
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1464

 

 

  
Abstract—System development life cycle (SDLC) is a 

process uses during the development of any system. SDLC 
consists of four main phases: analysis, design, implement and 
testing. During analysis phase, context diagram and data flow 
diagrams are used to produce the process model of a system. 
A consistency of the context diagram to lower-level data flow 
diagrams is very important in smoothing up developing 
process of a system. However, manual consistency check from 
context diagram to lower-level data flow diagrams by using a 
checklist is time-consuming process. At the same time, the 
limitation of human ability to validate the errors is one of the 
factors that influence the correctness and balancing of the 
diagrams. This paper presents a tool that automates the 
consistency check between Data Flow Diagrams (DFDs) 
based on the rules of DFDs. The tool serves two purposes: as 
an editor to draw the diagrams and as a checker to check the 
correctness of the diagrams drawn. The consistency check 
from context diagram to lower-level data flow diagrams is 
embedded inside the tool to overcome the manual checking 
problem. 
 

Keywords—Data Flow Diagram, Context Diagram, Consistency 
Check, Syntax and Semantic Rules 

I. INTRODUCTION 
ODELING of a system is an essential process in system 
development lifecycle.  It will produce a system artifact 
called a system model. A system model can provide 

structure for problem solving. Models make it easier to 
express complex ideas, for example, an architect builds a 
model to communicate ideas more easily to clients. Models 
reduce complexity by separating those aspects that are 
unimportant from those that are important. The models should 
have traceability links or in other words they must be 
consistent. 
In system development life cycle (SDLC), a system model can 
be developed by using Data Flow Diagram (DFD). DFD is 
graphical diagrams for specifying, constructing and 
visualizing the system. DFD is used in defining the 
requirements in a graphical view. In this paper, we will focus 
on DFD and its rules for drawing and defining the diagrams. 
We then develop the tool based on the DFD rules. The rules 
for consistency check between the diagrams are embedded 

 
Rosziati Ibrahim is with the Software Engineering Department, Faculty of 

Information Technology and Multimedia, Universiti Tun Hussein Onn 
Malaysia (UTHM), Parit Raja, Batu Pahat, 86400, Malaysia (phone: 607-453-
8001; fax: 607-453-2199; e-mail: rosziati@ uthm.edu.my).  

Siow Yen Yen is with the Software Engineering Department, Universiti 
Tun Hussein Onn Malaysia (UTHM), Malaysia (yenyen0831@hotmail.com). 

inside the tool. This is to ensure the syntax for drawing the 
diagrams is correct and strictly followed. The tool automates 
the process of manual consistency check between data flow 
diagrams. 

The rest of this paper is organized as follows. The review of 
DFD is in Section 2 and the discussion on the related works is 
in Section 3. Section 4 discusses the syntax and semantics 
rules of DFD and Section 5 presents the tool developed based 
on the rules. Finally, Section 6 concludes the paper. 

II. OVERVIEW OF DFD 
SDLC is a process uses during the development of software 

system starting from planning until the implementation phase. 
Data flow diagramming, on the other hand, is used to produce 
the process model during the analysis phase. Process model is 
very important in defining the requirements in a graphical 
view. Therefore, the reliability of the process model is the key 
element to improve the performance of the following phases 
in SDLC.  

According to Dennis et al. [1], SDLC is a process of 
understanding on how an information system can support 
business needs, designing the system, building the system and 
delivering the system to users. SDLC consists of four 
fundamental phases, which are analysis, design, implement 
and testing phases. In the analysis phase, requirements of a 
system are identified and refined into a process model. 
Process model can be used to represent the processes or 
activities that are performed in a system and show the way of 
data moves among the processes. In order to diagram a 
process model, data flow diagramming is needed. According 
to Dixit et al. [2], data flow diagram is a graphical tool that 
allows system analysts and users to depict the flow of data in 
an information system. 

Normally, the system can be physical or logical, manual or 
computer based. Data flow diagram symbols consist of four 
symbols which are processes, data flows, data stores and 
external entities. The standard set of symbols that will be used 
in this paper is devised by Gane and Sarson symbols in [1]. In 
data flow diagram, the highest-level view of the system is 
known as context diagram. The next level of data flow 
diagram is called the level 0 data flow diagram which 
represents a system’s major processes, data flows and data 
stores at a high level of detail. Every process in the level n-1 
data flow diagram would be decomposed into its lower-level 
data flow diagram which is level n data flow diagram. The key 
principle in data flow diagram is to ensure balancing which 
means that the data flow diagram at one level is accurately 
represented in the next level data flow diagram when 
developing a project. The ideal level of decomposition is to 

