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Abstract—This paper deals with a high-order accurate Runge 

Kutta Discontinuous Galerkin (RKDG) method for the numerical 
solution of the wave equation, which is one of the simple case of a 
linear hyperbolic partial differential equation. Nodal DG method is 
used for a finite element space discretization in ‘x’ by discontinuous 
approximations. This method combines mainly two key ideas which 
are based on the finite volume and finite element methods. The 
physics of wave propagation being accounted for by means of 
Riemann problems and accuracy is obtained by means of high-order 
polynomial approximations within the elements. High order accurate 
Low Storage Explicit Runge Kutta (LSERK) method is used for 
temporal discretization in ‘t’ that allows the method to be non-
linearly stable regardless of its accuracy. The resulting RKDG 
methods are stable and high-order accurate. The ۺ૚ ,ۺ૛ and ۺஶ error 
norm analysis shows that the scheme is highly accurate and effective. 
Hence, the method is well suited to achieve high order accurate 
solution for the scalar wave equation and other hyperbolic equations. 

 
Keywords—Nodal Discontinuous Galerkin Method, RKDG, 

Scalar Wave Equation, LSERK 

I. INTRODUCTION 
HE Discontinuous Galerkin (DG) method was first 
introduced by Reed and Hill [1] as a technique to solve 
neutron transport problems. Subsequently, the same was 

analyzed by LeSaint and Raviart [2], Johnson and Pitkar�nta 
[3], Richter [4], and by Peterson [5]. All these were for the 
linear equations [6]. In a series of papers by Cockburn, Shu et 
al. [7]-[10], the RKDG method has been developed for solving 
nonlinear hyperbolic conservation laws and related equations, 
in which DG is used for spatial discretization with flux values 
at cell edges computed by either Riemann solvers or monotone 
flux functions, the Total Variation Bounded (TVB) limiter 
[10],[11] is employed to eliminate spurious oscillations and 
the Total Variation Diminishing (TVD) Runge-Kutta (RK) 
method [12] is used for the temporal discretization to ensure 
the stability of the numerical approach while simplifying the 
implementation. The RKDG method has enjoyed great success 
in solving the Euler equations for gas dynamics, compressible  
Navier-Stokes equations, viscous magneto hydrodynamic 
equations and many other equations, and also motivated many 
related new techniques [13], [18]. 
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The DG method has recently become more popular for the 
solution of systems of conservation laws to arbitrary order of 
accuracy [14], [18]. An intelligent combination of the Finite 
Element Method (FEM) and Finite Volume Method (FVM), 
utilizing a space of basis and test function that mimics the 
finite element method but satisfying the equation in a sense 
closer to the finite volume method, appears to offer many of 
the desired properties. This combination is exactly what leads 
to Discontinuous Galerkin Finite Element Method (DG-FEM) 
[15], [18]. The physics of wave propagation is, however, 
accounted for by solving the Riemann problems that arises 
from the discontinuous representation of the solution at 
element interfaces [14], [18].  

High order accurate Low-Storage Explicit Runge-Kutta 
(LSERK) method is used for temporal discretization. Special 
class of Runge-Kutta time discretization allows the method to 
be non-linearly stable regardless of its accuracy, with a finite 
element space discretization by discontinuous approximations 
that incorporates numerical fluxes and slope limiters coined 
during the remarkable development of the high resolution 
finite difference and finite volume schemes. The resulting 
RKDG methods are stable, high-order accurate and highly 
parallelizable schemes that can easily handle complicated 
geometries and boundary conditions [16]. 

RKDG is applied to linear convection equation as linear and 
nonlinear convection equations in numerical methods which 
have wide variety of applications. Referring [17] “Practical 
problems in which convection plays an important role arise in 
applications as diverse as meteorology, weather-forecasting, 
oceanography, gas dynamics, turbo machinery, turbulent 
flows, granular flows, oil recovery simulation, modeling of 
shallow waters, transport of contaminant in porous media, 
visco-elastic flows, semiconductor device simulation, 
magneto-hydrodynamics, and electro-magnetism, among 
many others. This is why devising robust, accurate and 
efficient methods for numerically solving these problems is of 
considerable importance.’’[16] 

II. MODEL EQUATION 
The model hyperbolic equation considered here is linear 

scalar wave equation and is given as 
 

ݑ߲
ݐ߲ ൅ 

߲݂ሺݑሻ
ݔ߲ ൌ א ݔ       ,   0 ሾܮ, ܴሿ ൌ  ሺ1ሻ                                  ߗ

 
Where ݂ሺݑሻ ൌ  ݑܽ
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III. DISCONTINUOUS GALERKIN FORMULATION 
The RKDG method realizes a fortunate compromise 

between the two numerical schemes i.e. FEM & FVM, by 
incorporating the ideas of numerical fluxes and slope limiters 
or filters into a finite element framework. RKDG is applied to 
the given problem. Stepwise methodology of the same is 
appended below:  
 

