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Abstract— In this paper we propose and examine an Adaptive 

Neuro-Fuzzy Inference System (ANFIS) in Smoothing Transition 
Autoregressive (STAR) modeling. Because STAR models follow 
fuzzy logic approach, in the non-linear part fuzzy rules can be 
incorporated or other training or computational methods can be 
applied as the error backpropagation algorithm instead to nonlinear 
squares. Furthermore, additional fuzzy membership functions can be 
examined, beside the logistic and exponential, like the triangle, 
Gaussian and Generalized Bell functions among others. We examine 
two macroeconomic variables of US economy, the inflation rate and 
the 6-monthly treasury bills interest rates.  
 

Keywords— Forecasting, Neuro-Fuzzy, Smoothing transition, 
Time-series 

I. INTRODUCTION 
MPIRICAL analysis in macroeconomics as well as in 
financial economics is largely based on times series. This 

approach allows the model builder to use statistical inference 
in constructing and testing equations that characterize 
relationships between economic variables. There are two 
kinds of econometric modelling in time-series analysis. The 
first one contains the linear models like Autoregressive (AR), 
Moving Average (MA) and Autoregressive Moving Average 
(ARMA) models among other. The second is consisted b non-
linear models, as the Threshold Autoregressive (TAR) 
models, Smoothing Transition Autoregressive (STAR) 
Models and Markov Switching Regime Autoregressive (MS-
AR) model. 

One criticism in STAR modeling is that the estimation 
procedure can be incomplete. To be specific the linear part is 
exactly like a linear Autoregressive (AR) process. But the 
non-linear part is actually a fuzzy database, where the values 
are the fuzzy membership grades of the inputs. So a first 
notice is that no rules and no linguistic terms are introduced 
and for inputs more than one the AND-OR operators are not 
considered. The second criticism is that the nonlinear squares 
with Levenberg-Marquardt algorithm might not be 
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appropriate. Therefore taking the fuzzy rules and other 
optimization procedures like linear programming or neuro-
fuzzy approach with error backpropagation algorithm can be 
more efficient optimization techniques. One of the very few 
studies which approximated that is the study of Aznarte et al. 
[1], who have proved that the smooth transition autoregressive 
(STAR) model is functionally equivalent to a restricted fuzzy 
rule-based system,  implying that the tools and theoretical 
results developed in each one of the two areas can be applied 
to the other area as well. 

The purpose of this paper is to propose a neuro-fuzzy 
approach in STAR modeling. Fuzzy logic is an effective rule-
based modelling in soft computing, that not only tolerates 
imprecise information, but also makes a framework of 
approximate reasoning. The disadvantage of fuzzy logic is the 
lack of self learning capability. On the other hand neural 
networks are capable to describe non-linearities, but are 
considered as black-boxes. The combination of fuzzy logic 
and neural network can overcome the disadvantages of the 
above approaches. In ANFIS, is combined both the learning 
capabilities of a neural network and reasoning capabilities of 
fuzzy logic in order to give enhanced prediction capabilities. 

ANFIS has been used by many researchers to forecast 
various time Series comparing with Autoregressive (AR) and 
Autoregressive Moving Average (ARMA) models finding 
superior results in favour of ANFIS [2]-[4]. 

In section II we present the methodology of STAR models 
and neuro-fuzzy approach used in this study, while in section 
III and IV we present the data and the empirical results.  
 

. 
II. METHODOLOGY 

A. Smoothing Transition Autoregressive Models 
 
The smoothing transition auto-regressive (STAR) model 

was introduced and developed by Chan and Tong [5] and is 
defined as:   

tdtttt uyFwwy ++++= − )c,;()(' '
220110 γππππ     (1) 

 
,where ut ~ (0,σ2), π10  and π20  are the intercepts in the middle 
(linear) and outer (nonlinear) regime respectively,  wt = (yt-1…. 
yt-j) is the vector of the explanatory variables consisting of the 

Application of Adaptive Neuro-Fuzzy 
Inference System in Smoothing Transition 

Autoregressive Models 
 

Ε. Giovanis 

E



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

450

 