An Automatic Tool for Checking Consistency 
between Data Flow Diagrams (DFDs) 

Rosziati Ibrahim, Siow Yen Yen 

M



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1465

 

 

decompose the system until system analysts and users can 
provide a detailed description of the process whereby the 
process descriptions is not more than one page. The final set 
of data flow diagrams is validated for ensuring quality. In 
general, there are two types of problems that can occur in data 
flow diagrams which are syntax errors and semantics errors. 
Semantics errors are more complicated than syntax errors due 
to a set of rules that need to be followed in order to identify 
them. For example, every process has at least one input data 
flow and every process has at least one output data flow. 
Therefore, understanding the set of rules for data flow 
diagrams is important. Once the rules are understand, a system 
can be developed based on the rules so that the system can 
perform consistency check between context diagram to level 0 
data flow diagram. The system is also able to perform 
grammatical errors checking within or across data flow 
diagrams in order to achieve consistency. This system 
therefore might increase the correctness and reliability of data 
flow diagrams.  

III. RELATED WORKS 
According to Lucas et al. [3], consistency problems have 

existed in Information System development since its 
beginning and are usually linked to the existence of multiple 
models or views which participate in the development process. 
Tao & Kung [4] state that a data flow diagram is visual and 
informal, hence, easy to learn and use. However, its 
informality makes it difficult to conduct formal verification of 
the consistency and completeness of a data flow diagram 
specification. 

Dixit et al. [2], on the other hand, defined data flow 
diagram consistency is the extent to which information 
contained on one level of a set of nested data flow diagram is 
also included on other levels. According to Tao & Kong [4], 
the child data flow diagram that results from decomposition is 
consistent with the precedence relation for the parent process 
and does not introduce additional precedence relationships 
between the input and output flows of the parent process. 
Recently, many systems have been developed to provide 
automatic support for data flow diagrams specifications. 
However, all of these systems are lack the ability to 
manipulate the semantics of data flow diagram specification 
by Tong & Tang [5]. 

Various researches also stated that no formal language has 
been currently used for semantic specification of data flow 
diagram ([5], [6], and [7]). Tao & Kung [4], on the other hand, 
point out that there are few development environments or 
CASE tools provide automated verification facilities that can 
detect inconsistency and incompleteness in a data flow 
diagram specification. Dixit et al. [2] therefore describe that 
the concept of data flow diagram consistency is refers to 
whether or not the depiction of the system shown at one level 
of a nested set of data flow diagram is compatible with the 
depictions of the system shown at other levels. Consistency in 
process decomposition, on the other hand, means that the 
precedence relation is faithfully inherited by the child data 
flow diagram [4]. Ahmed Jilani et al. [7], on the other hand, 
state that notations used in the data flow diagram are usually 

graphical and different tools and practitioners interpret their 
notations differently. Therefore, a well defined semantics or 
data flow diagram formalism could help to reduce 
inconsistencies and confusion. Dixit et al [2] also state that a 
consistency check facility with a CASE tool will be helpful 
for the practitioners. 

Our research therefore focuses on consistency check 
between data flow diagrams and develops a tool for 
consistency check between the data flow diagrams.  

IV. SYNTAX AND SEMANTIC RULES OF DFD 
According to Jeffrey et al. [8], data flow diagrams (DFDs) 

are graphically illustrate movement of data between external 
entities and the processes and data stores within a system. 
According to Donald [9], data flow diagrams are a tool that 
can reveal relationships among and between the various 
components in a program or system. Tao & Kung [4], on the 
other hand, describe the data flow diagram technique is 
effective for expressing functional requirements for large 
complex systems. There are four symbols in the data flow 
diagram which are processes, data flows, data stores and 
external entities (source/sink), each of which is represented by 
a different graphic symbol ([1] and [2]). In general, there are 
two commonly used styles of symbols in data flow diagram. 
For our research, we will use Gane and Sarson symbols as 
described in [1]. 
 
Definition 1: A Data Flow Diagram consists of: 

• Process  
• Data Flow 
• Data Store 
• External Entity 

 
where 
- A process is an activity or a function that is performed 

for some specific business reason. 
- A data flow is a single piece of data or a logical 

collection of several pieces of information. 
- A data store is a collection of data that is stored in 

some way. 
- An external entity is a person, organization, or system 

that is external to the system but interact with it. 
 

