the startup time per message, which is the 

time required for the source node to prepare the message and 

initialize the communication, wt  be the message transmission 

time per byte, and ρ  be the data rearrangement time per byte 

between communication phases. The communication time for 

one communication step can be expressed as s wT t m t= + ⋅ , if 

one m-byte message is sent to the destination without any 

contention. The following lemma gives the lower bound on 

message transmission for complete exchange operation in tori. 

Lemma 1. For a k-dimensional torus of size 1 2 kN N N× ×⋅⋅⋅× , 

where 1 2 kN N N≥ ≥ ⋅⋅⋅ ≥  and 1N  is even, the lower bound on 

message transmission for performing complete exchange is 

1 1
8

k

ii
N N m

=
⋅ ⋅∏ , wherem is  the size of per message. 

Proof. Omitted. See [4] for details. 

III. BASIC CONSTRUCT: COMPLETE EXCHANGE ON AN 

ALL-PORT RING 

In this section, we consider the complete exchange problem 

on an all-port ring of p processors, where p  is even and 4p ≥ . 

Nodes on the ring are numbered clockwise from 0P  to 1pP − . For 

each node iP , if ( )mod 2j i p p− ≤ , then we think node jP  

( j i≠ ) is on the positive half-circle of iP , otherwise is on the 

negative half-circle of iP . Each node sP has a message denoted 

as s

dM whose destination is node dP . We use ,...,

s

i jM  denote the 

set of messages{ }1, ,...,s s s

i i jM M M+ , and use ,...,i j

dM  to denote 

the set of messages { }1, , ...,i i j

d d dM M M+ . If 0i <  or i p≥ , then 

we denote ( ) mod  i p p± as i . 
We consider each bidirectional channel as two unidirectional 

channels, and consider a ring of p processors as two unidirec- 

tional sub-rings of 2p  processors: odd sub-ring and even 

sub-ring. The even sub-ring consists of only even-numbered 

nodes (simply even nodes) and unidirectional channels, and the 

odd sub-ring consists of odd-numbered nodes (simply odd 

nodes) and unidirectional channels. Each node on the ring can 

utilize its two ports to transmit messages along positive or 

negative direction simultaneously. The communication pattern 

is described as follows.  

A. Communication Pattern 

The algorithm has three stages. In Stage 1, each even node 

2iP  sends all messages whose destinations are odd nodes on the 

positive half-circle of 2iP  to its positive adjacent odd node 2 1iP +  

and sends all messages whose destinations are odd nodes on the 

negative half-circle of 2iP  to its negative adjacent odd node 

2 1iP −  simultaneously. At the same time, each odd node
2 1iP +  

sends all messages whose destinations are even nodes on the 

positive half-circle of 2 1iP +  to its positive adjacent even node 

2 2iP +  and sends all messages whose destinations are even nodes 

on the negative half-circle of 
2 1iP +  to its negative adjacent even 

node 2iP  simultaneously.  

In Stage 2 and 3, complete exchange operations are 

performed in even sub-ring and odd sub-ring, respectively. In 

Stage 2, each node on the even sub-ring sends messages 

clockwise to the next even node, while each node on the odd 

sub-ring sends messages anticlockwise to the next odd node. 

Upon receiving the messages, each node extracts the messages 

meant for it and forwards the remainder to the next node in the 

direction of the messages. The process is repeated 4p    times 
at most (i.e. half a circle) until all messages have reached their 

destination nodes. In Stage 3, each node on the even sub-ring 

sends messages anticlockwise to the next even node, while each 

node on the odd sub-ring sends messages clockwise to the next 

odd node. Similarly, the process is repeated 4 1p −    times at  
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              Fig. 2 Description of Complete Exchange on an All-Port Ring 

most until all messages have reached their destination nodes. 

The formal description of complete exchange algorithm AR on 

all-port ring is shown in Fig. 2. 

Fig. 3 illustrates the communication patterns for complete 

exchange on an all-port ring of eight nodes. The above algorithm 

guaranteed not only the absence of link contention but also the 

full utilization of the links and enforcement of shortest paths. 

B. Complexity Analysis 

In the following, we analyze the time complexity of algorithm 

AR in terms of startup time and message-transmission time. 

Lemma 2: The total communication cost of our complete 

exchange scheme on an all-port ring of p nodes, where p is even 

and 4p ≥ , is 

     
2

2 8ring s wT p t p mt = ⋅ + ⋅  . 

