
International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:4, No:6, 2010

429

An Index based Forward Backward Multiple
Pattern Matching Algorithm

Raju Bhukya, DVLN Somayajulu

Abstract—Pattern matching is one of the fundamental

applications in molecular biology. Searching DNA related data is a
common activity for molecular biologists. In this paper we explore
the applicability of a new pattern matching technique called Index
based Forward Backward Multiple Pattern Matching
algorithm(IFBMPM), for DNA Sequences. Our approach avoids
unnecessary comparisons in the DNA Sequence due to this; the
number of comparisons of the proposed algorithm is very less
compared to other existing popular methods. The number of
comparisons rapidly decreases and execution time decreases
accordingly and shows better performance.

Keywords—Comparisons, DNA Sequence, Index.

I. INTRODUCTION

 ATTERN matching is an important and active research
with large applications. DNA is the basic blue print of life

and it can be viewed as a long sequence over the four
alphabets A, C, G and T. As the size of the data grows it
becomes more difficult for users to retrieve necessary
information from the sequences. There are various kinds of
tools available for the comparison which provides exact as
well as approximate pattern matching. Hence more efficient
methods are needed for fast pattern matching techniques.

Let P = {p1, p2, p3,...,pm} be a set of patterns which are
strings of nucleotide characters from a fixed alphabet set
called ∑ = {A, C, G, T}. Let T be a large text consists of
characters in ∑ denoted as ∑*. The problem is finding all the
occurrences of p in T. It is important application widely used
in data filtering to find selected patterns, in security
applications, and used in DNA search. Many existing real time
pattern matching algorithms are reviewed and classified in two
categories.

1) Exact string matching algorithms
2) Approximate string matching algorithms.

 Exact string matching algorithm means finding one or
all exact occurrences of a string in a sequence. The problem
can be stated as: Given a pattern p of length m and a string
(Text) T of length n (m ≤ n). Find all the occurrences of p in
T. The match is exact one, meaning that the exact word or
pattern is found.

Raju Bhukya is with the National Institute of Technology, Warangal, India.

He is now with the Department of Computer Science and Engineering (Phone:
+91-9700 5539 22; fax: 0091-8702459547; e-mail: raju@nitw.ac.in).

Dr. DVLN Somayajulu is with the National Institute of Technology,
Warangal, India. He is now with the Department of Computer Science and
Engineering (Phone: +91-9849 3365 47; fax: 0091-8702459547;
email: soma@nitw.ac.in).

 In Unix environment there is a useful command utility
called “grep” [6] which allows user to search globally for lines
matching the regular expression, and print them. Some exact
matching algorithms are Naïve Brute force algorithm, Boyer-
Moore algorithm, Knuth-Morris-Pratt Algorithm[1],[2]. These
pattern matching algorithms can be applied to find patterns in
DNA Sequences.

 Inexact/Approximate string matching: Inexact pattern
matching is sometimes referred as approximate pattern
matching or matches with k mismatches/differences. This
problem in general can be stated as: Given a pattern P of
length m and string/text T of length n. (m ≤ n). Find all the
occurrences of sub string X in T that are similar to P, allowing
a limited number, say k different character in similarity
matches. The edit/transformation operations are insertion,
deletion and substitution.

 Inexact/Approximate string matching algorithms are
classified into: Dynamic programming approach, Automata
approach, Bit parallelism approach, Filtering and automation
algorithms. Inexact sequence data arises in various fields and
applications such as computational biology, signal processing
and text processing. Due to the possible DNA mutation the
biological inference does not expect an identical match but
rather a high sequence similarity usually implies significant
functional or structural functionality. The field of
bioinformatics has many applications in the modern day world
includes text editors, search engine, molecular medicine,
industry, agriculture and Comparative biology. In many
information retrieval systems it is necessary to locate one or
more patterns quickly.
Pattern matching algorithms have two main objectives.

1) Reduce the number of character comparisons required
in the worst and average case analysis.

2) Reducing the time requirement in the worst and
average case analysis.