A. DG Spatial Discretization.  
 

First, we discretize (1) in space by using DG approach. Here 
we consider problem posed on the physical domain Ω with 
boundary ∂Ω and assume that this domain is well 
approximated by the computational domain  ߗ௛. This is space 
filling triangulation composed of a collection of K geometry–
conforming non-overlapping elements ܦ௞.  

 
Consider the linear scalar wave equation (1), we have 
 
ݑ߲
ݐ߲ ൅  

߲݂ሺݑሻ
ݔ߲ ൌ א ݔ       ,   0 ሾെ1,1ሿ,         ݐ ൐ 0                    ሺ2ሻ 

 
Where the flux is given as ݂ሺݑሻ ൌ ܽ ݀݊ܽ ݑܽ  ൐ 0, this is 

subjected to the appropriate initial and boundary conditions, 
given as under:  
 

Initial Conditions  
 

,ݔሺݑ 0ሻ ൌ ሻݔ଴ሺݑ ൌ ݃ሺݔሻ ൌ ߨሺ݊݅ݏ    ሻݔ
 
The solution of the (1) is of the form 
 

,ݔሺݑ ሻݐ ൌ ݔ଴ሺݑ െ ሻݐܽ ൌ ߨሺ݊݅ݏ ሺݔ െ   ሻሻݐܽ
 
Boundary conditions  
 

,ሺെ1ݑ ሻݐ ൌ ݃ሺݐሻ ൌ ߨሺ݊݅ݏ     ሻݐܽ
 
We approximate ߗ by K non-overlapping elements, 

א ݔ ௟ݔൣ
௞, ௥ݔ

௞൧ ൌ  ௞, as illustrated in Fig. 1. On each of theseܦ
elements we express the local solution as a polynomial of 
order ܰ ൌ ௣ܰ െ 1 

 

௛ݑ
௞ሺݔ, ሻݐ ൌ  ෍ ௛ݑ

௞

ே೛

௜ୀଵ

൫ݔ௜
௞, ൯݈௜ݐ

௞ሺݔሻ ൌ ෍ ௛௜ݑ
௞

ே೛

௜ୀଵ

ሺݐሻ݈௜
௞ሺݔሻ            ሺ3ሻ 

 
 

 
Fig. 1 Computational Domain 

 
In (2) we have applied nodal approach where we introduce 

௣ܰ ൌ  ܰ ൅ 1 local grid points, ݔ௜
௞ א  ௞ and express theܦ

polynomial through the associated interpolating Lagrange 
Polynomial ݈௜

௞ሺݔሻ. The global solution is assumed to be 
approximated by the piecewise N-th order polynomial 

approximation ݑ௛
 ሺݔ,  ሻ, defined as the direct sum of the Kݐ

local polynomial solution ݑ௛
௞ሺݔ,  .ሻ as in (4)ݐ

 

,ݔሺݑ ሻݐ ؄ ௛ݑ
 ሺݔ, ሻݐ ൌ

݇
ْ

݇ ൌ 1
௛ݑ

௞ሺݔ,  ሻ                                        ሺ4ሻݐ

Now we will form the Residual ܴ௛
 ሺݔ,   ሻ of (1)ݐ

 

ܴ௛ሺݔ, ሻݐ ൌ
௛ݑ߲

௞

ݐ߲
൅

߲ ௛݂
௞

ݔ߲
                                                                ሺ5ሻ 

 
Now we introduce a globally defined space ௛ܸ

  of test 
functions ׎௛. Whereas the locally defined space 

௛ܸ
௞

 
 ൌ ሼ݈݆݊ܽ݌ݏ

݇ሺݔሻሺ݇ܦሻሽ
௡ୀଵ
ே೛ . ௛ܸ 

 is the space of piecewise 
smooth functions defined on ߗ௛. Locally defined ׎௛ א   ௛ܸ

௞ of 
this space and is given as  
 

א ݔ ௞ܦ ׷  ௛׎ 
௞ሺݔሻ ൌ  ෍ ෡௡׎

௞

ே೛

௡ୀଵ
௝݈
௞ሺݔሻ 

The residual is to be orthogonal to all the test functions in 
space ௛ܸ

 and (5) results in the local statement as under  
 

න ܴ௛ሺݔ, ሻݐ
௫ೖశభ

௫ೖ
௝݈
௞ሺݔሻ݀ݔ ൌ 0                                                        ሺ6ሻ 

 
The semi discrete weak formulation employs a local 

discontinuous Galerkin formulation in spatial variables within 
each element K   is written as   

