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Abstract—Missing data yields many analysis challenges. In case 

of complex survey design, in addition to dealing with missing data, 
researchers need to account for the sampling design to achieve useful 
inferences. Methods for incorporating sampling weights in neural 
network imputation were investigated to account for complex survey 
designs. An estimate of variance to account for the imputation 
uncertainty as well as the sampling design using neural networks will 
be provided. A simulation study was conducted to compare 
estimation results based on complete case analysis, multiple 
imputation using a Markov Chain Monte Carlo, and neural network 
imputation. Furthermore, a public-use dataset was used as an 
example to illustrate neural networks imputation under a complex 
survey design. 
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I. INTRODUCTION 
RADITIONAL methods presented in the statistical 
literature, outside of survey sampling, have been based on 

a simple random sample [7]. This assumption is not 
appropriate when the data were generated using a complex 
sampling design [24]. As an alternative to standard formulas 
and techniques used in case of simple random sample, design-
based procedures were developed to handle probability 
sampling. Design-based procedures, which date back to the 
1950’s, provide accurate inference for complex surveys and 
account for complex sampling designs [9], [16], [20], [21].  

In a complex survey design, characteristics of the 
population may affect the sample and are used as design 
variables. Sample design involves the concepts of 
stratification, clustering, etc. These concepts usually reflect a 
complex population structure and should be accounted for 
during the analysis. In design-based inference, the main source 
of random variation is induced by the sampling mechanism 
[8]. Furthermore, in complex survey design, the variance is the 
average squared deviation of the estimate from its expected 
value, averaged over all possible samples which could be 
obtained using a given design. Design-based approaches make 
use of sampling weights as part of the estimation and 
inference procedures.  

In survey sampling, two types of weights are of interest. 
These weights are sampling weights and nonresponse weights. 
If a unit is sampled with a specific selection probability then 
the sampling weight is the inverse of the probability of sample 
selection. For example, stratified sampling occurs when the  
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population is divided into distinct subpopulations and a 
separate sample is selected within each subpopulation. From 
the sample in each subpopulation, a separate mean is 
computed. The means are weighted to calculate a combined 
estimate for the entire population. Weighting is used as a 
nonresponse adjustment for unit nonresponse as well. 
Nonresponse weight is the reciprocal of the probability that a 
unit is selected in the sample and responds. A combined 
weight results from multiplying the response weight times the 
sampling weight.   

Several estimators and their corresponding variances have 
been introduced in the literature for different sampling designs 
(e.g. Horvitz-Thompson estimator). Point estimators are 
usually calculated using survey weights, which may involve 
auxiliary population information. However, sampling variance 
estimation is more complicated than parameter estimation 
[24]. Alternatives to conventional variances, in case of 
complex survey designs, were proposed to facilitate the 
variance calculation. Methods like the random group method 
[25] are based on the replication of the survey design. These 
methods are simple to apply to nonparametric problems, but 
lead to imprecise estimates of the variances [24]. Woodruff 
[38] illustrated the Taylor series linearization method to 
approximate the variance in complex surveys. In case of 
Taylor series linearization, in spite of a complex calculation, 
the linearization theory may be applied if the partial 
derivatives are known.  

II. NEURAL NETWORK AND COMPLEX SURVEY DESIGN 
One major advantage of artificial neural networks (ANN) is 

their flexibility in modeling many types of nonlinear 
relationships. Artificial neural networks can be structured to 
account for complex survey designs and for unit nonresponse 
as well. In general, sampling weights have been used to adjust 
for the complex sampling design using unequal sampling [24]. 
We suggest two different methods to include sampling 
weights into ANN. The first method is to include the sampling 
weights in the ANN similar to weighted least squares (WLS). 
The second method is based on accounting for the sampling 
design structure in constructing the corresponding ANN. 

