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Abstract This paper focuses on a critical component of the 

situational awareness (SA), the neural control of depth flight of an 
autonomous underwater vehicle (AUV). Constant depth flight is a 
challenging but important task for AUVs to achieve high level of 
autonomy under adverse conditions. With the SA strategy, we 
proposed a multirate neural control of an AUV trajectory using 
neural network model reference controller for a nontrivial mid-small 

demonstrated and evaluated by simulation of diving maneuvers using 
software package Simulink. From the simulation results it can be 
seen that the chosen AUV model is stable in the presence of high 
noise, and also can be concluded that the fast SA of similar AUV 
systems with economy in energy of batteries can be asserted during 
the underwater missions in search-and-rescue operations. 
 

Keywords Autonomous underwater vehicles, multirate systems, 
neurocontrollers, situational awareness. 

I. INTRODUCTION 
ITUATION awareness has been formally defined as the 
perception of elements in the environment within a volume 

of time and space, the comprehension of their meaning, and 
the projection of their status in the near future  1 . As the 
term implies, situation awareness refers to awareness of the 
situation. Grammatically, situational awareness (SA) refers to 
awareness that only happens sometimes in certain situations. 

SA has been recognized as a critical, yet often elusive, 
foundation for successful decision-making across a broad 
range of complex and dynamic systems, including emergency 
response and military command and control operations 2 . 

The term SA have become commonplace for the doctrine 
and tactics, and techniques in the U.S. Army 3]. SA is defined 
as the ability to maintain a constant, clear mental picture of 
relevant information and the tactical situation including 
friendly and threat situations as well as terrain . SA allows 
leaders to avoid surprise, make rapid decisions, and choose 
when and where to conduct engagements, and achieve decisive 
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outcomes. 

SA in the underwater battlespace is of crucial importance in 
contemporary underwater warfare 4]. It allows for 
significantly enhanced performance in torpedo defense, mine 
avoidance, anti-submarine warfare and a multitude of other 
aspects of undersea engagement. 

In 5 , a two stage flight control procedure using two 
adaptive neural networks for helicopter as small-scale 
unmanned aerial vehicle (UAV) model was proposed. The 
proposed control strategy has been verified by simulation of 
descending and landing maneuvers of helicopter using 
software package Simulink and demonstrated good 
performance for fast SA. 

This paper concentrates on issues related to the area of 5 , 
but demonstrates another field for application of these ideas, 
i.e., research technique using multirate control system 
modeling and simulation on the basis of state-space equations 
of motion of chosen stochastic model of the autonomous 
underwater vehicle (AUV) for fast SA. 

The AUV provides the commander with a number of 
capabilities including: 

 Enhanced SA. 
 Target acquisition. 
 Enhanced management capabilities (assessment of 

surface damage and visualization of blockage far and near). 
Some conditions for conducting underwater reconnaissance 

with AUVs are as follows. 
 Time is limited or information is required quickly. 
 Threat conditions are known; also the risk of collisions 

with a rough-surfaced sea bottom is high. 
 Sea bottom relief restricts approach by large-scale 

underwater vehicles. 
A mid-small size AUV offers many advantages, including 

low cost, the ability to fly at constant depth levels within a 
narrow space and the unique diving characteristics. 

The fundamental requirement for diving control is the 
knowledge of the depth under the sea surface, and a properly 
designed controller to govern the process. 

Optimum values for PID (proportional integral derivative) 
controllers are derived via the simulations of an 
motion based on the closed-loop vehicle dynamics 6 . 

The characteristics of an AUV motion depend on mode of 
maneuvering, forward speed, instantaneous attitude, and 
outside appendages such as measuring instruments. In 
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addition, it is hard to model the system disturbances, cross-
flow and the coupling effects. Due to these reasons, the neural 
network controllers are needed to control AUV motions. 

In this paper our research results in the study of depth 
controls of an AUV which make such SA task scenario as go-
search-find-return  possible are presented. 

The contribution of the paper is twofold: to develop new 
schemes appropriate for SA enhancement by multirate neural 
control of an AUV trajectory in real-time search-and-rescue 
operations, and to present the results of diving maneuvers for 
chosen stochastic model of the AUV for fast SA in simulation 
form using the MATLAB/Simulink environment. 

II. AUV MODEL 
Consider the stochastic model using linear model of mid-

small size  6  in terms of a state variable 
representation as follows: 
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1111 wxCy                                                                   (2) 

222222 uBxAx                                                       (3) 

2222 wxCy                                                                   (4) 
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In 7 , the derivative of yaw displacement  of an AUV 
could be expressed as 

)cos())cos()sin(( rq                                          (5) 

Then, we have 

)0()()(
0

dtt                                                         (6) 

III. MULTIRATE SUBSYSTEMS 
Consider the stochastic continuous-time control system 

described by the state and output equations 

)()()()( vBuAxx                                           (7) 

)()()( wCxy                                                         (8)

where Pnpmn RwRvRyRuRx )(,)(,)(,)(,)(  are 
the state, control input, output, noise of excitation of state and 
noise of measurement vectors, respectively. 