 

න ቆ
௛ݑ߲

௞

ݐ߲ ௝݈
௞ሺݔሻ െ ௛݂

௞ ݀ ௝݈
௞ሺݔሻ
ݔ݀ ቇ

 

஽ೖ
                                  ݔ݀

൅ න ො݊
 

డ஽ೖ
.   ݂

כ
௝݈
௞ሺݔሻ ݀ݔ ൌ 0                         ሺ7ሻ  

 
Where ߲ܦ௞ denotes the boundary of  ܦ௞ and nො  representing 

the local outward pointing normal. In this one-dimensional 
case, nො  is simply a scalar and takes value of -1 and +1 at the 
left and right interface, respectively. 

 
We replace integral using Gauss’ theorem to obtain local 

statement 
 

න ቆ
௛ݑ߲

௞

ݐ߲ ௝݈
௞ሺݔሻ െ ௛݂

௞ ݀ ௝݈
௞ሺݔሻ
ݔ݀ ቇ

 

஽ೖ
ݔ݀ ൌ െൣ ௛݂

௞
௝݈
௞൧

௫ೖ
௫ೖశభ

                ሺ8ሻ 

 
The main purpose of the right hand side is to connect the 

elements. Further, considering the local solution as 
approximation to the global solution yields the final local 
semi-discrete scheme as  

 

௞ܯ ௛ݑ݀
௞

ݐ݀
െ ሺܵ௞ሻ்

௛݂
௞  ൌ  െൣ ௛݂

௞݈௝
௞൧

௫ೖ
௫ೖశభ

                                        ሺ9ሻ 
 
In (9) ܯ௞ and ܵ௞ are the mass and stiffness matrices 

respectively. 
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Introducing affine mapping 
 

א ݔ ௞ܦ ׷ ሻݎሺݔ  ൌ
 ݔ

௞ ൅  ݔ
௞ାଵ

2
൅ 

 ݔ
௞ାଵെ ݔ 

௞

2
,ݎ  א ݎ ሾെ1,1ሿ 

 
Length of the element  ݄ 

௞ ൌ  ݔ 
௞ାଵ െ  ݔ

௞ 
 

௜௝ܯ
௞ ൌ  ൫݈௜

௞, ௝݈
௞൯

஽ೖ ൌ න ݈௜
௞ሺݔሻ ௝݈

௞ሺݔሻ݀ݔ
௫ೖశభ

௫ೖ
                            ሺ10ሻ 

௜௝ܯ  ൌ
݄௞

2
න ݈௜ሺݎሻ

ଵ

ିଵ

௝݈ሺݎሻ݀ݎ                                                       ሺ11ሻ 

 

௜ܵ௝
௞

 
ൌ න ݈௜

௞ሺݔሻ
 

஽ೖ

݀ ௝݈
௞ 

ݔ݀
 ሺ12ሻ                                                             ݔ݀

 

 ௜ܵ௝ ൌ න ݈௜ሺݎሻ
ଵ

ିଵ

 ݀ ௝݈
 

ݎ݀
 ሺ13ሻ                                                               ݎ݀ 

 
Similarly right hand side of (9), 

ሾ ௝݈
௞ ௛݂

௞ሿ௫ೖ
௫ೖశభ

ൌ  ሾ ௝݈
௞ ෍ ௛݂௜

௞

ே೛

௜ୀଵ

ሺݐሻ݈௜
௞ሺݔሻሿ௫ೖ

௫ೖశభ
 

 
Finally, (9) can be written in the matrix form as  
 

݄௞

2
ሾܯሿ௡ൈ௡

݀
ݐ݀

ۏ
ێ
ێ
௛ଵݑۍ

௞

௛ଶݑ
௞

ڭ
௛௡ݑ

௞ ے
ۑ
ۑ
ې

െ ሾܵሿ௡ൈ௡
்

ۏ
ێ
ێ
ۍ ௛݂ଵ

௞

௛݂ଶ
௞

ڭ
௛݂௡
௞ ے

ۑ
ۑ
ې

 

ൌ ௛݂
௞ାଵሻݔሺכ ቎

0
0
ڭ
1

቏ ൅ ௛݂
௞ሻݔሺכ ቎

1
ڭ
0
0

቏                 ሺ14ሻ 

Lax- Friedrich Flux: Since the numerical solution ݑ௛   is 
discontinuous between element interfaces therefore, we must 
replace flux  ݂