A. Method based on Weighted Least Squares 
Weighted least squares are used in regression in several 

situations to account for variance. When the deviations from 
the responses are available; the weights are the reciprocal of 
the response variance to give observations with smaller error 
more weight in the estimation procedure. In addition, weights 
are used when the responses are averaged from samples with 
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different sizes. Additionally, when the variance is proportional 
to a covariate, the weight is the inverse of the covariate. In 
survey sampling, statisticians debated about the relevance of 
the sampling weights for inference in regression [5]. Part of 
this debate is based on the idea that weights are needed for 
estimating population parameters in complex survey sampling 
and by analogy should be used in regression. Amer, Lesser, 
and Burton [2] illustrated the similarities between ANN and 
linear regression. Based on these similarities, we propose 
including the sampling weights in the network in the same 
manner it would be incorporated in case of regression. If 
sampling weights are used in the WLS estimation, point 
estimates will be similar to design based estimates. However, 
the standard errors also need to be developed based on the 
survey design. In case of complex survey design, using the 
approach of weighted least squares proves to be useful 
specially when the analyst is not involved in the design stage 
but is presented with the final weights. 

B. Method based on ANN Structure 
When the analyst has access to the design variables, an 

alternative method to WLS is to construct the neural network 
using the sampling design features. For example, in a stratified 
sampling design, a separate network could be built and trained 
using data from a specific stratum in the imputation procedure. 
We suggest using a separate network for each stratum. These 
networks are then connected with a binary activation function 
at the input layer. The binary activation function directs each 
observation to the corresponding stratum, taking the value 0 
when the observation is not in the stratum and 1 when the 
observation belongs to that stratum. This leads to a different 
network parameter estimates for each stratum. The 
disadvantage of using a separate network for each stratum 
(without connecting the networks or assigning a probability 
for each stratum) is that it does not provide estimates for the 
entire sample. Therefore, a suggested solution is to train 
separate networks for each output and then to combine all 
strata to account for the full sample. Using a mixture of 
network models is common in ANN and can be considered as 
a possible technique to account for the sampling design. 
Mixture of expert networks are mixture models used to solve 
complex problems [4]. 

The solution of these complex problems is achieved by 
dividing the problem into smaller sub-problems, where each 
network is considered an expert for a subgroup of the 
observations. These expert networks are connected together 
through a gating network, which divides the input space into 
different subgroups of conditional densities as shown in Fig. 1 
[19]. The use of a mixture of expert networks allows the 
introduction of sampling probabilities and construction of a 
separate model for each stratum in a stratified sample design. 
In mixtures of expert network models, we have ( );j j jy f x θ=  

where strata j=1,...,M such that M is the number of strata.  
Fig. 1 corresponds to a model representing a stratified 

sampling design with three strata and a gating network. Each 
of the networks Net 1, Net 2 and Net 3 serves as a unique 
network for imputation in each stratum separately. The 

covariates are represented by the matrix X. The matrix is fed 
into each of the networks. The gating network serves as a 
portal to synchronize between the different strata. The gating 
network acts as dummy variables that differentiates between 
the different strata and assigns a sampling weight to each 
network. The output node is the sum of the results from the 
different strata.  The neural network model corresponding to 
such a design can be formulated as 

( )
( )

1

1ˆ |
M

j
j j

y f y x
xρ=

= ∑  

where ( )
( )j

1

j

x
w x

ρ =  is the probability at each stratum while 

( )|jf y x  is the function representative of network j. The 

sampling weights are ( ) j

j
j

N
w x

n
=  such that nj is the sample 

size from stratum j and Nj is the population size from stratum 
j. Using a mixture of experts is a convenient way to adjust for 
complex designs. After the design is taken into account, the 
network may then be used for imputation. 

 

 
Fig. 1 Mixture Expert Networks for a stratified sampling design 

III. BIAS/VARIANCE TRADE-OFF IN ANN AND INFERENCE 
To calculate the mean squared error (MSE) in ANN, the 

expected error rate can be broken down into three main 
components: bias, variance and noise [17]. Partitioning of the 
MSE into bias and variance is helpful to understand the 
variability in ANN. 