 

dependent variable with j=1…p lags, yt-d is the transition 
variable, parameter c is the threshold giving the location of the 
transition function and parameter γ is the slope of the 
transition function. The STAR model estimation is consisted 
by three steps according to Teräsvirta [6].  
 

a) The specification of the autoregressive (AR) process of 
j=1,… p. One approach is to estimate AR models of different 
order and the maximum value of j can be chosen based on the 
Akaike (AIC) information criterion Besides this approach, j 
value can be selected by estimating the auxiliary regression 
(2) for various values of j=1,…p, and choose that value for 
which the P-value is the minimum, which is the process we 
follow.                                                                          

b) The second step is testing linearity for different values of 
delay parameter d. We estimate the following auxiliary 
regression:  
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The null hypothesis of linearity is H0: β2j =  β3j = β4j =0.  In 
order to specify the parameter d the estimation of (2) is carried 
out for a wide range of values 1≤d≤D and we choose d=1,…,5 
In the cases where linearity is rejected for more than one 
values of d, then d is chosen by the minimum value of p(d), 
where p(d) is the P-value of the linearity test. We examine for 
j=1,…, 5 and we choose those values of j and d , where the P-
value is minimized.  

 
c) The third and last step is the specification of STAR 

model. We test the following hypotheses by  [6]-[7] 
 

pjH j ,...,1,0: 404 ==β                                                 (3)                                                      

pjH jj ,...,1,0|0: 4303 === ββ                                (4)     

pjH jjj ,...,1,0|0: 43202 ==== βββ                    (5) 

If we reject the (3) hypothesis then we choose LSTAR 
model. If (3) is accepted and (4) is rejected then ESTAR 
model is selected. Finally accepting (3) and (4) and rejecting 
(5) we choose LSTAR model. We present the results of the 
STAR model chosen based on test hypotheses, but we 
examine both LSTAR and ESTAR models, to examine the 
forecasting performance and to show that the difference 
between their predicting performances can be small.  

We shall consider two transition functions, the logistic and 
the exponential [7], which are defined by (6) and (7) 
respectively. 

0,)])(exp[1()( 1 >−−+= −
−− γγ cyyF dtdt                          (6) 

   

0),)(exp(1)( 2 >−−−= −− γγ cyyF dtdt                          (7) 
 

We apply a grid search procedure for equation (1) with non 
linear squares and Levenberg-Marquardt algorithm.  
 

B. Unit Root and Stationary Tests 
 
It is possible that the variables are not stationary in the 

levels, but probably are in the first or second differences. To 
be specific we confirm this assumption by applying 
Augmented Dickey-Fuller-ADF [8] and KPSS stationary test 
[9]. The ADF test is defined from the following relation: 

tptpttt tyyyy εβφφμ ++Δ++Δ++=Δ −−− ....γ 111  (8) 

, where yt is the variable we examine each time. In the right 
hand of (8) the lags of the dependent variable are added with 
order of lags equal with p. Additionally, regression (8) 
includes the constant or drift μ and trend parameter β. The 
disturbance term is defined as εt. In the next step we test the 
hypotheses: 
 

H0: φ=1, β=0 =>  yt ~ Ι(0) with drift 

against the alternative 

H1: |φ|<1         =>  yt ~ Ι(1) with deterministic time trend 

 
The KPSS statistic is then defined as: 
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, where T is the number of sample and )(
2^

pσ is the long-run 
variance of εt and can be constructed from the residuals εt as: 
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, where p is the truncation lag, wj( p) is an optional weighting 
function that corresponds to the choice of a special window 
[10]. Under the null hypothesis of level stationary,  
 

dxrVKPSS 21

0 1 )(∫→                                                       (11) 

 
, where V1(x) is a standard Brownian bridge: V1(r) = B(r) – 
rB(1) and B(r) is a Brownian motion (Wiener process) on r ∈ 
[0, 1]. Because relation (11) is refereed in testing only on the 
intercept and not in the trend and as we are testing with both 
intercept and trend we have the second-level Brownian bridge 
V2(x) and it is: 

dxrVKPSS 21

0 2 )(∫→                                                     (12) 
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, where  V2(x) is given by: 
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C. Adaptive Neuro-Fuzzy Inference System (ANFIS) 
 
Jang [11] and Jang and Sun [12] introduced the adaptive 

neuro-fuzzy inference system (ANFIS). This system makes 
use of a hybrid learning rule to optimize the fuzzy system 
parameters of a first order Sugeno system. An example of a 
two input with two rules first order Sugeno system can be 
graphically represented by figure 1.  