Proof. In Stage 1, each node exchanges messages with its two 

adjacent nodes simultaneously, therefore Stage 1 has only one 

step and 4p    messages are transmitted. In Stage 2, messages 
are relayed 4p    times at most on the even (odd) sub-ring, 
thus the transmission cost of Stage 2 is 

( ) ( )4 1

0
4 4 1

4 4

p

wk

w

p k p k mt

p p mt

−  

=
 − + − − ⋅       

= ⋅ ⋅      

∑                       (1) 

Likewise, messages are relayed 4 1p −    times at most on 

the odd (even) sub-ring in Stage 3, thus the transmission cost of 

Stage 3 is: 

( ) ( )
( )

4 2

0
4 1 4 1

4 4 1

p

wk

w

p k p k mt

p p mt

−  

=
 − − + − − ⋅       

= ⋅ − ⋅      

∑
                (2) 

                                       Fig. 3 Complete Exchange on an  

                                            All-Port Ring of 8 Nodes 

Thus, the time complexity of algorithm AR is 
ringT =  

22 8s wp t p mt ⋅ + ⋅  , where the message transmission time 

completely achieves the theoretical lower bound 2 8 wp mt  ⋅  . 

IV. COMPLETE EXCHANGE ON ALL-PORT 2D TORUS 

In this section, we consider the complete exchange on 2D 

r c× all-port torus, where r and c  are multiples of four and 

r c≤ . Each node in the torus is denoted as ( , )P x y  ( 0 ≤ x ≤ r–1 

and 0 ≤ y ≤ r–1), which is connected to ( 1, )P x y− , ( 1, )P x y+ , 

( , 1)P x y − , and ( , 1)P x y + .  

All nodes in a torus are topological symmetric. Without loss 

of generality, if we place node 0 0( , )P x y  at the center, every 

other node ( , )P x y  in the torus is included into one of the center 

node’s four quadrants, namely QI, QII, QIII, and QIV, 

according to the following rule: 

QI:    if
0( )mod 2x x r r− ≤  and 

0( )mod 2y y c c− ≤ ; 

QII:   if 0( )mod 2x x r r− >  and 0( )mod 2y y c c− ≤ ; 

QIII: if 0( )mod 2x x r r− >  and 0( )mod 2y y c c− > ; 

QIV: if 0( )mod 2x x r r− ≤  and 0( )mod 2y y c c− > ; 

A. An Overview 

The 2D torus can be regarded as the graph product of two 

rings, so we can apply the algorithm for the ring to construct our 

2D algorithm. To fully utilize all the communication links, all 

nodes are divided into four groups, namely 
00G ,

01G ,
10G , and 

11G , according to the following rule: 

 { }( , ) |   mod  2      mod  2  ijG P x y x i and y j= = = . 

Hence, the original r c×  torus is divided into 2 2r c×  sub-  
      Fig. 4 Communication pattern on all-port 2D torus  

Algorithm AR: // Complete Exchange on an All-Port Ring 

BEGIN 

{Stage 1} 

For 0i =  To 2 1p −  Para_Do 

2iP  sends 
2

2 1,2 3,...,2 2 4 1

i

i i i p
M + + + ⋅ −  

 to 2 1iP +  

2iP  sends 
2

2 2 4 1,...,  2 3,2 1

i

i p i p i p
M + ⋅ + + − + −  

 to 2 1iP −  

2 1iP +  sends 
2 1

2 2,2 4,...,2 2 4

i

i i i p
M +

+ + + ⋅  
 to 

2 2iP +  

2 1iP +  sends 
2 1

2 2 4 2,2 2 4 4,...,2

i

i p i p i p
M +

+ × + + × + +      
 to 2iP  

Endfor 

{Stage 2} 

For 0k =  To 4 1p −   Do 

For 0i =  To 2 1p −  Para_Do  

2iP  sends 
2 2

2 2,2 4,...,  2 2 4 2

i k

i i i p k
M −

+ + + ⋅ −  
 and ( )

2 1 2

2 2,2 4,...,  2 2 4 1 2

i k

i i i p k
M − −

+ + + ⋅ − −  
 to 2 2iP +  

2 1iP +  sends 
2 1 2

2 1 2 4 2 ,...,  2 3,2 1

i k

i p k i p i p
M + +

+ + ⋅ + + − + −  
and ( )

