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   Abstract—Prior research evidenced that unimodal biometric 
systems have several tradeoffs like noisy data, intra-class variations, 
restricted degrees of freedom, non-universality, spoof attacks, and 
unacceptable error rates. In order for the biometric system to be more 
secure and to provide high performance accuracy, more than one 
form of biometrics are required. Hence, the need arise for multimodal 
biometrics using combinations of different biometric modalities. This 
paper introduces a multimodal biometric system (MMBS) based on 
fusion of whole dorsal hand geometry and fingerprints that acquires 
right and left (Rt/Lt) near-infra-red (NIR) dorsal hand geometry (HG) 
shape and (Rt/Lt) index and ring fingerprints (FP). Database of 100 
volunteers were acquired using the designed prototype. The acquired 
images were found to have good quality for all features and patterns 
extraction to all modalities. HG features based on the hand shape 
anatomical landmarks were extracted. Robust and fast algorithms for 
FP minutia points feature extraction and matching were used. Feature 
vectors that belong to similar biometric traits were fused using 
feature fusion methodologies. Scores obtained from different 
biometric trait matchers were fused using the Min-Max 
transformation-based score fusion technique. Final normalized scores 
were merged using the sum of scores method to obtain a single 
decision about the personal identity based on multiple independent 
sources. High individuality of the fused traits and user acceptability 
of the designed system along with its experimental high performance 
biometric measures showed that this MMBS can be considered for 
med-high security levels biometric identification purposes. 

   Keywords—Unimodal, Multi-Modal, Biometric System, NIR 
Imaging, Dorsal Hand Geometry, Fingerprint, Whole Hands, Feature 
Extraction, Feature Fusion, Score Fusion 

I. INTRODUCTION 

IOMETRIC devices automate the personal recognition    
process by association/disassociation of an individual 

with a previously determined identity/identities. Human 
biometrics have high uniqueness of physical characteristics 
such as fingerprints [1]. Biometric devices measure and record 
these characteristics for automated comparison, identification, 
and verification purposes. 
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Biometric techniques fall into two categories: physiological 
and behavioral. Common physiological biometrics are face, 
eye (retina or iris), finger (fingertip, thumb, finger length or 
pattern), palm (print or topography), hand shape geometry, 
hand vein patterns, and wrist veins. Common behavioral 
biometrics include voiceprints, handwritten signatures and 
keystroke/signature dynamics [2].  

Traditionally, biometric systems that use only one biometric 
trait (unimodal biometric systems) were very common. 
Almost a decade ago, many drawbacks appeared in these 
unimodal systems like: Noise in the acquired features, Intra-
class variations, Inter-class similarities [3], Non-universality, 
and Spoof attacks [4]. Recently, some MMBSs were reviewed 
and successfully developed to significantly overcome some of 
these problems [2], [4]-[32]. These systems were proposed to 
fulfill the need for better recognition accuracy by 
consolidating more than one independent source of evidences 
to recognize identities. Moreover, the MMBS may ensure that 
a living person is there at the gate by asking the person to 
enter a random sequence of his/her biometric traits [4]. 
Finally, biometric system design is all about 2 major 
characteristics, the first is the individuality of the patterns used 
by the system and the second is the usability and user 
acceptability by persons, by society, or by culture.  