Let ( )y f x ξ= +  where ( )2~  N 0,ξ σ . The performance of 

the network in prediction is based on the MSE where 
2MSE Bias Var= +  such that [ ] 2ˆVar Var y σ= + . Similar to 

regression, neural networks attempt to minimize the MSE. In 
ANN, bias arises when the true function cannot be represented 
correctly, i.e., under-fitted. However, variance in ANN comes 
from over-fitting, where the network adapts to the specific 
data used and cannot be generalized to new observations.   

There are several ways to calculate variance and to 
construct confidence intervals for neural networks. Rivals and 
Personnaz [30] suggest using Taylor series approximation as a 
variance estimation procedure. For a nonlinear function ( )f θ ; 

the estimate is ( ) ( ) ( )( )12ˆ  , ' '
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confidence interval on the mean response at an arbitrary 
location Xo is ( ) ( ) 1'

/ 2, 1
ˆ, 'o m p o of X t s z X X zαθ −

− −±  and an 

approximate 100(1-α) % prediction limits on a new 
observation at xo is ( ) ( ) 1'

/ 2, 1
ˆ, 1 'o m p o of X t s z X X zαθ −

− −± + .  

IV.  IMPUTATION 
When survey nonresponse is encountered, either 

nonresponse weighting or imputation may be used to handle 
the missing data. Imputation is the procedure of filling in the 
missing values. Imputation can be performed as single 
imputation, or repeated several times resulting in multiple 
imputations [11]. One drawback to single imputation is the 
unaccounted uncertainty attributed to the imputation from the 
filled-in data. Multiple imputation (MI), as proposed by Rubin 
[31], replaces the missing value by a vector of imputed values 
to obtain a number of complete datasets. Regular analysis run 
on the multiply imputed datasets yields estimates that are 
subsequently combined to get the final results. The combined 
estimate from a multiply-imputed dataset is the average of the 
estimates resulting from the analysis of each completed 
dataset separately. However, the variance of this estimate is 
divided into two components, the average within imputation 
variance and the between imputation component. The total 
variance is then a weighted sum of these two variance 
components [23]. Inferences resulting from combining the 
imputations reflect the uncertainty due to nonresponse. In real 
data analyses, MI may not result in good performance if it is 
not applied properly or if the mechanisms generating either the 
data or the missing values depart substantially from the 
underlying statistical assumptions [10]. 

Many single imputation techniques can be repeated several 
times resulting in multiple imputation [1], [18]. Reference [34] 
offers an extended review of techniques used for MI. In this 
paper, the MCMC data augmentation technique will be used 
as an example. The MCMC procedures are a collection of 
methods for simulating random draws from the joint 
distribution of ( ),mis obsY Yθ  where 

misY  are the missing values, 

obsY  are the observed values, and θ is the distribution 
parameter. This conditional distribution is assumed to be a 
multivariate normal distribution [14], [30]. The simulated 
random draws result in a sequence of values that form a 
Markov chain [12], [15], [36]. A Markov chain is a sequence 
of random variables where the distribution of each element 
depends only on the value of the previous one and the iterative 

procedure consists of two steps. The first step is an imputation 
step (I-step), which is a draw 

misY  from the conditional 
predictive distribution ( ),mis obsP Y Y θ  given a value for θ. The 

second step is a posterior step (P-step), given 
misY , draw θ 

from its complete data posterior ( ),obs misP Y Yθ . The goal of 

MCMC procedure is to sample values from a convergent 
Markov chain in which the limiting distribution is the joint 
posterior of the quantities of interest [35]. In practice, the 
major challenge in using MCMC is the difficulty, for the user, 
to assess convergence [13]. Overall, multiple imputation is 
difficult to implement in large datasets, due to the amount of 
computer memory needed to store the different, multiply-
imputed datasets and the time required to run the analysis. 