݂  by a numerical flux function כ
,  ௅ݑሺכ  ோ  ሻ. Weݑ

have used monotone Lax-Friedrich scheme to calculate the 
numerical flux 

 ݂
,  ௅ݑሺכ ோ  ሻݑ ൌ  

1
2

ሾሺ ௅݂
  ൅ ோ݂

 ሻ െ ோݑሺ ܥ  െ  ௅ሻሿ                  ሺ15ሻݑ
The constant in the Lax-Friedrich Flux is given as 
 

ܥ ൌ ݔܽ݉ ฬߣ ൬ ො݊ .
߲  ݂

 

ݑ߲
൰ฬ                                                            ሺ16ሻ  

 
Here, the concept of approximate Riemann solver or 

numerical flux is incorporated into the DG method.  
Gram-Schmidt orthogonalization: In order to obtain 

suitable, accurate and computationally stable solution, 
orthonormal basis are required. Therefore, we took the 
monomial basis, ݎ 

௡, and obtained orthonormal basis through 
 ܮ

ଶ-based Gram-Schmidt orthogonalization approach which 
results in orthonormal basis. Subsequently, Vandermode 
matrix was formed by using normalized polynomials and the 
same was then used to compute Mass and Stiffness matrices. 

 

B. LSERK Temporal Discretization 
 

Subsequent to space discretization, the resulting system of 
Ordinary Differential Equations (ODE) can be written in the 
form as: 

 

ܯ
௛ݑ݀

ݐ݀
ൌ ܴሺݑ௛,  ሻ                                                                 ሺ17ሻݐ

 
Where M denotes the mass matrix, ݑ௛ is the global vector of 

n degrees of freedom, and ܴሺݑ௛,  ሻ is the residual vector. Byݐ
using the following high-order accurate Low-Storage Explicit 
Runge–Kutta (LSERK) method, (17) is further discretized: 

 
1) Set ݌ሺ଴ሻ ൌ  ,௡ݑ
 
2) Compute the intermediate functions: 
 

א ݅ ሾ1, … ,5ሿ ׷ ቊ
݇ሺ௜ሻ ൌ ௜݇ሺ௜ିଵሻߙ ൅ ,ሺ௜ିଵሻ݌௛൫ܮ ݐ∆ ௡ݐ ൅ ൯ݐ∆௜ߛ

ሺ௜ሻ݌ ൌ ሺ௜ିଵሻ݌ ൅ ௜݇ሺ௜ሻߚ , 

 
3) Set ݑ௛

௜ାଵ ൌ  ሺହሻ݌
 

TABLE I   
COEFFICIENTS FOR THE LOW STORAGE FIVE STAGE 
FOURTH ORDER EXPLICIT RUNGE-KUTTA METHOD 

i ߙ௜ ߚ௜ ߛ௜ 
1 0.0000000000 0.1496590220 0.0000000000 
2 -0.4178904745 0.3792103130 0.1496590220 
3 -1.1921516950 0.8229550294 0.3704009574 
4 -1.6977846920 0.6994504559 0.6222557631 
5 -1.5141834440 0.1530572480 0.9582821307 

IV. NUMERICAL RESULTS  
The results obtained are depicted in the following figures: 

 

 
Fig. 2  Numerical Solution at N=1,K=10 and T =10 
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Fig. 3 Numerical Solution at N=1, K=20 and T =10 

 
 

 
Fig. 4 Numerical Solution at N=2, K=10 and T =10 

 

 
Fig. 5 Numerical Solution at N=4, K=30 and T =10 

 
Fig. 6 Exact Solution at N=4, K=30 and T =10 

 

 
Fig. 7 Numerical Solution at N=1, K=10 and T=10 

 

 
Fig. 8 Numerical Solution at N=2, K=10 and T=10 
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V. ERROR ESTIMATIONS 
Following error norms are used to measure the accuracy: 

 
 ૚ – errorۺ (1

ԡࢋԡࡸ૚ ൌ ෍|࢏ࢋ|
࢔

ୀ૚࢏

 

 ૛ – errorۺ  (2

ԡࢋԡࡸ૛ ൌ ൭෍|࢏ࢋ|૛
࢔

ୀ૚࢏

൱

૚
૛

 