 The proposed work is based on an IFBMPM model for
DNA Sequence. In this model input file is scanned from left
to right until end of the file. The character indexes are stored
in the 2D vector called index table. In the current model when
we need to search some pattern P in text S, we start the search
from the indexes stored in the row of index table which
corresponds to the first character of the pattern P. If any

P

International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:4, No:6, 2010

430

character mismatches in its position, we skip the search and go
for the next index which corresponds to the first character of
the pattern P according to the indexes stored in index table for
matching. This process continues to search for P to the end of
text S. By using the IFBMPM method, the number of
comparisons and comparisons per character ratio (CPC)
decreases when compared with some of the existing
algorithms MSMPMA [8].

 The rest of the paper is organized as follows. We briefly
reviewed the background and related work in the section 2. In
section 3 we provided a proposed model i.e., IFBMPM and
related algorithm for DNA Sequence. Results and discussion
are presented in section 4. Section 5 concludes the paper.

II. BACKGROUND AND RELATED WORK

 In this section we review some work related to DNA
Sequences. An alphabet set ∑ = {A, C, G, T} is the set of
characters for DNA Sequence which used in this algorithm.

The following notations are used in this paper:

DNA Sequence characters ∑= {A, C, G, T}
φ denotes empty string
 |�| denotes the length of the string P
 S[n] denotes that a text which is a string of length n.
P[m] denotes a pattern of length m.
CPC – Comparisons per character.

 String matching mainly deals with problem of finding all
occurrences of a string in a given text. In most of the
applications it is necessary to the user and the developer to be
able to locate the occurrences of specific pattern in a sequence.
In this section we discuss about these different types of string
matching methods. Some of the exact string matching
algorithms available, such as Naïve string search, Brute-force
algorithm, Bayer-Moore algorithm, Knuth-Morris-Pratt
algorithms [1], [2].

 In Brute-force algorithm the first character of the pattern P
is compared with the first character of the string T. If it is
match, then pattern P and string T are matched character by
character until a mismatch is found or the end of the pattern P
is detected .If mismatch is found, the pattern P is shifted one
character to the right and the process continues. The
complexity of this algorithm is O(mn).

 The Bayer-Moore algorithm [1] applies larger shift-
increment for each mismatch detection. A main modification
to the Naïve algorithm is the matching of pattern P and string
T is done from right to left i.e., after aligning P and string T
the last character of P will matched to T first. If a mismatch is
detected, say C in T is not in P then P is shifted right so that C

is aligned with the right most occurrence of C in P. The worst
case complexity is O(m+n) and the average case complexity is
O(n/m). Although Knuth Morris-Pratt [2] algorithm has better
worst case running time than the Boyer-Moore algorithm.

 The Knuth-Morris-Pratt algorithm [2] is based on the finite
state machine automation. The pattern P is pre processed to
create a finite state machine M that accepts the transition .The
finite state machine is usually represented as the transition
table. The complexity of the algorithm for the average and the
worst case performance is O(m+n). In approximate pattern
matching method the oldest and most commonly used
approach is dynamic programming. By using dynamic
programming approach especially in DNA sequencing
Needleman-Wunsch [4] algorithm and Smith-waterman
algorithms are more complex in finding exact pattern
matching algorithm. By this method the worst case complexity
is O(mn). The major advantage of this method is flexibility in
adapting to different edit distance functions.

 In 1996 Kurtz [3] proposed another way to reduce the space
requirements of almost O(mn). The idea was to build only the
states and transitions actually reached in the processing of the
text. The automation starts at just one state and transitions are
built as they are needed. The transitions those were not
necessary will not be build. Wu.S.Manber and Myer.E [7]
proposed the algorithm for approximate limited expression
matching, and Wu.S.Manber.U [6] proposed the algorithm for
fast text searching allowing errors.

 Ukkonen [5] proposed automation method in for finding
approximate patterns in strings. He proposed the idea using a
DFA for solving the inexact matching problem. Though
automata approach doesn’t offer time advantage over Boyer-
Moore algorithm[1] for exact pattern matching. The
complexity of this algorithm in worst and average case is
O(m+n).In this every row denotes number of errors and
column represents matching a pattern prefix. Deterministic
automata approach exhibits O(n) worst case time complexity.
The main difficulty with this approach is construction of the
DFA from NFA which takes exponential time and space.