A. Prior Related Work 

Ross et al. [4] discussed various scenarios that can be 
possible in MMBS, levels of fusion that are plausible and 
integration strategies that can be used for information 
consolidation and how we can get benefits from multiple 
sources of biometric information that MMBS provides to get 
an identity decision. Multimodal biometric systems can take 
different forms depending on how they gain the multiple 
source of information: (a) Multi-sensor systems: a single 
biometric trait is imaged using multiple sensors in order to 
extract diverse information from the acquired images, e.g. a 
system may fuse the FP information of a user obtained using 
an optical and a capacitive FP sensors. (b) Multi-algorithm 
systems: the same biometric data is processed using multiple 
algorithms, e.g., a texture-based algorithm and a minutiae-
based algorithm can operate on the same FP image in order to 
extract different feature sets that can improve the performance 
of the system [20]. (c) Multi-instance systems: these systems 
use multiple instances of the same body trait. For example, the 
right index and ring FPs of an individual may be used to verify 
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an individual's identity [26]. (d) Multi-sample systems:           
a single sensor may be used to acquire multiple samples of the 
same biometric trait in order to account for the variations that 
can occur in the trait, or to obtain a more complete 
representation of the underlying trait. A FP system equipped 
with a small size sensor may acquire multiple partial prints of 
an individual's finger in order to obtain images of various 
regions of the FP. A mosaicing algorithm may then be used to 
concatenate the multiple impressions and create a larger FP 
image [14]. (e) Multimodal systems: these systems combine 
the evidence presented by different body traits for establishing 
identity. Physically uncorrected traits (e.g., FPs and HGs) [26] 
are expected to result in better improvement in performance 
than the correlated traits (e.g. voice and lip movement).  

For achieving high recognition ability by MMBS, 
intelligent and effective fusion methodologies must be applied 
throughout the system different stages. One can consider each 
single biometric modality as a single expert window and the 
main rule of the fusion strategy is to combine all of these 
windows together into a single decision of the identity. The 
fusion can be applied at several levels through the biometric 
system steps and we can classify fusion strategies into 2 basic 
categories: (a) Fusion before matching, such as sensor-level 
fusion [14] and feature-level fusion [23], and (b) Fusion after 
matching such as matching score-level fusion [10], rank-level 
fusion [9], and decision-level fusion [15]. The former 
categorization was done based on the fact that information 
available is substantially reduced after the matching process 
took place [9], [11].  

Rowe et al. [24] proposed a multimodal system based on 
hand shape, fingerprints and palmprint, the advantage of the 
proposed system is the use of a single sensor for acquiring the 
three modalities but they tested their proposed system using a 
medium-size database of 50 volunteers, they achieved a GAR 
of 91.5% at FAR of 0.01% by fusing the palmprints from 2 
hands using the product rule. Kumar et al. [16], [18] proposed 
a system based on feature selection of hand geometry and 
palmprint, and used the Discrete Cosine Transform (DCT) 
coefficients for palmprint recognition. They used the 
Correlation-based Feature Selection (CFS) to select the 
dominant feature set for both HG and palmprint. Other MMBS 
for the same group [17] that is based on combining fingerprint, 
palmprint, and hand-shape was proposed. Their proposed 
acquisition system is able to image only the hand shapes from 
which they extracted a region containing the palmprint 
information. Finally, they added a generic random fingerprints 
database to their 100 persons right hand shapes dataset 
collected by their prototype, they reported an EER of 3.53%.  

Wei et al. [30] presented another MMBS based on 
palmprint and hand geometry. They tested their MMBS using 
an experimental dataset of 51 persons with a reported accuracy 
of 99.36% for the fused 2 modalities. Wu et al. [31] fused the 
phase and orientation information of the palmprint in order to 
authenticate identities. They tested their MMBS using data set 
of 392 persons with a reported good accuracy enhancement of 
EER of 0.31%. Zhu et al. [32] proposed a MMBS based on 
finger geometry, knuckle print, and palmprint. They imaged 

the front surface of the hand shape using a webcam for 190 
subjects. They used a decision-level fusion scheme based on 
the simple AND-rule, with a high performance results for FRR 
of 0.00898% at FAR of 2.52e-6%.  

Cui et al. [5] introduced a MMBS based on feature 
merging, selection, and fusion applied to face and iris images. 
They recognized the identities based on Nearest Neighbor 
Decision rule. They concatenated 2 small public single-
modality face and iris datasets of 40 persons to test their 
MMBS, with a reported recognition accuracy for random 
choose training and testing samples ranging from 88.7% to 
100%. Snelick et al. [28] developed a MMBS for face and 
fingerprint, with fusion methods at the score level where 3 FP 
and one face commercial systems were used in their study. 
They tested 7 different score normalization techniques and 5 
different fusion methods. Their best EER of 0.63% was 
reported when the max-score fusion approach on quadric-
linequadric normalized scores was used.  