 ஶ – errorۺ  (3
 

ԡࢋԡࡸಮ ൌ ࢏ࢋ|࢞ࢇ࢓
 |  , ૚ ൑ ࢏ ൑  ࢔

 
TABLE II                                                              

L ଵ, L ଶ AND L 
∞

 ERROR NORMS  WITH VARIABLE STEP SIZES, 

POLYNOMIAL ORDER (P) AND OBSERVED ORDER OF ACCURACY (O) 
૚࢖  

Step 
Size 

 ૚ O ۺ  ૛ O ࡸ  ஶ O ࡸ

h 4.14E‐01  ‐‐‐‐‐‐  1.26E‐01  ‐‐‐‐‐‐  5.95E‐02  ‐‐‐‐‐‐ 

2/3(h) 2.77E‐01  0.98  7.19E‐02  1.38  2.77E‐02  1.89 

1/2(h) 2.09E‐01  0.98  4.79E‐02  1.41  1.57E‐02  1.96 

2/5(h) 1.67E‐01  0.99  3.49E‐02  1.43  1.01E‐02  1.98 

1/3(h) 1.39E‐01  0.99  2.68E‐02  1.44  7.10E‐03  1.94 

૛࢖  
Step 
Size 

 ૚ O ۺ  ૛ O ࡸ  ஶ O ࡸ

h 3.25E‐02  ‐‐‐‐‐‐  9.40E‐03  ‐‐‐‐‐‐  3.94E‐03  ‐‐‐‐‐‐ 

2/3(h) 1.46E‐02  1.97  3.44E‐03  2.48  1.22E‐03  2.90 

1/2(h) 8.25E‐03  1.99  1.68E‐03  2.49  5.11E‐04  3.02 

2/5(h) 5.27E‐03  2.01  9.62E‐04  2.49  2.64E‐04  2.96 

1/3(h) 3.65E‐03  2.01  6.10E‐04  2.50  1.52E‐04  3.01 

૜࢖  
Step 
Size 

 ૚ O ۺ  ૛ O ࡸ  ஶ O ࡸ

h 1.68E‐03  ‐‐‐‐‐‐  4.29E‐04  ‐‐‐‐‐‐  1.84E‐04  ‐‐‐‐‐‐ 

2/3(h) 4.91E‐04  3.03  1.04E‐04  3.49  3.64E‐05  3.99 

1/2(h) 2.08E‐04  2.98  3.81E‐05  3.50  1.15E‐05  4.02 

2/5(h) 1.06E‐04  3.01  1.75E‐05  3.50  4.74E‐06  3.96 

1/3(h) 6.16E‐05  2.99  9.23E‐06  3.50  2.29E‐06  3.99 

૝࢖  

Step 
Size 

 ૚ O ۺ  ૛ O ࡸ  ஶ O ࡸ

h 5.95E‐05  ‐‐‐‐‐‐  1.50E‐05  ‐‐‐‐‐‐  6.19E‐06  ‐‐‐‐‐‐ 

2/3(h) 1.20E‐05  3.94  2.42E‐06  4.49  8.50E‐07  4.90 

1/2(h) 3.82E‐06  3.99  6.64E‐07  4.50  2.00E‐07  5.03 

2/5(h) 1.56E‐06  4.01  2.43E‐07  4.51  6.61E‐08  4.96 

1/3(h) 7.53E‐07  4.00  1.06E‐07  4.52  2.63E‐08  5.04 

 
 
 
 

VI. ERROR NORM ANALYSIS 
Following figures give the overall analysis of the numerical 

solution that varies by varying the step size and changing the 
polynomial order: 

 
Fig. 9 ۺ૚ error norm with different K and N 

 
Fig. 10 ۺ૛ error norm with different K and N 

 
Fig. 11  ۺஶ error norm with different K and N 
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VII. CONCLUSION 
The numerical solution of the linear convection equation, 

obtained by using RKDG is highly accurate and nearly the 
same as exact solution as shown in Fig. 7. Moreover, Figs. 2, 
3, 4 & 5 clearly depicts that the accuracy of the numerical 
solution is increasing by decreasing the step size (h) and 
increasing order of polynomial. Results reveal that the 
accuracy of the solution is increased by: 
 
1) Reducing the step size at fix order of polynomial 
2) Increasing the order of polynomial at fix step size 
3) Varying the both step size and order of polynomial that 

is by reducing the step size and increasing the order of 
polynomial.  

 
In order to obtain the observed order of accuracy (O), ۺ૚ ,ۺ૛ 

and ۺஶ error norm analysis is also performed and tabulated in 
Table-II. After evaluating the numerical results, it is found that 
RKDG method with hp combination is highly accurate and 
stable and hence well suited to obtain solution of 
convection/advection problems.  
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