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On Discretization of Second-order Derivatives in
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Abstract—Discretization of spatial derivatives is an important
issue in meshfree methods especially when the derivative terms
contain non-linear coefficients. In this paper, various methods used
for discretization of second-order spatial derivatives are investigated
in the context of Smoothed Particle Hydrodynamics. Three popular
forms (i.e. ”double summation”, ”second-order kernel derivation”,
and ”difference scheme”) are studied using one-dimensional unsteady
heat conduction equation. To assess these schemes, transient response
to a step function initial condition is considered. Due to parabolic
nature of the heat equation, one can expect smooth and monotone
solutions. It is shown, however in this paper, that regardless of
the type of kernel function used and the size of smoothing radius,
the double summation discretization form leads to non-physical
oscillations which persist in the solution. Also, results show that when
a second-order kernel derivative is used, a high-order kernel function
shall be employed in such a way that the distance of inflection
point from origin in the kernel function be less than the nearest
particle distance. Otherwise, solutions may exhibit oscillations near
discontinuities unlike the ”difference scheme” which unconditionally
produces monotone results.

Keywords—Heat conduction, Meshfree methods, Smoothed Parti-
cle Hydrodynamics (SPH), Second-order derivatives.

I. INTRODUCTION

S
ECOND-order spatial derivatives frequently arise in trans-

port equations representing thermal, mass, and momentum

diffusions. To solve these equations numerically, it is required

to discretize these terms on some spatial points. This process is

almost standard in numerical methods that are based on com-

putational grids, such as finite difference, finite volume, and

finite element methods. In some other computational methods,

called meshfree or meshless methods, since the computational

points are not connected through a grid, discretization of

spatial derivatives needs special treatments.

One of major successful meshfree methods in fluid dy-

namics is the Smoothed Particle Hydrodynamics (SPH) that

is based on the Lagrangian approach. In this method, each

computational point carries field variables (such as velocity,

pressure, temperature, and etc) and moves with the fluid in

time. SPH was first presented by Lucy [1] and Gingold and

Monaghan [2] simultaneously in 1977 to simulate astrophys-

ical problems. In 1982, Gingold and Monaghan [3] used it

for non-dissipative compressible flows. In 1994 Monaghan [4]

extended the SPH method to incompressible free surface flows

and it was successfully applied to low-Reynolds viscous flow

[5], [6] and other problems in fluid dynamics, heat transfer,
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and solid mechanics. For a concise review of the method, see

[7].

To evaluate first-order spatial derivative in SPH, a ker-

nel interpolation is used. For second-order derivatives, three

different schemes are frequently used; ”double summation

scheme”, ”second-order kernel derivation scheme”, and ”dif-

ference scheme”. In the following section, these schemes are

introduced and their usage, pros and cons are described. In the

next section, using one-dimensional unsteady heat conduction

equation, the ability of each scheme to handle a stiff initial

condition is tested. Through this study, capabilities of each

method is shown. Finally, the conclusions are summarized.

II. SPH FORMULATION

Smoothed Particle Hydrodynamics (SPH) is a meshfree

particle method. The word ”particle” does not mean a physical

mass, instead, it refers to a region in space. Field variables

are associated with these particles and at any other point in

space are found by averaging or smoothing the particle values

over the region of interest. This is fulfilled by an interpolation

or weight function which is often called the interpolation

kernel. In practice, it means summation of quantities over

neighbouring particles. For a typical field variable u at point

i, the SPH interpolation becomes

ui =
1

ψi

N
∑

j

ujW (ri − rj , h) (1)

in which W is the kernel function with the mutual particle

distance ri − rj and the smoothing radius h as its parameters.

The kernel function is a smoothed version of the Dirac delta

function. W is positive for |ri − rj | < h and vanishes outside

the radius h. Also ψ is particle number density defined as

ψi =

N
∑

j

W (ri − rj , h) (2)

and N is the number of neighbouring particles. In the follow-

ing, W (ri − rj, h) is summarized to Wij . Although eqn. (1)

looks different from the standard form [7], for our purpose,

they are the same.