2 2 2

2 1 2 4 1 2 ,...,2 3,2 1

i k

i p k i p i p
M + +

+ + ⋅ + + + − + −  
 to 2 1iP −

Endfor 

Endfor 

{Stage 3} 

For 0k =  To 4 2p −    

For 0i =  To 2 1p −  Para_Do 

2iP  sends ( )
2 2

2 2 4 1 2 ,...,2 4,2 2

i k

i p k i p i p
M +

+ ⋅ + + + − + −  
 and ( )

2 1 2

2 2 4 1 2 ,...,2 4,2 2

i k

i p k i p i p
M + +

+ ⋅ + + + − + −  
 to 2 2iP −  

2 1iP −  sends ( )
2 1 2

2 1,2 3,...,  2 1 2 4 1 2

i k

i i i p k
M

− −
+ + − + ⋅ − −  

 and ( )
2 2 2

2 1,2 3,..., 2 1 2 4 1 2

i k

i i i p k
M

− −
+ + − + ⋅ − −  

 to 2 1iP +  

Endfor 

Endfor 

END. 

( a ) 

( c ) 

( d ) 

( b ) 
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     (a) Phase 1, (b) Phase 2, (c) Phase 3. 

meshes of size 2 2× . Each node in a 2 2× sub-mesh is included 

in one of four distinct groups (see Fig. 4(a)). 

Firstly, we briefly describe a previous scheme proposed in [7, 

8]. The scheme has two parts. In the first part, four nodes in each 

2 2×  sub-mesh exchange messages in two steps. After this part, 

each node in a 2 2×  sub-mesh has messages originated from 

nodes in the same 2 2×  sub-mesh and destined for nodes in the 

same group to which the node belongs. In the second part, nodes 

in the same group perform complete exchange among them to 

finish complete exchange. However, the previous scheme 

conforms to one-port constraint and fails to fully utilize all 

communication links; moreover, messages are not transmitted 

along shortest paths. The above problems hinder the previous 

scheme from achieving optimality in transmission time. 

B. Communication Pattern 

Inspired by our scheme on a ring, we design an ingenious 

scheme to solve the above problem. The proposed 2D algorithm 

consists of three phases. In Phase 1, each node in 2D torus sends 

messages destined for nodes in three other groups to its eight 

surrounding nodes, which respectively belong to three other 

groups (see Fig. 4(a)). Phase 1 requires two steps. In Step 1, 

every node utilizes its four ports to transmit messages to its four 

adjacent nodes simultaneously. For instance, we consider 

node
0 0 00( , )P x y G∈ , the messages transmitted from node 

0 0( , )P x y are described in Table 1. Node 0 0( , )P x y  transmits 

8 16r c r c⋅ + ⋅  messages whose destination are in 10G  (or 11G ) 

and QI of 
0 0( , )P x y  to its lower adjacent node 

0 0( 1, )P x y+ , 

the same number of messages are transmitted to three other  

adjacent nodes, respectively and simultaneously. Our scheme 

can guarantee that all these messages are transmit- ted along 

shortest paths in the successive communication steps. 

In Step 2, each node relays to transmit messages to its four 

adjacent nodes simultaneously. For instance, node
0 0( 1, )P x y+  

extracts these 8r c⋅  messages meant for it and forwards 

remainder 16r c⋅  messages to node 
0 0( 1, 1)P x y+ + .  

After Phase 1, each node has received messages originated 

from its eight surrounding nodes and destined for 4r c⋅  nodes 

in the same group to which the node belongs. Therefore, nodes 

in the same group perform complete exchange among them in 

Phase 2 and 3. If we consider a row, 2c  nodes in the group 

00G  (or 
11G ) can be regarded as a logical row ring. If we 

consider a column, 2r  nodes in the group 
01G  (or 

10G ) can 

also be regarded as a logical column ring. Hence, nodes in a row 
 TABLE I 

COMMUNICATION PATTERN OF NODE 0 0( , )P x y  

8r c⋅

messagesport

Lower

Port

Right

Port

Upper

Port

Left

Port

16r c⋅

8r c⋅

8r c⋅

8r c⋅

16r c⋅

16r c⋅

16r c⋅

destinations of messages

0 0( , )P x yand QI of
11G

0 0( , )P x y
10G and QI of

0 0( , )P x yand QII of
01G

0 0( , )P x yand QII of
11G

0 0( , )P x yand QIII  of10G

0 0( , )P x yand QIII  of11G

0 0( , )P x yand QIV of01G

0 0( , )P x yand QIV of11G
 

can transmit messages along two directions (row and column) in 

parallel without channel contention, so do nodes in a column.  