 The first bit-parallel method is known as “shift-or” which
searches a pattern in a text by parallelizing operation of non
deterministic finite automation. This automation has m+1
states and can be simulated in its non deterministic form in
O(mn) time.

 The filtering approach was started in 1990. This approach
is based upon the fact it may be much easier to tell that a text
position doesn’t match. It is used to discard large areas of text
that cannot contain a match. The advantage in this approach is

International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:4, No:6, 2010

431

the potential for algorithms that do not inspect all text
characters.

TABLE I

STRING MATCHING ALGORITHMS SUMMARY
 Algorithm

Name
Author

Comparison
Order

Preproc-
essing

Searching Time
Complexity

Boyer
Moore

R.S. Boyer
and J.S. Moore

From right to
left

Yes O(mn)

Horspool
Nigel

Horspool
Is not

relevant
Yes O(mn)

Brute
force

-
Is not

relevant
No O(mn)

Kunth
Morris
Pratt

Michael O
Rabin and
Richard M

Karp

From left to
right

Yes
O(n+m)

independent from
the alphabet size

Quick
Search

Sunday
Is not

relevant
Yes O(mn)

Karp
Rabin

Michel O
Rabin and
Richard M

Karp

From left to
right

Yes O(mn)

Zhu
Takaoka

R. F. Zhu and
T Takaoka

From right to
left

Yes O(mn)

Index
Based

IFBMPM
Model

From left to
right

Yes O(mn)

III. PROPOSED WORK

 In the proposed work we use the indexes for the DNA
Sequence belongs to ∑*. It is scanned from left to right and
filled in their corresponding indexes. To search a pattern P in
a string S whose alphabet set ∑. Let the string be S of having n
characters and the pattern P of having m characters.

 To search a pattern in a string whose alphabet set ∑= {A,
C, G, T}. Let the string be S of having n and the pattern P of

having m characters. Then S, P∈ ∑* , |S| = n

and |P| = m.

Generally |P| ≤ |S| i.e., m ≤ n.

A. Algorithm

Input: String S of n characters and a pattern P of m

characters, where S,P∈∑* .

Output: The no. of occurrence and the positions of P in S.

Algorithm:

Step1: Integer arrays indexTab[4][n], charIndex[4]

Integer found:=1, n_occ:=0,n_cmp:=1;

Step2: FOR i:=0;i<n;i++

 indexTab[(S[i]-64)%5][charIndex[(S[i]-
64)%5]++]:=i;

 End FOR

Step 3: FOR i:=0;i<chatIndex[(P[0]-64)%5];i++

 found:=1;

 IF i+m-1 > n-1

 found:=0

 SKIP the test, GOTO step 4.

 End IF

 FOR r:=0;r ≤ m/2;r++

 n_cmp++;

 IF P[r]=s[r+i]

 n_cmp++;

 IF P[m-r-1]=S[i+m-r-1]

 DO Nothing

 ELSE

 found:=0

 End IF

 ELSE

 found:=0

 End IF

 End FOR

 Step 4:IF found:=1

 n_occ++

 PRINT “Pattern Found At Location i,
Occurrence no is: n_occ”

 End IF

End FOR

 This algorithm first takes a string as input, and for each
given pattern it checks whether the pattern occurs in the string
or not. If the pattern occurs in the string it prints pattern with
its starting position in the string.

 It first builds up a table called index table, which is useful
to reduce the number of comparisons. Once the index table is
created for a string it is used for all the different patterns. For
each pattern we start checking from the first character indexes
of the pattern with using the index table which reduces the
unnecessary comparisons.

 The index based algorithm for multiple pattern matching
uses a table(2D vector) called indexTab[4][n]. The basic idea
used here is to store all the indexes of each character in its
corresponding vector. The algorithm is suitable for biological
applications such as DNA pattern matching which needs to
compare two strings of the characters in ∑= {A, C, G, T}. i.e.,
the index of each occurrence of A is stored in indexTab[4][n]
corresponding to the index of A in indexTab[4][n].The ASCII
indexing technique is used here to reduce the preprocessing
time and pre processing time comparisons. For each character
in ∑ we compute its array subscript value in indexTab by
using the following technique.