 
 

 
 
Fig. 1. Example of ANFIS architecture for a two-input, two-rule first-
order Sugeno model 
 
 

The ANFIS architecture is consisted of two trainable 
parameter sets, the antecedent membership function 
parameters and the polynomial parameters p,q,r, also called 
the consequent parameters. The ANFIS training paradigm 
uses a gradient descent algorithm to optimize the antecedent 
parameters and a least squares algorithm to solve for the 
consequent parameters. Because it uses two very different 
algorithms to reduce the error, the training rule is called a 
hybrid. The consequent parameters are updated first using a 
least squares algorithm and the antecedent parameters are then 
updated by backpropagating the errors that still exist. We 
define three linguistic terms {low, medium, high}. In the case 
where we accept that there is an AR(1) process in STAR 
models then we have one input; the dependent variable with 
one lag. In that case we do not take the AND-OR operators. 
Besides that we show also an example with two inputs.  

The rules in the case of one input and with three linguistic 
terms are: 
 
IF yt-1  is  low         THEN f1 = p1x + r1 
 
IF yt-1  is  medium   THEN f2 = p2x + r2 
 
IF yt-1  is  high         THEN f3 = p3x + r3 

 

 , where yt-1 is the dependent variable with one lag. In that 
case the steps for ANFIS will be: 
 

)(
i

1 xO Ai μ=                                                                   (14) 

The adjustable parameters that determine the positions and 
shapes of these node functions are referred to as the premise 
parameters. In layer 2 we have:  
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Each node output represents the firing strength of the 
reasoning rule. In layer 3, each of these firing strengths of the 
rules is compared with the sum of all the firing strengths. 
Therefore, the normalized firing strengths are computed in 
this layer as: 
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Layer 4 implements the Sugeno-type inference system, i.e., 
a linear combination of the input variables of ANFIS, x1,x2, 
...xp plus a constant term, r1,r2, ...rp, form the output.  

 

)(4
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, where parameters p1 ,p2, ...,pi and r1,r2, ...,ri, in this layer are 
referred to as the consequent parameters. In layer 5 we take:  
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In the last layer the consequent parameters can be solved 
for using a least square algorithm as: 
 

θ⋅= XY                                                                  (19) 
 
, where X is the matrix  
 

][ 332211 wxwwxwwxwX +++++=                  (20) 
 
,where x is the matrix of inputs for the nonlinear part of the 
STAR models with fuzzy rules. The next step is to take also 
into the process the autoregressive linear part and the matrix 
of (20) becomes: 
  

]....[ 33111 wxwwxwytX ΄t ++++++= −            (21) 
 
,where t is taken for the constant estimation of the 
autoregressive linear part of STAR models and it is a vector of 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:4, No:4, 2010

452

 

 

ones, while yt-1 is the dependent variable with one lag for the 
linear part. In (19) θ is a vector of unknown parameters as: 
 

[ ]Trqprqprqp 9992221111110 ,,,....,,,,,,,,ππθ =     (22) 
 
,where p,q and r are the consequent parameters for the 
nonlinear pat of STAR models, which are the usual 
parameters in neuro-fuzzy procedure, while also we have 
some additional parameters, π10, π11, which are the estimated 
coefficients of the linear part and T indicates the transpose.  
Because the normal least square method leads to singular 
inverted matrix we use the singular value decomposition 
(SVD) with Moore-Penrose pseudoinverse of matrix [13]-
[15]. So we observe that we have added some extra 
parameters in the neuro-fuzzy approach following the STAR 
modelling. In the case of one input and three linguistic terms 
each rule has one parameters and plus the constant there will 
be 6 parameters for the nonlinear part of STAR models, while 
there will be two parameters, the constant and the AR(1) for 
the autoregressive linear part. Similarly, for two inputs with 
three linguistic terms, which means that we have an AR(2) 
process, the rules are 
 