Increased computer power and decreased cost have 
encouraged more research into the automated edit and 
imputation techniques. Advances in computer software and 
increased memory have made the use of both MI and ANN 
more practical. The type of ANN used in this paper for 
imputation in each stratum are called feed-forward, where 
input terminals receive values of explanatory variables X, 
whereas the output provides the imputed variable Y. 
Multilayer feed-forward networks consist of one or more 
hidden layers. The role of the hidden layer of neurons is to 
intervene between the external input and the network output. 
Inputs and outputs are connected through neurons that 
transform the sum of all received input values to an output 
value, according to connection weights and an activation 
function. The connection weights represent the strength of the 
connection between the neurons. The network weights 
(parameters) are randomly initialized and are then changed in 
an iterative process to reflect the relationships between the 
inputs and outputs. Many linear or nonlinear functions are 
suitable candidates for an activation function.  ANN do not 
require a model, which is advantageous in large dataset 
imputation.  

Most traditional imputation techniques do not account for 
sampling design during the imputation procedure [6]. For 
example, multiple imputation (MI) is considered imperfect 
because it does not account for survey design. One solution is 
to run a separate imputation within each sampling subgroup 
and run a weighted analysis for each imputed dataset. Another 
solution is to base MI on models that specifically include 
design characteristics. Binder and Sun [3] suggest that finding 
accurate methods for imputation may be very difficult under 
complex survey design and requires a correct model for 
imputation. Reference [26] states that variance estimation of 
imputed values under complex survey design has not been 
solved and needs further research. Remedies such as imputing 
the nonrespondents with the sample weighted mean have been 
suggested [37]. In this case, the weighted mean from complete 
cases is calculated and used for imputation. 

In this paper, the focus is on computing weighted estimates 
for large public use data files and use imputation methods that 
account for complex surveys. With large sample sizes, we 
assume the central limit theorem applies thus the sampling 
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distribution of the parameter estimator is approximately 
normal.  

V.  IMPUTATION AND INFERENCE UNDER ANN WITH A 
COMPLEX SURVEY DESIGN 

In case of nonresponse, bias needs to be quantified and both 
estimation and inference procedures are harder to handle [33]. 
With an increasing rate of nonresponse, when the mean of the 
nonrespondents differs from respondents, bias increases.  
Therefore, the mean square error (MSE) is customarily used 
when comparing different estimates. According to Lee, 
Rancourt and Särndal [22], there are two reasons why MSE 
should be considered instead of variance. First, the assumption 
of obtaining an unbiased estimate after imputation is not 
usually guaranteed. Secondly, the MSE is a measure of 
accuracy. In general, Total error = Sampling error + 
Nonsampling error. Sampling error accounts for most of the 
variable errors in a survey. Nonsampling error is mostly bias 
caused by measurement, editing, and/or imputation errors 
[20]. 

The estimate of the population parameters from the imputed 
dataset includes several sources of bias. The first source of 
bias is from the estimate provided using traditional statistical 
techniques in complete case analysis. The second source of 
bias is due to imputation using ANN. The total MSE is 

defined as 
2 2

v
g

g v v

SMSE B
m

⎛ ⎞
= +⎜ ⎟
⎝ ⎠
∑ ∑ . In this case, the bias is the 

sum of the bias expected from a sample survey and the bias 
from the neural network estimate based on imputed values. 
However, analytically, the bias cannot be estimated. 
Therefore, most analysts estimate the variance only. The 
variance can be divided into several parts where Total 
variance is 2 2

joint2obs impS S S+ +  [32] such that 2
obsS  is the 

Observed sample variance under complex survey design, 2
impS  

is the imputation variance, and 
joint 0 

Asymptotically

S ≈  [28] 

It is necessary to identify the observed and imputed values 
using ANN in the data file before the analysis.  Assume there 
is a stratified random sample of size n with X observed for all 
sampled units. Let { }: 1, ,thix i t= K  and { }: 1, ,mhjx j t n= + K  

denote the observed X values which correspond to the t 
observed Y values and m missing Y values in strata h for 

1, ,h H= K , respectively. The weighted sample mean for the 
completed data 

cwy  can be calculated to estimate the 

population mean Y . The standard error of 
cwy  can also be 

calculated to estimate the variability associated with this 
estimate. The weighted mean can be expressed as 

w h h
h
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observed values are presented by 
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mhjy . 