The SPH discretization of the spatial derivative of u is

constructed using the derivative of kernel as

〈

∂u

∂xp

〉

i

=
1

ψi

N
∑

j

(uj − ui)
∂Wij

∂xp

(3)

This is called symmetric form and is widely used in literature

[7]. For second-order derivatives, there are different ways to
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reach the discretization form. Here three popular forms are

introduced.

A. Double summation scheme

Assuming that the value of u and its derivative have already

been calculated and stored for all particles, one can extend the

formulation for the first derivative (eqn. (3)) to
〈

∂

∂xq

(

K
∂u

∂xp

)〉

i

=

1

ψi

N
∑

j

(

〈

K
∂u

∂xp

〉

j

−
〈

K
∂u

∂xp

〉

i

)

∂Wij

∂xq

(4)

where K is a diffusion coefficient. This formulation is used

by Flebbe et al. [8] and Watkins et al. [9] to include

physical viscosity in astrophysical problems and by Jeong et

al. [10] for two-dimensional heat conduction problem. Also

[11], [12], [13], [14], [15] used it to handle viscous term

in low-Reynolds number incompressible flows. Since double

summation scheme uses the value of first derivatives, it is fairly

simple to handle Neumann-type boundary conditions and non-

homogeneous coefficients. The results show good behaviour

when the solution are smooth. For stiff problems, however,

it leads to non-physical oscillations [8], [9]. Although several

authors attended to reduce the oscillations in the results of this

scheme. It is shown in this paper that oscillations originate

from the nature of this scheme.

B. Second-order kernel derivation scheme

In this scheme, the second-order derivative of the kernel

function is used to calculate the second-order derivative of the

main quantity. The form that was used by Chaniotis et al [16]

with variable coefficients can be written as

〈

∂

∂xq

(

K
∂u

∂xp

)〉

i

=
Ki

ψi

N
∑

j

(uj − ui)
∂2Wij

∂xq∂xp

+

〈

∂K

∂xq

〉

i

〈

∂u

∂xp

〉

i

. (5)

where the first-order derivatives in the last term are evaluated

from eqn. (3). They used this scheme to simulate viscous and

heat conducting flows in one and two dimensions. Since the

kernel is a known function, this provides a convenient way to

find the second-order derivative of a variable.

C. Difference scheme

A popular scheme used in many problems involving second-

order derivatives, such as heat conduction and mass diffusion,

is the difference scheme [7]. The idea was first presented by

Cleary [17] to treat viscosity and heat conduction by a single

scheme. For a typical variable u this scheme is written as

〈

∂

∂xq

(

K
∂u

∂xp

)〉

i

=
1

ψi

N
∑

j

(

4
∆xq∆xp

∆r2
− δpq

)

Kij

(uj − ui)

∆r2
∇Wij · ∆r (6)

where Kij is an average of Ki and Kj . In eqn. (6), the

summation is computed on an estimate of first-order derivative

contribution of each neighbouring particle in the form of
(uj−ui)

∆r
. Since it is similar to finite difference method, we

named it as ”difference scheme”. Monaghan [7] presented a

proof in the context of kernel interpolation.

Unlike double summation scheme which needs value of the

first-order derivative at each point, the two latter schemes

evaluate the second-order derivative directly and seem to

be computationally more efficient. This is not, however, an

advantage at all. Many second-order derivative terms, involve

coefficients that are not constant and may be functions of either

the variable itself or its first-order derivative. A non-Newtonian

viscous flow is an example. For problems in which the first-

order derivative must be calculated anyway, the computational

overhead associated with the double summation scheme can be

ovrlooked. Furthermore, when the problem includes Neumann-

type boundary conditions, two latter schemes cannot be im-

plemented in a straightforward.

III. ANALYSIS AND RESULTS

In this section, a partial differential equation is considered

representing heat conduction in a 1D domain. To have a simple

form, all coefficients are taken as unity.