International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:4, No:6, 2010

432

TABLE II

COMPUTING ARRAY SUBSCRIPT VALUES FOR DNA CHARACTERS.

Character ASCII
Value

ASCIIValue-64 (ASCIIValue-64)%5
(or) [(S[i]-64)%5]

A 65 1 1

C 67 3 3

G 71 7 2

T 84 20 0

 From Table II, [(S[i]-64)%5] always returns a subscript
value in the range 0,1,2,3 which is needed for subscripting 2D
vector of size [4][n]. The subscript values 0,1,2,3 represents
the characters T, A, G, C respectively. So for each character of
string the function (S[i]-64)%5 directly references to its
corresponding vector in the 2D vector indexTab[4][n]. The
vector charIndex[4] stores the counter value of each
occurrence of each character with reference to [(S[i]-64)%5].

TABLE III

ARRAY SUBSCRIPT VALUES AND THEIR CORRESPONDING CHARACTERS.

Array Subscript Value Character

0 T

1 A

2 G

3 C

 For each first occurrence of the first character of pattern
this algorithm compares one character from left and one
character from right until all characters are compared, if all
characters matches to the pattern it prints the pattern found
from the starting location. If any character mismatches it
skips the test and continues to check the next occurrence of the
first character of the pattern.

B. Mathematical Analysis

 Let S be the string of length n, P be the pattern of length m

and S, P∈∑* , and i be the index of the first character of the
pattern P in the string S, Let Xi be denote the character at the i
th location in the string(or pattern) X. Now for each value of i,
we check

Whether Pr = Si+r if it so we will check Pm-r-1 = Si+m-r-1 for
r=0, 1, 2,…, m/2.

 If these two comparisons are true until r ≤ m/2 then we
will print Pattern Found at the Location i.

And we continue the search for next value of i.

C. Trivial cases in comparison

Case i: If S = φ i.e., |S| = 0 and P = φ i.e., |P| = 0 then the
number of occurrences of P in S is 0.

Case ii: If S = φ i.e. |S| = 0 and for any |P| ≥ 0 then the
number of occurrences of P in S is 0.

Case iii: If S ≠ φ i.e., |S| ≠ 0 and for any |P| = 0 then the
number of occurrences of P in S is 0.

Case iv: If S ≠ φ i.e., |S| ≠ 0, P ≠ φ i.e., |P| ≠ 0 and |S| ≤ |P|
then the number of occurrences of P in S is 0.

D. Example 1:

Let us take a string S= ACTTAGGCTCAACGATGTTAGCATC
of 25 characters and P=TTAG.

The following index table stores all the indexes of each
character A, C, G and T in its corresponding row. The 0th row
stores the indexes of occurrences of the character T, 1st row
for A, 2nd row for G and 3rd row for C.

 The first character in the pattern P is T so we start search
for P from the 0th row(which stores the indexes of character
T). The first index stored in 0th row is 2 so we start the
algorithm from 2nd character in the string, the searching
process is shown below.

 The algorithm first compares the first character in the
pattern with the character of first index of the 0th row in table.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P= T T A G
 The first character matches then it compares the last
character of the pattern to the corresponding character in the
string.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 S= T T A G
 The last character is matched then it compares the second
character from the left.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P=T T A G
 Again it continues matching for 2nd character from the
right.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P=T T A G
 Now all the character matches it prints the message the
pattern found at the location 2 in the string.The 2nd index

 0 1 2 3 4 5 6

T 0 2 3 8 15 17 18 23

A 1 0 4 10 11 14 19 22

G 2 5 6 13 16 20

C 3 1 7 9 12 21 24

International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:4, No:6, 2010

433

stored in the 0th row of the above table is 3, we start search
again from the index 3 of the string.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P=T T A G
 The first character from the left is matched, then it checks
for the match of the first character from the right.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P=T T A G
 It is also matched then it compares the second character
from the left.

 S=A C T T A G G C T C A A C G A T G T T A G C A T C
 S= T T A G
 Here the match failed for 2nd character from the left, it stop
the search and then continues the search from the next index
stored in the 0th row of the table. The third index stored in the
0th row is 8 so we start search from the index 8 of the string S.