The highest-level of data flow diagram known as the 
context diagram. According to Jeffrey et al. [8], a context 
diagram is a data flow diagram of the 10 scope of an 
organizational system that shows the system boundaries, 
external entities that interact with the system and the major 
information flows between the entities and the system. Dennis 
et al. [1] state that the context diagram shows the overall 
business process as just one process and shows the data flows 
to and from external entities. Data stores are not usually 
included on the context diagram. The context diagram 
therefore is decomposed into the lower-level diagram which is 
level 0 data flow diagram. In fact, each process on the level 0 
data flow diagram can be decomposed into more explicit data 
flow diagram, called level 1 diagram and can be further 
decomposed into next lower-level diagram when it is needed. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1466

 

 

In general, there are two fundamentally different types of 
problems that can occur in data flow diagrams which are 
syntax errors and semantics errors. Tao & Kung [4] defined 
the syntax of the data flow diagram is how components are 
interconnected through data flows and what components 
constitute the subsystem being modeled. The semantics of the 
data flow diagram, on the other hand, is how data flows are 
interrelated in terms of data transformations. According to 
Dennis et al. [1], syntax errors are easier to find and fix than 
are semantics errors because there are clear rules that can be 
used to identify them. There is a set of rules that must be 
followed by analysts when drawing data flow diagrams in 
order to evaluate data flow diagrams for correctness. 
 
Definition 2: Rules of data flow diagrams: 

• A unique name (verb phase), a number and a description 
for a process 

• At least one input data flow and at least one output data 
flow for a process 

• Output data flows usually have different names than 
input data flows for a process 

• A unique name that is a noun and a description for a data 
flow 

• Every data flow connects to at least one process. 
• Data flows only in one direction 
• A minimum number of data flow line cross. 
• A unique name that is a noun and a description for data 

store 
• At least one input data flow on some page of the DFD. 
• At least one output data flow on some page of the DFD. 
• A unique name that is a noun and a description for 

external entity  
• At least one input or output data flow for external entity 

 
Definition 3: Consistency: 

• Every set of data flow diagrams must have one context 
diagram. 

 
Definition 4:  Consistency Viewpoint: 

• There is a consistency viewpoint for the entire set of 
DFDs. 

 
Definition 5: Decomposition: 

• Every process is wholly and completely described by the 
processes on its children DFDs. 

 
Definition 6: Balancing: 

• Every data flow, data store and external entity on a 
higher level DFD is shown on the lower-level DFD that 
decomposes it. 

Definition 7: Data Store: 
• For every data store, data cannot move directly from one 

data store to another data store. Data must be moved by a 
process. 

• Data cannot move directly from a source to a sink. It can 
only be moved by a process. 

 

Syntax rules are used to verify syntax errors within the data 
flow diagram. There is few syntax rules that have been 
defined to be used in a proposed system. The syntax rules are 
defined in Definition 8. 
 
Definition 8: Syntax rules of data flow diagram: 

• At least one input data flow for a process 
• At least one output data flow for a process 
• Process from external entity cannot move directly to 

another external entity 
• At least one input data flow for a data store 
• At least one output data flow for a data store 
• Data from one data store cannot move directly to another 

data store. 
 
Based on Definition 8, six syntax rules are used in order to 
verify the correctness of the context diagram and level 0 data 
flow diagram. However, the syntax rules of data store only 
applied in level 0 data flow diagram. 
 
Semantics rules are used to verify semantics errors from 
context diagram to level 0 data flow diagram. Same as syntax 
rules, there are four semantics rules that have been defined to 
be used in a proposed system. The semantics rules are defined 
in Definition 9. 
 
Definition 9: Semantic rules of data flow diagram: 

• The total number and name of external entities in context 
diagram are the same as in level 0 data flow diagram. 

• The total number and name of data flows between 
process and external entity in context diagram are same 
as level 0 data flow diagram. 

• The total number and name of external entities in level 0 
DFD are same as context diagram. 

• The total number and name of data flows between 
process and external entity are the same as in context 
diagram. 

 
The semantics rules defined in Definition 9 are used to 

perform consistency check from context diagram to level 0 
data flow diagram. The rules are embedded inside the tool in 
order to perform an automatic consistency check between the 
data flow diagrams. 
 

V. THE TOOL 
The tool is developed based on the set of rules imposed by 

data flow diagrams as described from Definitions 1 until 9. A 
graphical layout is used in order to use the tool as an editor for 
drawing the diagrams and as a checker as well to check the 
correctness of the diagrams. Figure 1 shows the main interface 
of the tool. 
 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1467

 

 

 
Fig. 1 The main interface of the tool 

 
From Figure 1, the main interface provides a platform that 

allows the user to input both diagrams by using the data flow 
diagram elements provided. The main interface includes four 
main parts where the top of the interface is the menu bar 
consists of five menu functions, the toolbar of the data flow 
diagram elements is in the left-side of the interface, the 
bottom-right is an error list text box and a “Consistency 
Check” button. The rest of interface is the drawing panel for 
user to draw the particular diagram. The five functions in 
menu bar are open a new file, open a saved file, save the data 
flow diagrams, print the data flow diagrams and open a help 
menu. In the toolbar, there are four data flow diagram 
elements which are process, external entity, data flow and data 
store. User is allowed to drag and drop the data flow diagram 
elements on the drawing panel. “Consistency Check” button, 
on the other hand, is used to perform the consistency check 
after both diagrams are created. Therefore, the tool serves two 
purposes. The first purpose is as an editor for drawing the 
context diagram and level 0 data flow diagram and the second 
purpose is as a checker for checking the consistency between 
context diagram and level 0 data flow diagram. 