In Phase 2, we can simultaneously run algorithm AR on every 

logical row ring and every logical column ring. In other words, 

nodes in the group 
00G  or 

11G  perform complete exchange 

along row direction, and nodes in the group 01G  or 10G  perform 

complete exchange along column direction simultaneously, (see 

fig. 4(b)). In Phase 3, nodes in the group 
00G  or 

11G  perform 

complete exchange along column direction, and nodes in the 

group 01G  or 10G  perform complete exchange along row 

direction, as showed in Fig. 4(c). 

Note that there is no channel contention in our scheme, all 

communication links are fully utilized, and every message is 

transmitted along the shortest paths. The formal description of 

2D algorithm for complete exchange in r c×  all-port torus is 

shown in Fig. 5. 

C. Data Array 

Initially, we assume that each node ( , )P i j  has r c⋅  distinct 

messages to distribute other nodes in a 2D r c×  torus, 

including one dummy message for itself. These messages are 

stored in a 2D array , [0 : 1,  0 : 1]i jA r c− − , one message per 

location. If messages to be transmitted are not contiguous, then 

they should be rearranged before transmission. Before Phase 1, 

messages should be rearranged to facilitate our communication 

operations in Phase 1. After Phase 1, each node in the torus has 

received messages originated from its eight surrounding nodes. 

Regardless of the source nodes of the messages, each node has 

messages (*,*)

,x y AM ∈ , where 

0 0 0 0

0 0 0 0

, 2, 2 , 2 ,0 4 1
( , )

, 2, 2 , 2 ,0 4 1

x x x c x i x i i r
A x y

y y y r y j y j j c

 = + ± ± ≤ ≤ −  
=  

= + ± ± ≤ ≤ −  
 

Lemma 3. The communication cost in Phase 2 is: 

   ( )2
4 32 32 8Phase s wT c t r c r c r c mt= ⋅ + ⋅ + ⋅ − ⋅ ⋅ .              (3) 

Proof. After Phase 1, each node has messages (*,*)

,x y AM ∈ . In Phase 

2, we can simultaneously run algorithm AR on every logical row 

ring and every logical column ring. Firstly, we consider a logical 

row ring of 2c  nodes. Each node 
0 0

( , )P x y  in logical row ring 

has c columns of messages destined for 2c  nodes. Except for 

one column of messages destined for 0 0( , 2)P x y c+  and three 

columns destined for itself, node 0 0( , )P x y  has two columns of 

messages destined for every other node in the logical row ring. 

Thus, the communication cost for a logical row ring is: 
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Fig. 5 Description of Complete Exchange in All-Port Torus 

( ) 
4 32 32 8row ring s wT c t r c r c r c mt= ⋅ + ⋅ + ⋅ − ⋅ ⋅  

Secondly, we consider a logical column ring of 2r  nodes, 

and its communication cost is 
 column ringT . Since r c≤ , 

 row ringT  

 column ringT≥ . Hence, the communication cost in Phase 2 is: 

   ( )2 4 32 32 8Phase s wT c t r c r c r c mt= ⋅ + ⋅ + ⋅ − ⋅ ⋅ .                  □ 

Likewise, the communication cost in Phase 3 is: 

( )3 4 32 32 8Phase s wT c t r c r c r c mt= ⋅ + ⋅ + ⋅ − ⋅ ⋅ .                (4) 

Lemma 4. The total message transmission time of our complete 

exchange scheme on 2D r c×  all-port torus, where r and c  are 

multiples of four and r c≤ , is ( )2 8 wr c mt⋅ ⋅ , which 

completely achieves the theoretical lower bound. 

Proof. Phase 1 consists of two steps and we should transmit 

( )8 16r c r c⋅ + ⋅  and 16r c⋅  messages at each step, respect- 

tively. In Phase 2 and 3, there are ( )32 32 8r c r c r c⋅ + ⋅ − ⋅   

messages transmitted in each phase. So the total message 

transmission time is ( )2
8 wr c mt⋅ ⋅ .                                         □ 

D. Complexity Analysis 

We now analyze the time complexity of the proposed 2D 

algorithm in terms of startup time, message transmission time 

and rearrangement time. 