Monwar et al. [9] attempted to alleviate the unimodal 
biometric system tradeoffs combining physiological and 
behavioral traits by proposing a MMBS based on face, ear, 
and signature. They fused the evidences based on rank level 
integration strategy for testing the proposed system via 
collecting and pairing public domain unimodal biometric 
databases into a virtual multimodal dataset of 40 persons with 
performance enhancement of 1.12% EER. The merit of system 
in [9] is its combining physical and behavioral traits while 
disadvantages are low database size used and the different 
unimodalities are virtual and do not belong to the same 
persons.  

Sim et al. [27] proposed a framework for fusing the face 
and fingerprints for continuous monitoring of the presence of 
only legitimate users into the secured rooms. They installed a 
system of Canon VCC4 video camera and a SecureGen mouse 
that contains a sweep FP sensor on a PC for continuously 
monitoring the person who accessing the secure resources. 
They captured 1000 FP images and 500 Face images from 
several users to train their system. They achieved a good 
performance by the fusion in a tradeoff between usability and 
probability of time to correct reject (PTCR) which is 
analogous to the FAR-FRR tradeoff.  

Nandakumar et al. [20] proposed a minutiae and texture 
based fingerprint fusion study using a quality-weighted sum 
(QWS) rule for score level fusion, with an achieved EER of 
3.39% on a subset of the MCYT FP database [33] of 750 
fingerprints belonging to 75 persons. Nadakumar et al. [19] 
addressed the shortage or missing data (modalities or 
incomplete score lists) during solving the identity searching 
problems within a large multimodal databases. They 
developed a fusion scheme specifically for the identification 
mode that can handle partial data without any need for rules 
design on a case-by-case basis.  

The majority of multimodal systems and studies recently 
proposed in the literature suffer from several drawbacks like: 
(a) The proposed MMBS were tested and validated on a small 
to medium size datasets around 50 persons. (b) The datasets 
used to measure these MMBS performance are originally a 
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unimodal biometric databases collected from different public 
domain areas and were added to form a multimodal datasets, 
i.e. a virtual database which contains records created by 
consistently pairing a user from one unimodal database (e.g., 
face) with a user from another database (e.g., iris) [5], [9], 
[12], [17]. (c) Lack of simple and compact multimodal 
acquisition prototype for dedicated interacting and user 
convenience while acquiring multiple unique traits in just one 
or two simple steps. (d) MMBS is about having increased 
performance accuracy and most of reviewed systems have not 
achieved enough accuracy increase by the fusion of uni-
modalities.  (e) Lack of getting complete benefit from the 
sensors capabilities (i.e. acquiring the right hand shapes only 
as in most research and commercial hand geometry devices 
instead of acquiring both hands shape). 

B. Biometric System Performance Comparison 

The most important enhancement for any MMBS is to show 
higher accuracy versus its constituents of single-modality 
biometric systems. In addition to the measures of system 
imposter rates like: FAR (FMR), and FRR (FNMR) [29], [34], 
we compared our proposed systems performances using 
qualitative and quantitative approaches. The qualitative 
measures are graphs to show the system performance within a 
range of thresholds. Example is the total biometric system 
accuracy versus a range of thresholds (as in Fig. 8 and Fig. 13 
of [35]). The accuracy can be calculated at each threshold as:  

     %    100 %                     (1)  

The accuracy parameter measures the percentage of genuine 
(G) events to all the genuine and false (F) events (G+F). 
Furthermore, the point of maximum accuracy can be 
considered as the operating point at which we can compare the 
genuine and false rates of different biometric systems. The 
performance of biometric systems can be summarized using 
the Receiver Operating Characteristic curves (ROCs) [36]. 
ROCs plot the Genuine Accept Rate (GAR) versus False 
Accept Rate (FAR) on a semi-logarithmic curves (as 
illustrated in Fig. 9). The quantitative measures we used are 
the EER [11] and TER [29]. The EER refers to the point at 
which the FAR equals the FRR during the performance testing 
(as shown in Fig. 13). We also calculated the TER, which 
equals min FAR FRR . EER is sometimes approximated by 
~TER/2 at optimal threshold and minimization of EER may be 
treated as minimization of TER [21], [29]. In our analysis we 
calculated both EER and TER measures independently. 