 
IF yt-1 is low AND  yt-2  is low THEN  f1=p1x1 + q1x2 + r1   
 
IF yt-1 is low AND yt-2  is medium THEN  f2=p2x1 + q2x2 + r2   
 
IF yt-1 is low OR  yt-2  is high THEN  f3=p3x1 + q3x2 + r3   
 
IF yt-1 is medium AND  yt-2 is low THEN  f4=p4x1 + q4x2 + r4   
 
IF yt-1 is medium AND  yt-2 is medium THEN  f5=p5x1 + q5x2 + 
r5   
 
IF yt-1 is medium AND  yt-2 is high THEN  f6=p6x1 + q6x2 + r6   
 
IF yt-1 is high AND  yt-2 is low THEN  f7=p7x1 + q7x2 + r7   
 
IF yt-1 is high AND  yt-2 is medium THEN  f8=p8x1 + q8x2 + r8   
 
IF yt-1 is high AND  yt-2 is high THEN  f9=p9x1 + q9x2 + r9   
 
 Then the steps for ANFIS computation will be:  
 
In the first layer we generate the membership grades 
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, where x1 and x2 are the inputs (the lagged dependent variable 
of lag order one and two).  In layer 2 we generate the firing 
strengths or weights: 
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In layer 2 we use the AND relation, so we take the product 
operator.  In layer 3 we normalize the firing strengths. 
Because we have nine rules will be: 
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, where i is for i=1,2…,9. In layer 4 we calculate rule outputs 
based on the consequent parameters. 
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Layer 5 remains the same, while X input matrix will be: 
 

]....[ 991121 wxwwxwyytX ΄tt +++++++= −−   (27) 
 

, where the inputs are defined as previously, while yt-2 is the 
dependent variable with two lags and vector θ will be: 
 

[ ]Trqprqprqp 999222111121110 ,,,....,,,,,,,,, πππθ = (28) 
 

For the first layer and (14), (23) we use the logistic and 
exponential membership functions as we have defined them in 
(6)-(7). In order to find the optimized antecedent parameters 
we use backpropagation algorithm [16]-[18]. The parameter 
update for example of the parameter c in (6)-(7) is:  
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, where ηx is the learning rate for the parameter cij, p is the 
number of patterns and E is the error functions which is 
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2
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, where yt is the target-actual and y is ANFIS output variable. 
The chain rule in order to calculate the derivatives used to 
update the membership function parameters are  
: 
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The partial derivatives for two inputs are derived below: 
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For the output is 
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, hence it will be                                                                                     
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, hence it will be   
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, and it will be   
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The last partial derivative, 
ij

ij

c∂

∂μ , depends on the membership 

function we examine. The update equations for antecedent cij, 
and γij parameters of exponential function are: 
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The update equations for antecedent cij, and γij parameters of 
logistic function are: 
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The next step is to take the initial values for center and 

bases parameters, or c and γ parameters. To be specific we 
define the samples, for example for one input, such as in 
Table I.  

 
TABLE I 

SAMPLES FOR INITIAL VALUES 
Low Medium High 

If yt-1>min(yt-1) and  

if yt-1<mean(yt-1) 

If yt-1>mean(yt-1)  

and if yt-1<Q3(yt-1) 

If yt-1>Q3(yt-1)  

and if yt-1<max(yt-1) 

 
, where yt-1 is defined as previously, min, mean, Q3 and max 
denote respectively, the minimum, the average, the third 
quartile and the maximum values of inputs. Based on these 
values we take the average of each sample in each linguistic 
term as the initial value for parameter c. For parameter γ we 
have two options. The first one is to take the standard 
deviations of the samples of Table I, while the second option 
is to take as initial values 1.5 in all cases. We follow the 
second option. The learning rates for all antecedent 
parameters are set up at 0.5 and the number of maximum 
epochs at 100.  

