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A new definition of the intrinsic mode function
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Abstract—This paper makes a detailed analysis regarding the
definition of the intrinsic mode function and proves that Condition 1
of the intrinsic mode function can really be deduced from Condition
2. Finally, an improved definition of the intrinsic mode function is
given.
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I. INTRODUCTION

Both time analysis and frequency analysis are the basic sig-
nal processing methods. Some fundamental physical quantities
such as the field, pressure, and voltage, themselves change
in time, so they are called ”time waveforms” or ”signals”.
The time analysis, which investigates the variation of a signal
with respect to time, is fundamental because a signal itself
is a time waveform. However, to probe deeper, the study of
different representations of a signal is often useful. This study
is implemented by expanding a signal into a complete set
of functions. From a mathematical point of view, there are
infinite ways to expand a signal. What makes a particular
representation important is that the characteristics of the signal
are understood better in that representation.

Besides time, the second most important representation is
frequency. The signal analysis based on frequency is called
”frequency analysis”. As a classic example of frequency
analysis, the Fourier analysis has played an important role
in stationary signal analysis and has been successful in many
applications since it was proposed in 1807 [1]. Although the
Fourier analysis is valid under extremely general conditions,
there are some crucial restrictions of the Fourier spectral
analysis: the system must be linear and the data must be
strictly periodic or stationary, otherwise the resulting spectrum
will make little physical sense. These restrictions suggest that
some more strict conditions will be necessary to analyze a
non-stationary signal.

Over the years, scientists have tried to find some available,
adaptive and effective methods to process and analyze nonlin-
ear and non-stationary data. Some methods have been found
such as the spectrogram, the short-time Fourier transform,
the Wigner-Ville distribution, the evolutionary spectrum, the
wavelet transform, the empirical orthogonal function expan-
sion and other miscellaneous methods [1], [2]. However,
almost all of them depend on the Fourier analysis. A key point
of these methods is that all of them try to modify the global
representation of the Fourier analysis into a local one, which
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means that some intrinsic difficulties are inevitable. Hence,
only a few of them perform really well unless in some special
applications. Until now, wavelet analysis is still one of the
best technologies for non-stationary signal analysis. It is often
powerful, especially when the frequencies of a signal vary
progressively. However, it can just be regarded as an extension
of the Fourier analysis, because it also needs to expand a signal
under a specified basis [2]. Once the selected basis does not
match with the signal itself very well, the results are often
unreliable.

The key point of developing adaptive and effective methods
is the intrinsic and adaptive representations for the oscillatory
modes of nonlinear and non-stationary signals. After consid-
erable explorations, researchers have gradually realized that a
complex signal should consist of some simple signals, each of
which involves only one oscillatory mode at any time instance.
These simple signals are called ”mono-component signal” [1].
On the other hand, a superposition of some mono-component
signals can form a complex signal. A real signal is often
a complex one. Based on this model, Boashash has given
a detailed discussion about the instantaneous frequencies of
a signal and their corresponding time-frequency distributions
[3]. However, up until now, it is still hard to accurately explain
the significance of having only one oscillatory mode in any
time location. Thus, there is no clear and accepted definition
of how to judge whether or not a signal is a mono-component
one.

Some researchers have suggested that the time-frequency
distribution of a given signal should be defined first. Once the
time-frequency distribution has been obtained, it will be easy
to determine whether or not a signal is a mono-component one
[4]. However, there are still almost insurmountable difficulties
to find a logical time-frequency distribution.

A new mono-component signal model, which is called
”Intrinsic Mode Function (IMF)”, was proposed by Huang
et. al in 1998 [5]. Meanwhile, a new algorithm entitled
”Empirical Mode Decomposition (EMD)” [5] was developed
to adaptively decompose a signal into a number of IMFs.
With the Hilbert transform, the IMFs yield instantaneous
frequencies as functions of time that give sharp identifications
of imbedded structures. The final presentation is an energy-
frequency-time distribution, designated as the Hilbert spec-
trum. Being different from the Fourier decomposition and
the wavelet decomposition, EMD has no specified ”basis”.
Its ”basis” is adaptively produced depending on the signal
itself, which makes not only decomposition efficiency very
high but also makes localization of the Hilbert spectrum both
on frequency and time much sharper and most important of
all, makes much physical sense. Because of its excellence,
EMD has been utilized and studied widely by researchers and
experts in signal processing and other related fields [6], [7],
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[8], [9], [10]. Its applications have spread from earthquake
research [11], to ocean science [12], fault diagnosis [13],
signal denoising [14], image processing [15], [16], biomedical
signal processing [17], speech signal analysis [18], pattern
recognition [19] and so on.