∂u

∂t
=

∂2u

∂x2
. (7)

A unit step function is considered as the initial condition for

u i.e.

u(x, t = 0) =

{

0 x < 0
1 x > 0

. (8)

The above heat conduction problem has an analytic solution

involving the Error function as shown in eqn. (9).

u(x, t) =
1

2
(1 + erf(

x√
4t

)). (9)

For the numerical solution, time marching can be done using

Euler’s explicit method. Considering a constant time-step ∆t
we have

ut+∆t
i = ut

i + ∆t

〈

∂2u

∂x2

〉t

i

. (10)

The analytic solution of eqn. (9) is monotone, i.e., u constantly

increases with x. To obtain such results from the numerical

method, in the first time-step t = 0, the calculated value of
∂2u
∂x2 should also be monotone.

Assuming equally distributed particles, the value of particle

number density becomes equal for all particles, say Ψ. In

general, we consider an arbitrary kernel function W and an

ordinary smoothing radius h = n∆x. Thus eqn. (3) reduces

to

Ψ

〈

∂u

∂x

〉

i

= [(ui+1 − ui) − (ui−1 − ui)] W
′(

1

n
)

+ [(ui+2 − ui) − (ui−2 − ui)] W
′(

2

n
)

+ · · · (11)

+
[

(ui+(n−1) − ui) − (ui−1 − ui)
]

W ′(
n − 1

n
)

+ [(ui+n − ui) − (ui−n − ui)] W
′(

n

n
)
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TABLE I
SECOND-ORDER DERIVATIVE VALUES OF u ESTIMATED BY DOUBLE SUMMATION SCHEME WITH h = 2∆x

x -3 -2 -1 0 1 2 3 4

Ψ2 ∂2u

∂x2 0 0 W ′(
1

2
)2 W ′(

1

2
)2 −W ′(

1

2
)2 -W ′(

1

2
)2 0 0

TABLE II
SECOND-ORDER DERIVATIVE VALUES OF u ESTIMATED BY DOUBLE SUMMATION SCHEME WITH h = 3∆x WHERE A = W′(

2

3
)2 , B = 2W ′(

1

3
)W ′(

2

3
),

AND C = W ′
(
1

3
)
2 .

x -3 -2 -1 0 1 2 3 4

Ψ2 ∂2u

∂x2 A A + B A + B + C A + C −A− C −A− B − C −A−B −A

in which W (R) stands for W (∆r, h) where R = ∆r
h

and

W ′(R) = dW (R)
dR

. Therefore, the last term vanishes because

W ′(1) = 0.

In the following, the performance of each of the three

aforementioned schemes for calculating the second derivative

of u is compared.

A. Double summation scheme

Assuming h = 2∆x the second derivative takes the values

shown in table I.

It is observed here that from x = −1 to x = 0 and from

x = 1 to x = 2 the second derivative of u is constant. This is

in contrast to the fact that the second-order derivative should

be monotone.

Taking h = 3∆x, there is even more deviation from the

trend of the analytic solution. As shown in table II the absolute

value of the second derivative first increases by a term of

2W ′(1
3 )W ′(2

3 ) and then decreases near the jump region.

By going on with h = n∆x where n = 4, 5, . . . we see that

terms with the same effect exist in the numerical solution.

These terms generate oscillations in the vicinity of the initial

discontinuity. These oscillations may decrease by taking longer

smoothing radii, but they cannot be totally eliminated. This

makes the double summation scheme unconditionally oscillat-

ing near sharp variations.

B. Second-order kernel derivation scheme

As implied earlier, when the coefficient is constant, it is

not necessary to calculate the first-order derivative in order

to achieve the second-order derivative of a quantity in this

scheme. For the current problem, table III shows values of the

second-order derivative for h = 3∆x.