C. Proposed MMBS Objectives and Paper Organization 

In this paper, we introduce our MMBS based on single or 
both hands using NIR dorsal hand geometry (HG) and 
fingerprint (FP) modalities. The proposed system was 
designed to tackle the tradeoffs of the current unimodal and 
some MMBSs explained earlier. The system was tested using 
an experimental multimodal database of 100 persons of which 

HG and FP were acquired and collected from the same 
persons using the prototype design proposed in 2008 [26].  

Our multimodal biometric prototype system acquires Rt/Lt 
index and ring FP, Rt/Lt Near-Infra-Red (NIR) dorsal hand 
geometry shape (HG), Rt/Lt NIR dorsal hand vein (HV) tree 
patterns in just a single user maneuver. It captures Lt index 
and ring FP with Lt HG shape and Rt HV pattern, in a single 
step or captures Rt index and ring FP with Rt HG shape and Lt 
HV pattern, in a second step. Our proposed prototype 
hardware unit can be designed with a dedicated H/W for 
standalone systems.  

One major advantage of adding the NIR HG/HV patterns is 
its good detection of liveness as explained in [26]. The other 
advantage of using thermal signals for HG/HV is that, it can 
only be detected using a NIR camera (hand shapes and hand 
veins are thermal sources to these cameras), and are hard to 
fake using the standard techniques [37]-[38]. In this paper, we 
are presenting the experimental results of single and both 
hands HG and FP MMBS only. The proposed system can be 
considered for multimodal authentication and identification 
purposes with some advantages over few existing multimodal 
systems as explained in [26].  

This paper is organized as follows, section I introduces 
MMBS, gives brief idea about its prior research work, and 
illustrates the paper objectives and organization. Section II 
describes detailed prototype design for our multimodal 
acquisition prototype. Section III presents HG feature 
extraction process, estimates the probability of true match 
between Rt and Lt HG pattern for the same person, and 
introduces our Rt-Lt-HG biometric system. Section IV gives 
an idea about FP image enhancement, minutiae points 
extraction, and minutiae graph matching. Also, introduces our 
multi-instance Rt-Lt-FP biometric system.  Section V 
introduces fusion of HG and FP using a score-level fusion 
technique and presents 3 MMBSs: Rt-HG-FP, Lt-HG-FP, and 
Rt-Lt-HG-FP, respectively. Section VI gives discussion of the 
proposed MMBS merits and performance and our planned 
objectives for the system. Finally, section VII concludes this 
paper. 

II. MULTIMODAL BIOMETRICS PROTOTYPE DESIGN 
AND DATA ACQUISITION 

A. Prototype System Design 

In order to design a setup for acquiring 3 biometric 
modalities (HG, FP, and HV) for achieving our proposed 
MMBS objectives; we set our plan to image the landed 
freestyle hand for obtaining the NIR HG shape and FP images 
at the same time in one acquisition step for either right or left 
hands. The left compartment shown in Fig. 1, was designed to 
acquire both the landed freestyle NIR HG shape [39] and the 
FP for the index and ring fingers [26], using USB interface 
(similar to our single finger acquisition [40]). The right 
compartment shown in Fig. 1 was designed to image the back 
of the hand as a clenched fist, for imaging the NIR HV. The 
right compartment is considered for near future acquisition 
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and beyond this paper objective, we have presented the 
preliminary images acquired for the three modalities (FP, HG, 
and HV) in [26]. Fig. 1 (left) shows how to use our MMBS 
prototype. Our prototype system unit was designed to image 
both Rt and Lt hands for the 3 modalities (FP, HG, and HV).  