 S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P= T T A G
 The first character from the left is matched then it
compares the first character from the right.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P=T T A G
 The match failed for the first character from the right so it
skip the test from the starting index 8. The next index stored
in the 0th row of the index table is 15 so we start search from
15.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P= T T A G
 Clearly the first character from the left is matched. So we
compare the first character from the right.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P=T T A G
 The match failed at this point, so we skip the test from the
index 15. Again continues from the next index stored in the
0th row of the index table which is 17.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P=T T A G
 The first character from left is matched, then we compare
the first character from the right.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P=T T A G
 It is also matched we continue search from the second
character from the left.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P=T T A G
 It is also matched so compare the second character from the
right.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P=T T A G
 All the characters are matched from the location 17, so we
print the message Pattern found at the location 17, and
continues the search for P from the next index18 in the 0th row
of index table.

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P=T T A G
 The first character from the left is matched, so we compare
the first character from the right

S=A C T T A G G C T C A A C G A T G T T A G C A T C
 P=T T A G
 The first character from the right is mismatched, here we
stop the comparison.

 The last index stored in the 0th row of the index table is 23,
we need to start the search for P from 23rd character in S, there
is only one character after the 23rd character in the string, but
the pattern has 3 characters more from the 23rd location. So it
is impossible to occur the pattern starting from 23rd location in
S. Finally the search for P in S is completed, P occurred two
times in the string S.

E. Example 2:

 The DNA sequence data has been taken from the Multiple
Skip Multiple Pattern Matching algorithm MSMPMA [8] for
testing the IFBMPM algorithm. It explains large sequence data

by taking a DNA biological sequence S∈ ∑* of size n=1024

and pattern P∈ ∑* . Let S be the following DNA sequence.

AGAACGCAGAGACAAGGTTCTCATTGTGTCTCGCAATAG
TGTTACCAACTCGGGTGCCTATTGGCCTCCAAAAAAGGC
TGTTCAACGCTCCAAGCTCGTGACCTCGTCACTACGACG
GCGAGTAAGAACGCCGAGAAGGTAAGGGAACTAATGAC
GCGTGGTGAATCCTATGGGTTAGGATCGTGTCTACCCCA
AATTCTTAATAAAAAACCTAGGACCCCCTTCGACCTAGAC
TATCGTATTATGGACAAGCTTTAACTGTCGTACTGTGGAG
GCTTCAAAACGGAGGGACCAAAAAATTTGCTTCTAGCGT
CAATGAAAAGAAGTCGGGTGTATGCCCCAATTCCTTGCT
GCCCGGACGGCCAGGCTTATGTACAATCCACGCGGTAC
TACATCTTGTCTCTTATGTAGGGTTCAGTTCTTCGCGCAA
TCATAGCGGTACTTCATAATGGGACACAACGAATCGCGG
CCGGATATCACATCTGCTCCTGTGATGGAATTGCTGAAT
GCGCAGGTGTGAATACTGCGGCTCCATTCGTTTTGCCGT
GTTGATCGGGAATGCACCTCGGGGACTGTTCGATACGA
CCTGGGATTTGGCTATACTCCATTCCTCGCGAGTTTTCG

International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:4, No:6, 2010

434

ATTGCTCATTAGGCTTTGCGGTAAGTAAGTTCTGGCCAC
CCACTTCGAGAAGTGAATGGCTGGCTCCTGAGCGCGTC
CTCCGTACAATGAAGACCGGTCTCGCGCTAAATTTCCCC
CAGCTTGTACAATAGTCCAGTTTATTATCAAAGATGCGAC
AAATAAATTGATCAGCATAATCGAAGATTGCGGAGCATAA
GTTTGGAAAACTGGGAGGTTGCCAGAAAACTCCGCGCC
TACTTTCGTCAGGATGATTAAGAGTATCGAGGCCCCGCC
GTCAATACCGATGTTCTTCGAGCGAATAAGTACTGCTATT
TTGCAGACCCTTTGCCAGGCCTTGTCTAAAGGTATGTTA
CTTAATATTGACAATACATGCGTATGGCCTTTTCCGGTTA
ACTCCCTG.