In [8] it is offered the approach to design of decomposed 
multirate stochastic linear systems, which consist of naturally 
grouped entrance and target signals that are caused by their 
characteristic frequencies. 

Setting )()( Txq , where T  is a nonsingular matrix, we 
see that (7)-(8) are transformed into the equations 
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where 

minmax
)(,)( 21 fs . 

Definition 1: A function with a large derivative, which is 

with a small derivative, which is slowly decreasing, is said to 
 

Consider the first time interval fsf0 . According to 

Definition 1, the variable 1z  
function on this interval. Hence, assuming that 0)(1 fz , 

from (9), we see that 
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From (10)-
subsystem may be written as 

)()()()( fffffffffff vTuBzAz                                   (13) 

)()()()( ffffffffff wuDzCy                                    (14) 

where 

,,,, 2222 CCTTBBA ffff  

,, 1
1

111
1

11 TCVBCD ff  

),()(),()(),()( 2 fffffffff vvuuzz  

)()()(),()( ffffffff vVwwyy . 

Consider the second time interval fss . According to 
Definition 1, the variable z2  
function of time, achieving on this interval a steady meaning. 
Hence, assuming that 0)(2 sz , from (10), we find 
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From (9), (11) and (15), we find that the state equations for 
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-subsystem dynamic (13)-(14) of system (1)-(2) is 
described by 
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subsystem (13)-(14) of 
system (3)-(4) are given by 
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In terms of (16)-(17) for system (3)- -
subsystem matrices are 
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IV. AUV ATTITUDE 

The derivative of attitude vector Tzyx )(  for center of 

mass of an AUV can be described in a common way through 
next expression as indicated in 7  

,
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where .0)0(,0)0(,0)0( zyx  

From (1)-(6), (18)-(19) we can see that the attitude vector 
Tzyx )(  for given model of the AUV can be computed. 

V. SIMULATION RESULTS 
Consider the control of the 

multirate model for the case of multirate control system with 
one neurocontroller. 

Initial conditions and desired constant depth level for 
multirate control subsystems are chosen to be: 

.16,0)0(,0)0(,0)0( 0 mzmzmymx  

Simulation results for the offered block scheme (see Fig. 1) 
are shown in Figs. 3-7. 

The Model Reference Adaptive Control (MRAC) 
configuration [9] uses two neural networks: a controller 
network and a model network (see Fig. 2). 

The model network can be trained off-line using historical 
plant measurements. The controller is adaptively trained to 
force the plant output to track a reference model output. The 
model network is used to predict the effect of controller 
changes on plant output, which allows the updating of 
controller parameters. 
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Fig. 1. Block diagram of multirate control system. 
 

 
 

Fig. 2. Structure of neural network representation. 
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Fig. 3. AUV depth trajectory. 
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Fig. 4. X-Y view of AUV trajectory. 
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Fig. 5. X-Z view of AUV trajectory. 
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Fig. 6. Y-Z view of AUV trajectory. 
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Fig. 7. 3-D motion of AUV. 

 
From the simulation studies of diving tests, the following 

can be observed: 
 By following the proposed methodology, the AUV 

 model structure (1)-(4) is decomposed into two groups 

used in the final phase of trajectory (approach motion). Note 
that the obtained subsystems not only have reduced 
dimensions of state-space matrices, but also various speeds of 
actuation (fast and long response times). 

 Possibility to consider a rough-surfaced sea bottom in a 
place of a constant depth flight. 

 Possibility of lag in the various constant depth levels. 
 Fine and simplified adjustment of chosen adaptive 

neurocontroller for any changes of desired constant depth. 
 The multirate control works more qualitatively than the 

single-rate control. 
These results support the theoretical predictions well and 

demonstrate that this research technique would work in real-
time diving conditions. 

VI. CONCLUSIONS 
The need for accurate and directionally stable diving for 

AUV class autonomous vehicles has increased morbidly for 
critical situations in real-time search-and-rescue operations 
with existence of system disturbances, cross-flow and the 
coupling effects for fast SA. 

A new research technique is presented in this paper for 
enhanced SA in possible AUV missions. The effectiveness of 
this technique has been verified in field of diving simulation 
tests for chosen model of the mid-small size  
using software package Simulink. 

From the applications viewpoint, we believe that this depth 
multirate neural control using neural network model reference 

controller furnishes a powerful approach for enhancing SA in 
applications to AUV class autonomous vehicles in real-time 
search-and-rescue operations. 

Although many of the details inevitably relate with this 
particular AUV model, there is sufficient generality for this 
research technique to be applied to similar AUV models for 
simulation of diving maneuvers. 

Future work will involve further validation of the 
performance of the proposed research technique and exploring 
other relevant and interesting AUV missions. 
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