In FP module design, we used the FPS200 Solid-State 
Capacitance FP sensor chip; manufactured by Veridicom 
International Inc. Company [41] to acquire the FP images. 
Advantages of capacitive FP sensors are its very compact and 
miniaturized size and low price. Its only limitation is its short 
durability for continuous use (~9-12 months). In order to 
acquire 2 FP images and the HG shape at the same time, we 
designed a PCB for soldering 2 FP sensors and attached the 
PCB in front of the hand shape NIR CCD imager. Fig. 2 
shows our PCB design with the 2 sensors and its USB 
interface. The subject’s index and ring fingers can fit on the 
sensors while the hand is fully landing to permit the dorsal HG 
shape to be acquired at the same time. The 2 FP sensors were 
interfaced to the PC using the USB bus [26], [42]. The output 
image array size is 300X300 pixels with 500 dpi spatial 
resolution.  

 
Fig. 1. Multimodal Biometric Prototype acquisition: the left 

compartment is for HG and FP and the right one is for the HV 

 
Fig. 2. Two FP capacitance sensors installed on a single PCB to 

acquire both Index and Ring FP (top) and its USB interface (bottom) 

For capturing the NIR HG shape, we installed NIR CCD 
camera along with external NIR LEDs, all in the center of the 
left compartment top. The CCD video signal was captured 
using a low cost standard video frame grabber. We used the 2 
capacitive FP sensors as markers to let the users normally 
center their opened-fingers Rt/Lt hands on the left 
compartment platen and to give the opportunity for the FP 
sensors to capture the index and ring FPs at the same time 
[26]. 

B. Prototype Acquisition Results and Image Quality 

In this section, we show the good quality acquired images, 
Fig. 3 shows samples of the acquired multimodal database for 
HG and FP (HV samples can be found in [26], [34]-[35], [46]-
[47]). Fig. 3 (1,2) shows a high quality NIR HG sharp edges 
with high contrast between hand and background platen (High 
contrast due to our well designed external cold source IR 
LEDs and contrast light absorbing platen). These acquired 
images are very suitable for the geometry and shape 
dimensions measurement. The FP images in Fig. 3 (3-6) show 
a medium to high quality FP images. We extracted the FP 
feature points (minutiae), the matching process will be 
accomplished via a graph point-matching algorithm using the 
extracted minutia points.  

 
Fig. 3 Acquired sample images from the hand shape imager for Rt/Lt 

hands, (1,2). Sample images from the Lt FP sensor (Rt Index FP), 
(3,4). Sample images from the Rt FP sensor (Rt Ring FP), (5,6) 

C. Database Collection Protocol 

We had a written consent from all volunteers consistent 
with IRB, where we explained and read a verbal agreement of 
the purpose of study (no subjects interaction and FP sensors 
and boards were cleaned from one volunteer to others 
regarding hygienic factors), to each volunteer and let them 
sign the consent, all coauthors were also volunteers in 
database. We captured a new multimodal database of 100 
different volunteers of ages from 15-70, and from different 
working conditions, for the proposed multimodalities of FP 
and NIR HG shape (and we are currently acquiring HV 
images to same volunteers). Volunteers were just asked to 
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place their hands in a none controlled fashion (no training), 
just opening their non-touching fingers normally at any angles 
for geometry acquisitions, and pointing their index and ring 
fingers to be on the well designed and oriented fingerprint 
sensors installed over the platen in left compartment (the 
distance and rotation between the 2 sensors were empirically 
designed to fit all persons of different ages, sexes and hand 
sizes) [26]. All volunteers were healthy (no arthritis, no hands 
or finger cuts, may have scars in their fingerprints) and from 
different working conditions. Images were captured through 5 
days intervals for each volunteer from 2008 till 2010 in a fully 
non-controlled environment (volunteers were not trained on 
using the system prior to their data acquisition and this allows 
for normal angulations between non-touching fingers). 