1. Startup time: The 2D algorithm has three phases: Phase 1 has 

2 steps, and 4c steps per phase are required in Phase 2 and 

3. Thus, the total startup time is ( )2 2 sc t+ ⋅ . 

2. Message transmission time: This is the time we spend in 

transmitting messages inside channels. According to lemma 

4, the total message transmission time is ( )2 8 wr c mt⋅ ⋅ , 

which completely achieves the theoretical lower bound. 

3. Rearrangement time: This is the time we spend in rearranging 

messages between phases. At the beginning of each phase, 

messages are actually rearranged to prepare. Thus, the total 

data rearrangement time is 3 rc mρ⋅ ⋅ . 

V. PERFORMANCE ANALYSIS AND COMPARISON 

In this section, the performance of the proposed algorithms is 

analyzed and compared with that of existing algorithms. 

So far, we are not aware of any existing algorithms for 

complete exchange on all-port tori. Thus, we have to compare 

the performance of our algorithms with that of existing 

algorithms on one-port tori, regardless of port capability. For 

2D tori, Tseng [5] and Suh [6] proposed indirect algorithms in 

which networks are assumed to be power-of-two and square 

tori. However, Suh’s algorithm [10] and our algorithms can 

accommodate non-power-of-two tori where the number of 

nodes in each dimension needs not be power-of-two or square. 

Thus, Suh’s algorithm [10] and our algorithm have better 

scalability.  
TABLE II 

COMPARISON OF COMPLETE EXCHANGE IN 2 2d d×  TORUS 

Pr oposed

[ 10]

[ 5]

[ 6]

St ar t up Cost

( )12 2d

st
− + ⋅ ( )3 2 22 2d d

wmt− + ⋅

Message Tr ansmi ssi on Cost

( )12 2d

st
− + ⋅

( )12 2d

st
− + ⋅ 3 32 d

w
mt− ⋅

( )3 3
s

d t− ⋅ { }3 4 2 2 19 2 ( 5 3) 2d d

wd d mt− −⋅ + − + ⋅ ⋅ { }3 4 2 2 1
9 2 ( 5 3) 2

d d
d d mρ− −⋅ + − + ⋅ ⋅

23 2 d mρ⋅ ⋅

2
3 2

d
mρ⋅ ⋅

( )1 22 1 2d d mρ− + ⋅ ⋅

Dat a Rear r angement  Cost

( )3 2 22 2d d

wmt− + ⋅

 
For comparison, the time complexities the proposed and other 

existing algorithms [5, 6, 10] on 2 2d d× tori is presented in 

Table II. Obviously, the proposed algorithm is superior to 

Tseng [5] in terms of message transmission cost, and data 

rearrangement cost. Suh [6] achieves ( )O d  startup cost, 

however, the constant associated with the transmission time is 

relatively high and the effect of this is significant as the message 

size is fairly large. In addition, the time complexity due to data 

Algorithm AT2: //Complete Exchange on All-Port r×c Torus 

BEGIN 

{Step 1 of Phase 1} 

For each node 0 0( , )P x y  in the network Para_Do 

0 0( , )P x y  sends 0 0( , )

( , )

x y

x y RM ∈  to 0 0( 1, )P x y+  (via Bottom-port) 

0

0 0

( 2 1)mod ,                             1 4
( , )

( mod 2)  (( 2 1)mod ),  1 4

x x i r i r
B x y

y y or y j c j c

 = + − ≤ ≤ 
=  

= + − ≤ ≤  
 

0 0( , )P x y  sends 0 0( , )

( , )

x y

x y TM ∈  to 0 0( , 1)P x y +  (via Right-port) 

0 0

0

( mod2)  (( 2 1)mod ),  1 4
( , )

( 2 1)mod ,                          1 4

x x or x i r i r
R x y

y y j c j c

 = − + ≤ ≤ 
=  

= + − ≤ ≤  
 

0 0( , )P x y  sends 0 0( , )

( , )

x y

x y LM ∈  to 0 0( 1, )P x y−  (via Top-port) 

0

0 0

( 2 1)mod ,                             1 4
( , )

( mod 2)  (( 2 1)mod ),  1 4

x x i r i r
T x y

y y or y j c j c

 = − + ≤ ≤ 
=  

= − + ≤ ≤  
 

0 0( , )P x y  sends 0 0( , )

( , )

x y

x y BM ∈  to 0 0( , 1)P x y −  (via Left-port) 

0 0

0

( mod 2)  (( 2 1)mod ),  1 4
( , )