 The index table for S is very large to show here. So for
different P’s the number of occurrences and the number of
comparisons are shown in the following table.

TABLE IV

EXPERIMENTAL RESULTS OF PROPOSED ALGORITHM

S.
No.

Pattern(P’s)
No. of

Characte
rs

No. of
occurrences

No. of
comparisons

1 A 1 259 518

2 AG 2 53 624

3 CAT 3 11 567

4 AACG 4 5 614

5 AAGAA 5 2 616

6 AAAAAAGG 8 1 634

7 TTCTTAATAAAA 12 1 651

8 GGCTGTTCAACGCTC 16 1 598

 In molecular biology this type of large sequences are
common to compare with some other sequences . To check
whether the given pattern presents in the sequence or not we
need a efficient algorithm which does the search in less time
and with good complexity. The general algorithms like Brute
Force or other conventional algorithms will take much time to
do this. There are so many algorithms are introduced to solve
this problem with less comparisons and in less time but each
have their drawbacks. The proposed Index Based Forward
Backward String Searching algorithm is one simple solution
for such needs.

 This algorithm can be appreciated for decreasing the
number of comparisons as compared with the other
algorithms as shown in the following graphs.

IV. RESULTS AND DISCUSSION

 From the proposed algorithm it has been observed the
following experiments when compared with some of the other
algorithms. Fig.1 shows the number of comparisons made for
different algorithms to the single pattern of length 1. For a
single pattern “A” the proposed algorithm takes 518
comparisons whereas all the other algorithms take nearly
1024 comparisons.

Fig.1 Experimental results of different algorithms

 Fig.2 shows the number of comparisons made for different
algorithms to the pattern of length 2. The pattern “AG”, in the
proposed algorithm takes 624 comparisons where as all the
other takes more than 1230 comparisons. We are reducing the
comparisons less than half by using the index based
technique.

Fig.2 Experimental results of different algorithms

 Fig.3 shows the number of comparisons made for different
algorithms to the pattern of length 3. The pattern “CAT”, in the
proposed algorithm takes 567 comparisons where as all the
other algorithms like Brute-force, MSMPMA and Trie-
matching takes more than 1298 comparisons.

Fig.3 Experimental results of different algorithms

0

200

400

600

800

1000

1200

MSMPMA BruteForce Triematching Navie String Proposed
Method

Input A(1)

0

200

400

600

800

1000

1200

1400

MSMPMA BruteForce Triematching Navie String Proposed
Method

Input AG(2)

0

200

400

600

800

1000

1200

1400

MSMPMA BruteForce Triematching Navie String Proposed
MethodInput CAT(3)

International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:4, No:6, 2010

435

 Fig 4. shows the number of comparisons made for different
algorithms to the pattern of length 4. The pattern “AACG”, in
the proposed algorithm takes 614 comparisons where as all the
other algorithms takes more than 1359 comparisons.

Fig.4 Experimental results of different algorithms

 Fig 5. shows the number of comparisons made for
different algorithms to the pattern of length 5. The pattern
“AAGAA”, in the proposed algorithm takes 616 comparisons
where as all the other takes more than 1375 comparisons. By
taking pattern size 5 our algorithm comparisons has increased
slightly. In all other cases it is less than half where as in this
case is more than the half.

Fig.5 Experimental results of different algorithms

 Fig 6. shows the number of comparisons made for
different algorithms to the single pattern of length 8. The
pattern “AAAAAAGG”, in the proposed algorithm takes 634
comparisons where as all the other takes more than 1394
comparisons.

The CPC value is less than 1 in the index based matching
algorithm where as in all other algorithms it is more than 1.

Fig.6 Experimental results of different algorithms

 Fig 7. shows the number of comparisons made for
different algorithms to the single pattern of length 12. The
pattern “TTCTTAATAAAA”, in this the proposed algorithm
takes 651 comparisons where as all the other takes more than
1390 comparisons. In this case the comparison slightly
decreased when compared with the earlier cases.