Let 
h th

h
t

t y
y

t
=
∑

 be mean of the observed data and 

h mh
h

m

m y
y

m
=
∑

 be mean of the imputed data, then 

( )cwy 1  t my yπ π= − +  where π  is the percent of missing data.  

The sample variance is expressed as: 
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A total weighted variance is derived by combining the 
variances from the complete cases and from the imputation 
procedure with ANN. The imputed values are given their 
relative importance depending on the percentage of missing 
data.  

VI. RESULTS 

This section contains simulation results as well as results 
using data from the NHIS under a complex survey design. 

A. Simulation 
A simulation study was performed to compare the results of 

imputation using nonlinear ANN to multiple imputation (MI) 
using Markov chain Monte Carlo (MCMC) method under a 
complex survey design. Data for this simulation were 
generated using a stratified simple random design with two 
strata having equal allocation. For this simulation study, each 
of the two strata (Z = 1, 2) had three variables X1, X2 and Y, 
and 1000 observations. Using the Matlab software, the X’s 
were generated separately with a normal distribution in each 
stratum. The Y was generated as a function of the X’s with 
normal random error. The relationship between the X’s and Y 
was simulated to be linear. The linear model was simulated 
using a linear combination of the X’s and the error term. The 
parameters in this model used for data simulation (α, β1, and 
β2) were set arbitrarily and separately for each stratum. A 
random number was generated and used to select certain 
observations to have missing Y values. The number of missing 
observations represented 10 percent of the sample size in each 
stratum. In addition, the missing observations were used for 
evaluating the performance of the imputation techniques. 

Two software packages were combined in the analysis of 
the data to make use of several imputation techniques. SAS 
was used for MI with MCMC and the Matlab Neural Network 
toolbox was used for ANN imputation. In case of MI with 
MCMC, imputation was performed separately in each stratum. 
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Weighted estimates were calculated from each stratum. The 
weighted estimates from the imputed data were combined 
using the formulas presented by Little and Rubin [23]. In 
ANN imputation, a separate network was used for imputation 
in each stratum. Online training was used to provide the 
network with one observation at each pass. The activation 
function at the hidden layer was chosen as a logistic function 
whereas the activation function at the output layer is set to be 
a linear function. Initial parameter values for each network 
were randomly assigned. Using a gating network, the results 
were combined based on the weights to yield the final 
estimates. 

Table I shows the weighted results using multiple 
imputation with MCMC and nonlinear ANN. Results show 
that both the weighted mean and SE resulting from MI using 
MCMC and ANN are approximately equal. However, the 
complete case analysis provides a slightly higher weighted 
mean and SE.  

 
TABLE I  

COMPARISON BETWEEN ANN AND MI USING MCMC IN COMPLEX SURVEY 
DESIGN 

 Sample size Weighted Mean SE 
Complete cases 1800 39.9713 0.3575 
ANN  2000 39.7680 0.3433 
MCMC 1 2000 39.7537 0.3432 
MCMC 2 2000 39.7814 0.3434 
MCMC 3 2000 39.7763 0.3436 
MCMC 4 2000 39.7673 0.3434 
MCMC 5 2000 39.7680 0.3433 
MI (MCMC) combined  39.7693 0.3436 

 
B. Application 
The National Health Interview Survey (NHIS), a health 

survey conducted by the National Center for Health Statistics 
(NCHS), Centers for Disease Control (CDC), is the principal 
source of information on the health of the civilian, non-
institutionalized, household population of the United States. 
NCHS-CDC has been releasing microdata files for public use 
on an annual basis since 1957 [27]. The focus of this 
application is on the 2001 sample adult core survey, where one 
adult from each household is randomly sub-sampled to receive 
a questionnaire. This questionnaire collects basic information 
on health status, health care services and behavior of adults in 
the population. The U.S. Census Bureau collects the data for 
the NHIS by personal interviews. The sample for the last 
quarter (September-December) of 2001 survey consisted of 
8673 adults for the sample adult component. The response rate 
for the sample adult component was 73.8%. 