In this paper, we give one simple example of an academic 
information system and use the tool to represent the context 
diagram and its level 0 of data flow diagram. Figure 2 shows 
the example of the context diagram for a lecturer who is going 
to use the Academic Information System. A lecturer can send 
his or her academic information to the system and can get a 
list of academicians from the system.  
 

 
Fig. 2 Example of Context Diagram Drawn 

 
From context diagram, a level 0 data flow diagram can be drawn. 
Figure 3 shows the example. 
 

 
Fig. 3 Example of Level 0 Data Flow Diagram 

 
The tool will verify the syntax errors for all the data flow 

diagram elements used. When there is any syntax errors exist 
in the data flow diagram elements, system will display an 
error message to user. Figure 3 shows an existence of syntax 
error from the data flow diagram. Since the entity from 
context diagram is Lecturer, the tool will inform the 
inconsistency between context diagram and data flow 
diagram. The user can then use the editor of the tool to correct 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:9, 2010

1468

 

 

the syntax error. If the entity is correct, the tool will validate 
the consistency check as shown in Figure 4. 
 

 
Fig. 4 The Consistency Check 

 
Once the diagrams are drawn, they can be saved to a new or 

existing folder. The user can open the folder again for viewing 
or editing of the diagrams. The user can also print the 
diagrams. The Help menu can be used for getting more 
information regarding the tool.  

VI. CONCLUSION 
This paper has discussed a set of syntax and semantics rules 

of data flow diagrams. The rules are then used to automate the 
process of checking the consistency between the context 
diagram and level 0 data flow diagrams. The automatic 
checking of consistency overcomes the time-consuming 
process of manually checking the correctness of the diagrams.  

For future enhancement of the tool, we would like to add 
the next level of consistency check. That is, the tool would be 
able to check the consistency between level 0 to level 1 of the 
data flow diagrams.  

ACKNOWLEDGMENT 
This research is supported by the Science Fund under 

Ministry of Science, Technology and Innovation (MOSTI), 
Malaysia. 

REFERENCES   
[1] Dennis, A., Wixom, B.H. and Roth, R.M., Systems Analysis and 

Design. 3rd ed. Hoboken: John Wiley & Sons, Inc., 2006. 
[2] Dixit, J. B. & Kumar, R., Structured System Analysis and Design. 

Paperback ed. New Delhi, India: Laxmi Publisher, 2008. 
[3] Lucas, F.J., Molina, F. and Toval, A., A Systematic Review of UML 

Model Consistency Management. Information and Software 
Technology, 51(12), pp. 1 – 15, 2009. 

[4] Tao, Y.L. and Kung, C.H., Formal Definition and Verification of Data 
Flow Diagrams. Journal of Systems and Software, 16(1), pp. 29-36, 
1991. 

[5] Tong, L. and Tang, C.S., Semantic Specification and Verification of 
Data Flow Diagrams. Journal of Computer Science and Technology, 
6(1), pp. 21-31, 1991. 

[6] Leavens, G.T., Wahls, T. and Bakar, A.L., Formal Semantics for SA 
Style Data Flow Diagram Specification Languages. Proceedings of the 
1999 ACM Symposium on Applied Computing. Oregon, US: IEEE 
Computer Society. pp. 526–532, 1999. 

[7] Ahmed Jilani, A. A., Nadeem, A., Kim, T. H. & Cho, E. S., Formal 
Representations of the Data Flow Diagram: A Survey. Proc. of the 
2008 Advanced Software Engineering and Its Applications. 
Washington, USA: IEEE Computer Society. pp. 153-158, 2008. 

[8] Jeffrey, A. H., George, J.F. and Valacich, J.S., Modern Systems 
Analysis and Design. 3rd ed. US: Prentice-Hall, 2002. 

[9] Donald, S. Le Vie, Jr., Understanding Data Flow Diagram. Proceedings 
of the 47th annual conference on Society for Technical Communication. 
Texas: Integrated Concepts, Inc. 2000. 

 