Fig.7 Experimental results of different algorithms

 Fig 8. shows the number of comparisons made for
different algorithms MSMPMA[8], Brute-force, Trie-matching,
Naïve string search with the proposed pattern matching
algorithm and tested with the pattern of length 16. The pattern
“GGCTGTTCAACGCTCC”, in this the index based sequential
searching algorithm takes 598 comparisons where as all the
other takes more than 1349 comparisons. Overall performance
of the algorithm is very good when analyzed with other
algorithms.

0

200

400

600

800

1000

1200

1400

1600

MSMPMA BruteForce Triematching Navie String Proposed
Method

Input AACG(4)

0

200

400

600

800

1000

1200

1400

1600

MSMPMA BruteForce Triematching Navie String Proposed
MethodInput AAGAA(5)

0

200

400

600

800

1000

1200

1400

1600

MSMPMA BruteForce Triematching Navie String Proposed
MethodInput AAAAAAGG(8)

0

200

400

600

800

1000

1200

1400

1600

MSMPMA BruteForce Triematching Navie String Proposed
MethodInput TTCTTAATAAAA(12)

International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:4, No:6, 2010

436

Fig.8. Experimental results of different algorithms

 Fig 9. shows the comparison between the different
algorithms like MSMPMA, Brute-force, Trie-Matching,
Naïve-string matching and the index based sequential
searching algorithms. It is clear that our index based
algorithm outperforms when compared with all other
algorithms.

Fig 9. Comparison of different algorithms

 Our index based algorithm gives very good performance
in number of comparisons of the patterns when compared
with the other popular algorithms. The dotted lines gives the
index based where as the MSMPMA, Brute-Force, Trie-
matching and Naïve string based is the other plotted lines in
the graph.

 Table.V shows experimental results of the index based
algorithm, the number of comparisons decreases and
comparison per character ratio is less than 1in case of index
based method.

TABLE V

EXPERIMENTAL RESULTS OF IFBMPM FOR DIFFERENT PATTERN SIZES

 Table.VI shows experimental results of different
algorithms used to compare and analyze the results related to
the algorithms like MSMPMA[8], Brute-Force, Trie-Match,
naïve string matching with the proposed algorithm. A
comparison has been done on the basis of number of
comparisons and comparison per character with the other
algorithms. Index based algorithm gives the best performance
and CPC(comparison per character) ratio comes to half in the
current algorithm.

TABLE VI
 COMPARISONS OF DIFFERENT ALGORITHMS WITH IFBMPM

 The following are observed from the experimental results.

1) Reduction in number of comparisons.
2) The ratio of comparisons per character has

gradually reduced and is less than 1.

0

200

400

600

800

1000

1200

1400

1600

MSMPMA BruteForce Triematching Navie String Proposed
Method

Input GGCTGTTCAACGCTCC(16)

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8

MSMPMA Brute Force

Triematching Naïve String Search

Proposed Model

S.
No

Pattern(P’s)
Pattern
Lenth
P

No. of
occurrence

IFBMPM
Model
Comparison

CPC
Ratio

1 A 1 259 518 0.505
2 AG 2 53 624 0.609
3 CAT 3 11 567 0.553
4 AACG 4 5 614 0.599
5 AAGAA 5 2 616 0.601
6 AAAAAA 6 3 627 0.612
7 AGAACGC 7 2 600 0.585
8 AAAAAAGG 8 1 634 0.619
9 GCTCATTAG 9 1 582 0.568
10 CCTTTTCCGG 10 1 562 0.548
11 TTTTGCCGTGT 11 1 650 0.634
12 TTCTTAATAAAA 12 1 651 0.635
13 GGGACCAAAAAAT 13 1 579 0.565
14 TTTTGCCGTGTTGA 14 1 638 0.623
15 CCTCCAAAAAAGGCT 15 1 578 0.564
16 GGCTGTTCAACGCTCC 16 1 598 0.583
17 TTTTCGATTGCTCATTA 17 1 643 0.627
18 GGGATTTGGCTATACTCC 18 1 598 0.583
19 GGCCTTGTCTAAAGGTATG 19 1 579 0.565
20 CCTGAGCGCGTCCTCCGTAC 20 1 570 0.556