We acquired 5 images for each modality for both right and 
left hands (right NIR HG, left NIR HG, right index FP, right 
ring FP, left index FP, left ring FP,) at different time intervals, 
and at different conditions. The system acquisition is a whole-
hands system, number of images of 20 (Rt/Lt, Index and Ring) 
FP, and 10 Rt/Lt HG images were acquired for the 
performance study and fusion analysis. A total of 30 
acquisitions were captured from each volunteer, for 100 
volunteers. A total of 3000 images were in our database. HG 
images acquired in 240X320 pixels with a spatial resolution of 
72 dpi NIR HG shape. FP resolution for the used Veridicom 
sensors is a 500 dpi, the image size is 300X300 pixels. Our 
processing software is efficiently custom designed in MS 
VC++, and MathWorks MatLab. Raw images were stored 
with no compression, to keep the highest quality possible for 
future analysis [26].  

III. HAND GEOMETRY FEATURE EXTRACTION, 
MATCHING, AND FUSION 

A. HG Image Processing and Feature Extraction 

As we discussed in the previous section, we used our 
proposed setup [26] to acquire persons hand shapes. The hand 
shape and FPs were imaged while it is landed on the platen. 
As the FP sensors were in the image background, in order to 
remove the Veridicom chip borders from the image, platen 
was painted in a light absorbing black material paint and the 
chips were slightly below platen so that both index and ring 
are being parallel to the platen as other fingers. Each volunteer 
provided 10 different hand shape images in our database (5 for 
Lt and 5 for Rt), we constructed a data set of 1000 different 
HG images belonging to 100 persons. 2D images of the hand 
were processed as in the flowchart shown in Fig. 4 [26], [39], 
[43-45]. This method performs multiple preprocessing steps to 
form a contour of the hand. The contour can then be converted 
into polar coordinates in order to determine the 5 maxima 
(finger tips) and 4 minima (finger valleys) of the hand. From 
this information, a total of 44 points hand model can be 
determined, as shown in Fig. 5 up. A total of 29 geometric 
features of the hand and fingers were extracted using these 
points, including 14 widths, 5 lengths, 5 circumferences, and 5 
square root areas of the different fingers.  

In this study, we proposed an automatic algorithm to 
differentiate between the Rt and Lt hand type using the idea of 
Euclidian distances comparison illustrated in Fig. 5 bottom, 
where from the intuitive fingers dimensions and normal 
minimum-maximum fingers opening, distances (D4 and D2) 
cannot be changed a lot due to anatomical (muscular and 
bony) limited mobility constraints on the carpal and 
metacarpal bones; unlike distances (D1 and D3) which are of 
more mobility and usually with normal opening D1>D2 and 
D3>D4. In our HG features extraction module, if we 
encountered a Lt hand shape, we just flip the order of the polar 
coordinates array, and the maxima-minima array, and we 
continue to calculate the HG geometric features exactly as 
what we do for any Rt hand shape (it is a mirror transform). 
The identity is positive if the Euclidian distance between the 
stored feature template "F" and the claimed identity "Y" is less 
than a threshold value “T” as in (2): 

    ∑                                                   (2) 

 
Fig. 4 Hand shape image processing steps 

 
Fig. 5 Automatically detected 44 point hand model (P1-P5 Maximas, 

P6-P9 Minimas), (Up). Rt/Lt automatic hand type differentiation 
algorithm: If (D1 > D2) AND/OR (D3 > D4) then image is for Rt 

HG, otherwise image is for Lt HG, (Bottom) 
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B. Estimating the Probability of True Match Between Rt and 
Lt HG Pattern Similarity for Same Person 