The forecasting performance of STAR models in both in-
sample and out-of- sample periods is counted based on the 
Mean Absolute Error (MAE) and Root Mean Squared Error 
(RMSE) described respectively by (43) and (44).  
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III. DATA 
 
We examine two macroeconomic variables of US economy, 

the inflation rate and the six monthly treasury bills interest 
rates. The data we use in our analysis are in monthly 
frequency. We examine the period 1950-2009. The period 
1950 to 2005 is used for the in-sample period and the period 
2006-2009, which is a period 48 observations, is left for the 
out-of-sample forecasting period.  

 
 

IV. EMPIRICAL RESULTS 
 
In Table II we present the results of ADF and KPSS tests,  

The results are mixed. For gross domestic product we reject 
unit root in α=0.05 and 0.10 based on ADF test, while we 
accept stationarity only in α=0.01 based on KPSS test. For 
inflation rates we reject unit root based on ADF statistic in all 
statistical significance levels, but we reject stationarity 
hypothesis based on KPSS test. We accept that treasury bills 
interest rates are stationary in first differences, I(1), based on 
both ADF and KPSS tests.  

In Table III we report the linearity tests for the two 
macroeconomic variables we examine. The value of lag order 
p is chosen based on the minimum p-value and in the cases 
where there are more than one zero p-values lag order p is 
chosen based on the highest F-statistic. In all cases we found 
an autoregressive process AR(1), p=1. Based on this process 
we choose the lag order of delay 1 and 2 respectively for 
inflation and interest rates.  

 
TABLE II 

ADF AND KPSS TESTS  
Indices ADF-statistic KPSS-statistic 

Inflation Rate 
Levels 

-5.040 0.3759 

Inflation Rate  
First differences 

 0.1102 

Treasury Bills 
Levels 

-2.089 0.5547 

Treasury Bills 
First differences 

-8.461 0.0335 

Critical values  
for ADF1 

-4.086 
-3.471 
-3.162 

α=0.01 
α=0.01 
α=0.10 

Critical values  
for KPSS2 

0.216 
0.146 
0.119 

α=0.01 
α=0.01 
α=0.10 

     1 MacKinnon [19], 2 Kwiatkowski et al.,[9]  
 

TABLE III 
LINEARITY TESTS FOR INFLATION AND INTEREST RATES 

Indices Inflation Rate Treasury 

Bills 

p 1 1 

d=1 24.820 
(0.000) 

7.503  
(0.0001) 

d=2 13.458 
(0.000) 

17.551 
 (0.000) 

d=3 3.470 
(0.0160) 

5.941  
(0.0001) 

d=4 6.278 
(0.0003) 

3.069 
 (0.0274) 

d=5 16.085 
(0.000) 

5.228  
(0.0014) 

                 *p-values in parenthese 

 

In Table IV the estimated results for inflation and interest 
rates respectively with nonlinear squares and Levenberg-
Marquardt algorithm, are reported. We observe, in the case of 
the inflation rate, that the fuzzy membership function 
parameters, c and γ are statistically significant. On the other 
hand for Treasury bill interest rates, parameter γ is statistically 
insignificant in the case of logistic function, while parameter c 
is significant in both cases.  

In Table V we presents the estimated results of Neuro-
Fuzzy STAR models for inflation and interest rates with one 
input, the dependent variable with one lag, while in Table VI 
we present the Neuro-Fuzzy STAR results with exponential 
membership function for treasury bill interest rates and with 
two inputs as for example. Similarly the estimations with 
logistic functions as well as for inflation rate can be derived.  