By assuming that the second derivative of W is positive for

x ≥ 1
3 , we can see that ∂2u

∂x2 remains monotone in both sides

of x = 0. But some kernel functions are used for which the

second derivative changes sign somewhere in their smoothing

TABLE III
SECOND-ORDER DERIVATIVE VALUES OF u ESTIMATED BY

SECOND-ORDER KERNEL DERIVATION SCHEME WITH h = 3∆x WHERE

D = W ′′(
2

3
) AND E = W ′′(

1

3
).

x -3 -2 -1 0 1 2 3 4

Ψ
∂2u

∂x2 0 0 D D + E −D − E −D 0 0

TABLE IV
THE POSITION OF INFLECTION POINT FOR SOME POPULAR KERNEL

FUNCTIONS.

Kernel function Position of inflection point

Lucy [1] 1

3
h

Cubic spline [18] 1

3
h

Quartic spline [19] 0.28h

Quintic spline [19] 0.25h

radius. Using such a kernel, the same oscillations may happen

from x = 1 to x = 2 as was seen in the double summation

scheme. In other words, W ′′(1
3 ) becomes negative and as a

result ∂2u
∂x2 is no more monotone.

To avoid this non-physical oscillation, the kernel function

must be chosen in such a manner that the distance of the

inflection point from the origin becomes less than ∆x. Thus,

under specific conditions, the second-order kernel derivation

scheme can show oscillations. These can be eliminated by

using appropriate kernel functions. Increasing the number of

neighbouring particles (i.e. greater h and n) needs smoother

kernels that means more computational cost. To have an

overview, table IV shows some popular kernel functions and

the position of their inflection points as a ratio of h. For

example, maximum values of n (number of neighbouring

particles at one side of i) for quartic spline kernel is 3.6. This

means that if one uses h = 4∆x the result would no longer

be monotone.

C. Difference scheme

Table V shows the values obtained by the difference scheme,

eqn. (6). Since W is monotone, W ′ never changes sign. So

the value of ∂2u
∂x2 is always increasing. So we can conclude that

the difference scheme which is widely used in the literature

is unconditionally non-oscillating.

IV. CONCLUSIONS

In this paper, the process of discretizations of the second-

order spatial derivatives were reviewed in the context of

TABLE V
SECOND-ORDER DERIVATIVE VALUES OF u ESTIMATED BY DIFFERENCE

SCHEME WITH h = 3∆x WHERE F =
1

∆x
W ′(

2

3
) AND G =

2

∆x
W ′(

1

3
)

x -3 -2 -1 0 1 2 3 4

Ψ
∂2u

∂x2 0 0 F F + G −F −G −F 0 0
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the Smoothed Particle Hydrodynamics (SPH) method. Three

methods that are used in literature to discretize the second

derivative, namely the double summation scheme, the second-

order kernel derivation scheme, and the difference scheme

were studied.

By using the step function as an initial condition in a

simple one dimensional heat equation as a stiff problem, it

was concluded that:

• The double summation scheme presents non-physical

oscillations near the discontinuity. It was also shown that

the nature of the scheme causes such oscillations which

cannot be eliminated, though they can be reduced by

time-marching or larger smoothing radii.

• The second-order kernel derivation scheme also showed

oscillations for particular kernel functions. It was in-

ferred that to totally eliminate the non-physical oscil-

lation phenomena, the second derivative of the kernel

function should be positive at all neighbouring particles,

i.e. the inflection point of the kernel function should take

place before the nearest contributing neighbour. Thus for

greater smoothing lengths, there are fewer kernels which

do not show non-physical oscillations.

• The difference scheme does not have the difficulty of the

first two schemes and shows no non-physical oscillations

unconditionally.

The last two schemes can be less resource-consuming than

the double summation scheme, but they have some problems

in implementation of Neumann-type boundary conditions.

Finally, the double summation scheme, if fixed for the non-

physical oscillations of the second derivative, can be more

convenient for problems involving Neumann boundary con-

ditions. Different kernel functions may be used for the first

and second derivative calculation to circumvent the oscillation

problem.
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