( 2 1)mod ,                          1 4

x x or x i r i r
L x y

y y j c j c

 = + − ≤ ≤ 
=  

= − + ≤ ≤  
 

Endfor 

{ Step 2 of Phase 1} 

For each node 0 0( , )P x y  in the network Para_Do 

0 0( , )P x y  sends 0 0
*

( , 1)

( , )

x y

x y R
M

+

∈
 to 0 0( 1, )P x y+  (via Bottom-port) 

0*

0

( 2 1)mod ,    1 4
( , )

( 2 2)mod ,  1 4

x x i r i r
B x y

y y j c j c

 = + − ≤ ≤ 
=  

= − + ≤ ≤  
 

0 0
( , )P x y  sends 0 0

*

( 1, )

( , )

x y

x y T
M −

∈
 to 

0 0
( , 1)P x y +  (via Right-port) 

0*

0

( 2 2)mod ,   1 4
( , )

( 2 1)mod ,  1 4

x x i r i r
R x y

y y j c j c

 = + − ≤ ≤ 
=  

= + − ≤ ≤  
 

0 0( , )P x y  sends 0 0
*

( , 1)

( , )

x y

x y L
M −

∈
 to 0 0( 1, )P x y−  (via Top-port) 

0*

0

( 2 1)mod ,    1 4
( , )

( 2 2)mod ,  1 4

x x i r i r
T x y

y y j c j c

 = − + ≤ ≤ 
=  

= + − ≤ ≤  
 

0 0( , )P x y  sends 0 0
*

( 1, )

( , )

x y

x y B
M +

∈
 to 0 0( , 1)P x y −  (via Left-port) 

0*

0

( 2 2)mod ,   1 4
( , )

( 2 1)mod ,  1 4

x x i r i r
L x y

y y j c j c

 = − + ≤ ≤ 
=  

= − + ≤ ≤  
 

Endfor 

{Phase 2} 

(1) and (2) Para_Do 

(1) All nodes in 00G  and 11G  run algorithm AR to perform 

complete exchange along row direction; 

(2) All nodes in 01G  and 10G  run algorithm AR to perform 

complete exchange along column direction; 

{Phase 3} 

(1) and (2) Para_Do 

(1) All nodes in 00G  and 11G  run algorithm AR to perform 

complete exchange along column direction; 

(2) All nodes in 01G  and 10G  run algorithm AR to perform 

complete exchange along row direction; 

END. 
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rearrangement is 3(2 )dO , while that of the other algorithms 

is 2(2 )dO . Though the startup time and data rearrangement time 

are equivalent to those in [10], the proposed algorithm 

completely achieves optimality in message transmission cost. 

Because formal analysis of the scalability across a range of 

systems sizes is hampered by the lack of availability of a range 

of large system sizes, it is impossible to evaluate the performan- 

ce of different algorithms on commercial parallel supercompu- 

ters. Therefore, the present studies are based on analytic models 

of execution time using values of parameters measured on the 

Intel Paragon: 75
s
t sµ= , 0.011

w
t sµ= , 0.014 sρ µ=  [10]. 

 
Fig. 6 Estimated performance of algorithms in 16×16, 32×32, 64×64, 

and 128×128 tori 

Fig. 6 shows the expected completion time of the proposed 

2D algorithm and existing algorithms [5, 6, 10] for various torus 

sizes as a function of message size. Obviously, the proposed 

algorithm always outperforms the other algorithms for any 

message size and any network size. Especially, message 

transmission cost becomes more important factor as network 

size and/or message size increase, so the proposed algorithm 

exhibits much better performance in large network and larger 

message size. 

VI. CONCLUSIONS 

In this paper, we have presented new indirect algorithms for 

complete exchange on all-port ring and 2D torus. These 

algorithms utilize message combining to reduce the startup 

time, take full advantage of all communication links, and send 

messages along shortest paths so as to completely achieve the 

theoretical lower bounds on transmission time. In addition, the 

proposed algorithms accommodate non-power-of-two tori 

where the number of nodes in each dimension needs not be 

power-of-two or square. Finally, the algorithms are 

conceptually simple and symmetrical for every message and 

every node so that they can be easily implemented. 

The proposed algorithms can be used in tori with an arbitrary 

number of nodes in each dimension by adding imaginary nodes 

to compensate the network size. Our future research is to 

consider new complete exchange algorithms on multidimensio- 

nal tori with an arbitrary number of ports. 
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