For example we examine the six-monthly treasure bills 
interest rates with exponential neuro-fuzzy and we have the 
rules: 

 
IF yt-1 is high or expansive THEN f1 = 0.1180 yt-1 + 0.4961  
(γ1 = 1.500 and c1=5.500)  

 
 

IF yt-1 is medium THEN f2 = 0.2611 yt-1 – 0.2604  
(γ2 = 3.4998 and c2=4.4671)  

 
 
IF yt-1 is low or recessive THEN f3 = 0.3604 yt-1 – 0.2570  
(γ3 = 1.500 and c3=5.500)  

 
In any case is  

 
 

yt = -0.0213 + 0.7395 yt-1 
 
, which is nothing else than the linear autoregressive part of 
the ANFIS-STAR model. A similar derivation of rules and 
estimations can be made for the other estimations of Tables V 
and VI 
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TABLE IV 
NONLINEAR SQUARES ESTIMATIONS FOR INFLATION RATE 

TREASURY AND BILLS INTEREST RATES 
 Linear Part Non-Linear Part 

Exponential 
STAR 

π10 π11 π20 π21 

Inflation  
rate 

0.0509 
(1.018) 

0.5971 
(3.639)* 

-0.1005 
(-0.378) 

-2.0167 
(-4.506)* 

 γ c   
 2.9327 

(1.997)** 
0.1163 

(1.671)*** 
  

Logistic 
STAR 

π10 π11 π20 π21 

Inflation rate 0.2611 
(2.173)** 

-0.2701 
(-0.639) 

-0.3606 
(-2.220)** 

0.0317 
(0.067) 

 γ c   
 4.875 

(2.034)** 
-0.0696 

(-2.723)* 
  

Exponential 
STAR 

π10 π11 π20 π21 

Treasury 
Bills 

0.0424 
(0.602) 

0.7752 
(1.691)*** 

-0.0506 
(-0.658) 

-1.1159 
(-2.111)** 

 γ c   
 3.335 

(1.761)*** 
0.601 

(15.916)* 
  

Logistic 
STAR 

π10 π11 π20 π21 

Treasury 
Bills 

0.0140 
(0.683) 

0.0022 
(0.017) 

-0.0489 
(-1.226) 

-0.5597 
(-2.548)** 

 γ c   
 4.206 

(0.022) 
0.638 

(3.682)* 
  

*,**,*** denotes significance in 0.01, 0.05 and 0.10 respectively, t-statistics 
in parentheses 

 
In Table VI parameters π10, π11, π12 are the estimated 

autoregressive coefficients of linear part, while parameters pi, 
qi and ri for i=1,2..9, are the consequent parameters or the 
estimated coefficients of the nonlinear part of exponential 
STAR model. Parameters c1, c2 and c3 are the center 
parameters of exponential function for linguistic terms low, 
medium and high respectively and for the first input, while 
parameters c4, c5 and c6 are the respective centers for the 
second input. Similarly we have parameters γ.  

In Table VII the Root Mean Squared Error (RMSE) and 
Mean Absolute Error (MAE) are reported. The values for 
ANFIS are refereed in one input and the estimations of Table 
V, while the forecasts with two inputs are very close. The 
results support Neuro-Fuzzy STAR. More specifically Neuro-
Fuzzy STAR outperform significant the conventional STAR 
econometric modelling based on RMSE and MAE values in 
both in-sample and out-of-sample periods. Especially in the 
out-of-sample or testing period, which is of greater interest, 
the RMSE and MAE values are significant lower. This 
indicates that the ANFIS technology is more appropriate for 
STAR modelling. This can be explained by the fact that 
conventional STAR models do not consider linguistic terms, 
fuzzy rules and operators, as also the combination of fuzzy 
logic and neural networks with error backpropagation 
algorithm can be superior to the nonlinear squares estimation 
procedure. 