Both conditions of the IMF have tried to restrict an IMF by
involving only one oscillatory mode in any time location and
by making the oscillations symmetric with respect to the time
axis. The similar function of the two conditions has driven us
to consider their relativity. After an acute analysis, we have
proven that Condition 1 of the IMF can really be deduced
from Condition 2. Finally, an improved definition of the IMF
is given.

The rest of the paper is organized as follows: Section 2
contains the analysis of the definition of the intrinsic mode
function. Section 3 plays a core role, in which some key results
are proven and an improved definition of the intrinsic mode
function is given. Finally, Section 4 contains the conclusion
of this paper.

II. ANALYSIS OF THE IMF DEFINITION

The original objective of EMD was to identify the intrinsic
oscillatory modes in each time location from a signal, one
by one. With EMD, any complicated signal can be decom-
posed into a finite number of simple signals, each of which
includes only one oscillatory mode in any time location. These
extracted simple signals actually serve as approximations of
so-called mono-component signals. However, it is difficult
to tell what is an intrinsic oscillatory mode of a signal in
a time location. This problem looks simple, but is really
difficult. Intuitively, there are two ways to identify an intrinsic
oscillatory mode: by the time lapse between the successive
alternations of local maxima and minima such as A → B → C
as shown in figure 1; and by the time lapse between the
successive zero crossings such as D → E → F as shown
in the same figure [23].
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Fig. 1. A sketch map of intrinsic oscillatory mode.
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Fig. 2. A signal involving two oscillatory modes in some time locations.

In the literature [5], the first definition has been adopted,
namely by the time lapse between the successive alternations
of local maxima and minima, because it does not only give a
much finer resolution of the oscillatory modes, but it can also
be applied to signals with a non-zero mean, either all positive
or all negative values, without zero crossings. However, an
issue immediately arising is that an intrinsic oscillatory mode
must not be a mono-component one according to this defini-
tion. For example, the signal z as shown in figure 2(c) is the
superposition of the signal x and y as shown in figures 2(a)
and 2(b), respectively. According to the definition, only one
oscillatory mode is involved during each time lapse between
D → F and F → H . However, according to what we view
intuitively, the real physical signal includes two oscillatory
modes in some time locations, including these two time lapses.
Therefore, the zero mean condition is considered to certainly
get rid of this issue. Furthermore, the authors in [5] have
presented the concept of IMF as follows:

Definition 2.1: An Intrinsic Mode Function (IMF) is a
function that satisfies two conditions: (1) In the whole data
set, the number of extrema and the number of zero crossings
must either equal or differ at most by one; and (2) At any
point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero.

III. IMPROVEMENT OF THE IMF DEFINITION

The above definition refers to the concept of ”envelope”,
however, there has never been any good and accepted defini-
tion of ”envelope” up to this date. Intuitively, an upper/lower
envelope of a signal should be a smooth line, which is always
over/under and as near as possible to the signal itself. The
literature [5] connects all the local maxima/minima of a signal
by a cubic spline line to produce the upper/lower envelope.
However, the possible results are the super-envelopes and/or
under-envelopes. That is to say, the upper/lower envelope may
be under/over the signal itself. An example of under-envelope
is shown in figure 3, in which the dotted line is the cubic
spline envelope of the signal plot on the solid line. In spite of
some shortcomings, the envelope based on the cubic spline is
still dominant in the EMD due to its simplicity and excellent
performance for most signals.

Fig. 3. An example of ”under envelope” by the cubic spline interpolation.

We found that Condition 1 of IMF has been really involved
in Condition 2 under the basic meaning of ”envelope”. Without
a loss of generality, we consider only such kinds of signals
which are continual and limitedly oscillatory in a limited
interval (a, b). That is to say, the interval (a, b) can be
divided into a finite number of small intervals. The signals
are monotone on every small interval. We denote the space
which is composed by all such signals as S(a, b).
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Definition 3.1: Let f ∈ S(a, b), then x0 ∈ (a, b) is called
an intrinsic maximum point of f , if it satisfies one of the two
following conditions:

• Existing δ > 0 to make f(x0) > f(x)(∀x ∈ (x0−δ, x0+
δ)\x0)(as shown in figure 4, in which ξ is an intrinsic
maximum point);

• Existing ε, δ > 0 to make:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f(x) a constant during (x0 − δ, x0 + δ);
f(x) a monotonic increasing function during

(x0 − δ − ε, x0 − δ);
f(x) a monotonic decreasing function during

(x0 + δ, x0 + δ + ε);

(such as η as shown in figure 4). Similarly, the intrinsic
minimum point can be defined. The intrinsic maximum
and minimum points are uniformly called the ”intrinsic
extreme points”.

ξ η

Fig. 4. Two kinds of the intrinsic maximum points.