The NHIS data are obtained through a complex sample 
design involving stratification, clustering, and multistage 
sampling designed to represent the civilian, non-
institutionalized population of the United States. The 
respondent weights are further modified by adjusting them to 
Census control totals for sex, age, and race/ethnicity 
population using post-stratification. The probability of 
selection for each person and adjustments for nonresponse and 
post-stratification are reflected in the sample weights. These 

weights are necessary for the analysis to yield correct 
estimates and variance estimation. If the data are not weighted, 
and standard statistical methods are used, then the estimators 
are overly biased and the results misleading. Variance 
estimation is suggested to be calculated using the Taylor series 
linearization method. For more information about the 
sampling design, the reader may refer to NCHS 2002. 

The NHIS contains demographic information in addition to 
information about whether the respondent had cardiovascular 
disease, emphysema, asthma, ulcers, cancer, diabetes, 
respiratory conditions, liver conditions, joint symptoms, pain. 
Information is also available on the mental health of 
respondent (sadness, nervousness, etc.), daily activities, social 
activities, smoking, and the ability to perform physical tasks. 
Information on body mass index (BMI = weight/height2) was 
also provided. In addition, sampling weights were included. A 
total of 73 variables were maintained in the dataset used in the 
imputation. 

The BMI was the variable of interest for the imputation 
procedure approximately 4.5% of the respondents had BMI 
missing in this dataset. Artificial neural network was used for 
imputation of the BMI missing values. A feed-forward 
network with 38 input nodes corresponding to the auxiliary 
variables in the dataset, a hidden layer with three nodes, and 
one node at the output layer corresponding to the output 
(imputed) variable was used for imputation. The number of 
nodes at the hidden layer was based on multiple trials to 
minimize the total network error. Results of the weighted BMI 
mean and standard error after ANN imputation were compared 
to the results from the weighted analysis using the complete 
cases only. Table II shows a comparison between the results 
from running a weighted analysis using the complex survey 
weights on each of the following: complete cases, imputed 
cases using ANN, and the full dataset after imputation. 
Imputation was performed using ANN and using a weighted 
mean. The weighted mean imputation was chosen for its 
simplicity. Multiple imputation using MCMC was not applied 
to this example due to the difficulties of its application and 
due to the need for a model based approach which is beyond 
the scope of this paper. The comparison results in Table II 
show that ANN yield an estimate with higher precision than 
the complete case analysis where the difference detected in the 
variance is estimated to be approximately eight percent. This 
difference in the variance is not trivial and requires further 
investigation in future research.  

 
TABLE II  

IMPUTATION RESULTS 
 Sample 

size 
Weighted 

Mean 
SE 

Complete cases 8282 26.92 0.071 
ANN Imputed cases  391 27.18 0.078 
Overall with ANN imputation  8673 26.93 0.065 
Overall with weighted mean 
imputation  

8673 26.92 0.068 
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VII. CONCLUSION 
Design-based inference accounts for the survey design and 

provides reliable inferences in large samples without requiring 
any modeling assumptions. Variance, standard error, and tests 
of significance based on the assumption of independent 
selections are misleading and not valid for complex samples. 
The mean may be an acceptable estimate, but the standard 
error is underestimated. Measures of variability depend on the 
sample design and are subject to design effects. It is important 
to incorporate the complex survey design during the 
imputation procedure and in the inference after imputation. 

Multiple imputation (MI) has the capability of providing a 
variance estimate. However, MI lacks the ability to account 
for the survey design in case of more complex survey designs 
such as NHIS. In the simulation study, the design was very 
simple which provided a design based analysis within each 
stratum. However, in the real-world data application, the 
design was more complex and in order to account for the 
design weights more research needs to be pursued.  Artificial 
neural network represents an alternative imputation technique 
that requires fewer resources and offers a variance that 
accounts for the imputation as well as the survey design. 
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