TABLE V 

NEURO-FUZZY ESTIMATIONS FOR INFLATION RATE  
TREASURY AND BILLS INTEREST RATES WITH ONE INPUT 

 Linear Part Non-Linear Fuzzy Part 
Exponential 

Neuro-
Fuzzy STAR 

π10 π11 p1 p2 

Inflation  
rate 

0.1259 0.5125 1.5429  0.1308 

 p3 r1 r2 r3 
 -0.1308 

 
1.0305 1.834 -1.823 

 c1 c2 c3 

 6.800 3.3080 1.2438  
 γ1 γ2 γ3  
 1.6676 2.5533 2.2386  

Logistic 
Neuro-

Fuzzy STAR 

π10 π11 p1 p2 

Inflation 
rate 

0.5990 -0.8477 1.4136 1.7482 

 p3 r1 r2 r3 
 -1.8944 

 
0.5099 0.4012 -0.4601 

 c1 c2 c3 

 0.3566 0.0284 0.0002  
 γ1 γ2 γ3  
 1.500 1.5128 1.5072  

Exponential 
Neuro-

Fuzzy STAR 

π10 π11 p1 p2 

Treasury 
Bills 

-0.0213 0.7395 0.1180 0.2611 

 p3 r1 r2 r3 
 0.3604 

 
0.4961 -0.2604 -0.2570 

 c1 c2 c3 

 5.500 4.4671 1.6375  
 γ1 γ2 γ3  
 1.500 3.4998 1.5853  

Logistic 
Neuro-

Fuzzy STAR 

π10 π11 p1 p2 

Treasury 
Bills 

0.5510 0.7421 -0.1139 0.6228 

 p3 r1 r2 r3 
 0.2331 

 
1.7483 -0.4788 -0.7185 

 c1 c2 c3 

 5.500 1.3802 -9.9824  
 γ1 γ2 γ3  
 1.500 1.2318 -0.1619  

 
 
 

TABLE VI 
NEURO-FUZZY EXPONENTIAL-STAR ESTIMATIONS FOR  

TREASURY AND BILLS INTEREST RATES WITH TWO INPUTS 
Linear Part Non-Linear Fuzzy Part 

π10 π11 π12 p1

0.8656 -0.7134 -0.5307  -1.4814 
p2 p3 p4 p5 

0.9164 1.1928 5.2625 -0.2805 
p6 p7 p8 p9

-0.4900 0.4561 0.5388 -0.3797 
q1 q2 q3 q4 

0.0968 -1.5012 1.8325 2.4020 
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q5 q6 q7 q8 
-3.0680 -5.8487 1.4488 -0.9066 

q9 r1 r2 r3 
-1.2020 0.1394 0.8174 1.1808 

r4 r5 r6 r7 

0.1103 0.1242 -0.1799 -0.1213 
r8 r9 c1 c2 

0.5025 -0.6214 -1.2691 0.2527 
c3 c4 c5 c6 

-0.6663 0.9921 2.2248 -0.5928 
γ1 γ2 γ3 γ4 

1.7305 1.8732 0.8733 1.7466 
γ5 γ6  

2.1519 0.7738   
 

 
 

TABLE VII 
RMSE AMD MAE VALUES 

In sample period 
 Inflation rate Interest rates 
 RMSE MAE RMSE MAE 

Exponential 0.2719 0.2057 0.1641 0.1153 
Logistic 0.2696 0.1981 0.1643 0.1119 

Neuro-Fuzzy  
Exponential 

0.2255 0.1763 0.1440 0.1021 

Neuro-Fuzzy  
Logistic 

0.2040 0.1430 0.1480 0.1074 

Out-of-sample period 
 Inflation rate Interest rates 
 RMSE MAE RMSE MAE 

Exponential 0.2791 0.2240 0.3249 0.2741 
Logistic 0.2857 0.2363 0.2929 0.2333 

Neuro-Fuzzy  
Exponential 

0.2619 0.2105 0.2263 0.1553 

Neuro-Fuzzy  
Logistic 

0.2699 0.2152 0.2161 0.1432 

 
 

V. CONCLUSIONS 
 
In this paper we proposed a neuro-fuzzy approach with 

error backpropagation optimization for STAR modeling. The 
reason we followed this procedure is because the nonlinear 
part of STAR models accounts for the membership grades of 
inputs but no rules or linguistic terms are included in the 
conventional econometric modeling. More over additional 
membership function can be proposed, as the triangular, 
trapezoidal, or Generalized Bell functions among others. 
Finally, other optimization methods can be applied in order to 
find the fuzzy parameters as the genetic algorithms instead to 
error backpropagation we have used in this study. 
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