The following theorem suggests that the intrinsic extreme
points of a signal f ∈ S(a, b) have to appear alternately:

Theorem 3.2: Let α, β be two intrinsic maximum/minimum
points of f ∈ S(a, b) satisfying α < β without a loss
of generality, therefore there must be at least one intrinsic
minimum/maximum point(s) in the interval (α, β); if there is
no other intrinsic maximum/minimum point in the interval,
then the number of intrinsic minimum/maximum points must
be one.

Proof: Let ξ be a local minimum point of f in the interval
[α, β]. (a) If ξ is a strict local minimum point of f , then
it is certainly an intrinsic minimum point; (b) If ξ is not a
strict local minimum point of f , because f is decreased in
a small enough left neighbor field of ξ and is increased in
a small enough right neighbor field of ξ, it has to be non-
strictly monotonic in at least one neighbor field. Let it be non-
strictly monotonic in the right neighbor field without a loss of
generality, therefore there must be some δ > 0 which make f
a constant in the intervals [ξ, ξ+δ]. Let [α1, β1] ⊂ [α, β] be the
largest interval to ensure f is constantly equal to f(ξ) and let
x0 = 1

2
(α1 + β1), therefore x0 must be an intrinsic minimum

point of f . Similarly, it can be proven that there must be some
intrinsic minimum point(s) between two intrinsic maximum
points.

If both ξ and η are intrinsic minimum points of f in the
interval (α, β) and ξ < η, then there must be an intrinsic
maximum point(s) between ξ and η. That is paradoxical with
the condition of no other intrinsic maximum points in the
interval (α, β), therefore the number of intrinsic minimum
points between (α, β) has to be one.

An envelope should be a new signal as defined by the
original signal, so the relation of a signal and its envelope

can be viewed as an operator. Envelopes can be classified into
upper and lower ones. Let Tu be an upper envelope operator,
denoted by T for simplicity, then the upper envelope of the
signal f can be written as Tf , thereby the lower envelope
operator can be defined by:

Tlf := −Tu(−f) = −T (−f).

Without a loss of generality, let T satisfy the conditions
below:

(i) Tf ≥ −T (−f), namely an upper envelope is always
above a lower envelope;

(ii) ∀f ∈ S(a, b), let ξ be an intrinsic minimum point of f ,
where we have Tuf(ξ) − f(ξ) > f(ξ) − Tlf(ξ), namely:

Tf(ξ) − f(ξ) > f(ξ) + T (−f)(ξ).

That is to say that the difference between the upper envelope
and the minimum is larger than that between the minimum and
the lower envelope as shown in figure 5.
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Fig. 5. The intuitive meaning of condition Tuf(ξ)−f(ξ) > f(ξ)−Tlf(ξ).
In the figure, d1 = Tuf(ξ) − f(ξ), d2 = f(ξ) − Tlf(ξ).

If η is any intrinsic maximum point of f , it is certainly an
intrinsic minimum point of −f , therefore we have:

T (−f)(η) + f(η) > −f(η) + T (f)(η),

where, namely:

Tf(η) − f(η) < f(η) + T (−f)(η).

So for any intrinsic minimum point ξ and intrinsic maximum
point η, we have:

f(ξ) <
1

2
[Tf(ξ) − T (−f)(ξ)],

f(η) >
1

2
[Tf(η) − T (−f)(η)].

Therefore, we can instantly reach a conclusion as follows:
Theorem 3.3: Let f ∈ S(a, b) satisfy Tuf(t) + Tlf(t) =

0 ∀t ∈ (a, b), therefore for any intrinsic minimum point of f ,
ξ and intrinsic maximum point η, we have f(ξ) < 0, f(η) > 0.
Therefore, the intrinsic extreme points and the crossing zero
points will have to appear alternately as follows:

· · · → MaxP → ZP → MinP → ZP → MaxP → · · ·
MaxP denotes the intrinsic maximum point, ZP denotes the
crossing zero point and MinP denotes the intrinsic minimum
point in the above expression.

Theorem 3.3 indicates that for signal f , if only the mean
value of the upper and lower envelopes is equal to zero, then
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the extreme points and crossing zero points will have to appear
alternately. That means Condition 1 in Definition 2.1 can be
deduced from Condition 2. Therefore, a more refined definition
is given as follows:

Definition 3.4: An Intrinsic Mode Function (IMF) is a
function that satisfies the condition that at any time instant,
the mean value of the upper envelope as defined by the local
maxima and the lower envelope as defined by the local minima
is zero.

IV. CONCLUSION

This paper makes an acute analysis of the definition of
the intrinsic mode function and proves that Condition 1
of the intrinsic mode function can really be deduced from
Condition 2. Finally, an improved definition of the intrinsic
mode function is given.
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