Pattern
No.of
occur
ances

IFBMPM
Model

MSMPMA Brute-Force Tri-match

Naïvestring

No.of
Comp

CPC
No.of
Comp

CPC
No.of
Comp

CPC
No.of
Comp

CPC
No.of
Comp

CPC

 A 259 518 0.50 1024 1.00 1024 1.00 1025 1.00 1024 1.00
 AG 53 624 0.60 1230 1.20 1282 1.25 1284 1.25 1281 1.25
 CAT 11 567 0.55 1298 1.26 1318 1.28 1321 1.29 1310 1.27
 AACG 5 614 0.59 1359 1.32 1376 1.34 1380 1.34 1376 1.34
 AAGAA 2 616 0.60 1375 1.34 1388 1.35 1393 1.36 1387 1.35
 AAAAAAGG 1 634 0.61 1394 1.36 1409 1.37 1417 1.38 1407 1.37
 TTCTTAATAAAA 1 651 0.63 1390 1.35 1390 1.35 1402 1.36 1399 1.36

GGCTGTTCAACGCTCC 1 598 0.58 1349 1.31 1349 1.31 1365 1.33 1349 1.31

International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:4, No:6, 2010

437

3) Suitable for unlimited size of the input file.
4) Once the indexes are created for input sequence

we need not create them again.
5) For each pattern we start our algorithm from the

matching character of the pattern which
decreases the unnecessary comparisons of other
characters.

6) It gives good performance for DNA related
sequence applications.

V. CONCLUSION

A new algorithm for searching sequence pattern is proposed.
This paper gives the time efficient method for solving pattern
matching problem. It is very simple approach for finding the
patterns. The proposed algorithm gives very good
performance with the other algorithms. We have compared
comparisons per character ratio, number of comparisons. We
have implemented with DNA Sequence further it can be
extended to protein sequence.

REFERENCES

 [1] Boyer R. S., and J. S. Moore, ‘‘A fast string searching algorithm,
‘Communications of the ACM 20 (October 1977), pp. 762 772.

[2] Knuth D., Morris.J Pratt.V Fast pattern matching in strings, SIAM
journal on computing.

[3] Kurtz. S, Approximate string searching under weighted edit distance. In
proceedings of the 3rd south American workshop on string processing.
(WSP 96). Carleton Univ Press, 1996 156-170.

[4] Needleman,S.B Wunsch, C.D(1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins.
J.Mol.Biol.48,443-453.

[5] Ukkonen,E., Finding approximate patterns in strings J.Algor. 6, 1985,
132-137

[6] Wu S., and U. Manber, ‘‘Agrep — A Fast Approximate Pattern-
Matching Tool,’’ Usenix Winter 1992 Technical Conference, San
Francisco (January 1992), pp. 153 162.

[7] WU.S.,Manber U., and Myers,E .1996, A sub-quadratic algorithm for
approximate limited expression matching. Algorithmica 15,1,50-67,
Computer Science Dept, University of Arizona,1992.

[8] [MSMPMA] Ziad A.A Alqadi, Musbah Aqel & Ibrahiem M.M.EI
Emary, Multiple Skip Multiple Pattern Matching algorithms. IAENG
International Journal of Computer Science 34:2.

Raju Bhukya has received his B.Tech
in Computer Science and Engineering
from Nagarjuna University in the year
2003 and M.Tech degree in Computer
Science and Engineering from Andhra
University in the year 2005. He is
currently working as an Assistant
Professor in the Department of

Computer Science and Engineering in National Institute of
Technology, Warangal, Andhra Pradesh, India. He is currently
working in the areas of Bio-Informatics and Data Mining.

Somayajulu DVLN has received
his M. Sc and M. Tech
degrees from Indian Institute of
Technology, Kharagpur in 1984
and in 1987 respectively, and his
Ph. D degree in Computer Science
& Engineering from Indian
Institute of technology, Delhi in
2002. He is currently working as
Professor and Head of Computer

Science & Engineering at National Institute of Technology,
Warangal. His current research interests are bio-informatics,
data warehousing, database security and Data Mining.