For calculating the probability for a true-match between Rt 
and Lt HG patterns for the same person, we manipulated each 
hand shape as a separate and independent HG pattern (i.e. 5 Rt 
hand images are different from 5 Lt hand images for the same 
person), as if we have a database of 200 persons each person 
has 5 different scenes. We constructed the distance matrix for 
representing the matching result between each image and all 
other images. The distance matrix is filled with the matching 
distances between the image defined by the row label versus 
the image defined by the column label, so its width and height 
are 1000 elements each (a million matches). We calculated the 
probability for the matching distance to be less than or equal 
to the threshold that the maximum system accuracy occurred 
at [35]. Table I shows the probability values for the thresholds 
range from 0.01 to 0.02. From Table I, The probability of 
similarity between Lt-HG and Rt-HG at the threshold that 
gave us the maximum accuracy (which was 0.017) was: 
P(Matching Distance <= 0.017)  = 11.31%. The probability is 
high enough to conclude that the HG pattern is unique for each 
identity, but is not unique for each hand i.e. the HG for the Rt 
hand is similar to some extent to the HG pattern (defined by 
our 29 features dimensionality) for the Lt hand for the same 
subject. 

TABLE I 
RESULTS FOR THE PROBABILITY FOR THE TRUE MATCH 

BETWEEN THE RT/LT HG PATTERNS FOR THE SAME IDENTITY 
WITH MEAN = 0.27648 AND STD. DEV. = 0.008805243. 

Threshold Z-score P(Z) 0.5 - P(Z) P(Distance <= Threshold) 
0.01 -2.00428 0.4772 0.0228 2.28% 

0.011 -1.89071 0.4706 0.0294 2.94% 
0.012 -1.77714 0.4625 0.0375 3.75% 
0.013 -1.66358 0.4525 0.0475 4.75% 
0.014 -1.55001 0.4394 0.0606 6.06% 
0.015 -1.43644 0.4251 0.0749 7.49% 
0.016 -1.32287 0.4066 0.0934 9.34% 
0.017 -1.209 0.3869 0.1131 11.31% 
0.018 -1.09573 0.3643 0.1357 13.57% 
0.019 -0.98216 0.3365 0.1635 16.35% 
0.02 -0.86859 0.3078 0.1922 19.22% 

 
C. Bi-Instance Biometric Systems Based on Hand Geometry 
Feature and Score Fusion 

We constructed 3 bi-instance HG biometric systems, the 
first one based on feature-level fusion of Lt-HG and Rt-HG 
feature vectors, the second one based on Lt-HG and Rt-HG 
score-level fusion using the multiply-of-scores method, and 
finally the third one based on Lt-HG and Rt-HG score-level 
fusion using the sum-of-scores technique. In order to encode 
the Rt and Lt HG patterns in one array (feature fuse Lt-HG 
with Rt-HG) that represents one identity, the 2 arrays which 
represent Lt-HG and Rt-HG measurements features were 
concatenated (fused) into a single feature vector of dimension 
1X58 that completely represents the whole hands HG shape. 
We constructed a bi-instance HG biometric system based on 

feature-level fusion (as shown in Fig. 6). Our HG data set 
consists of 100 persons; each person enrolled his/her Lt and Rt 
5 times, the distance matrix width and height were 500X500 
elements (a 250000 matches).  

 
Fig. 6 Rt-Lt-HG (Feature-Level fusion) bi-instance biometric system 

schematic 

 
Fig. 7 FAR versus FRR and EER for our Rt-Lt-HG bi-instance 

biometric systems 

 
Fig. 8 Accuracy for our HG single-modality and bi-instance 

biometric systems 
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We fused the output of Lt-HG and Rt-HG single-experts on 
the score-level using both the multiply-rule and the sum-rule. 
We plotted FAR-FRR, accuracy, ROC curves, and genuine-
imposter distribution curves for the single-modality HG 
biometric systems (Lt-HG & Rt-HG), and after HG features 
and scores fusion (Rt-Lt-HG bi-instance biometric systems), 
all are shown in Figs. 7-10. Since we achieved slight higher 
quantitative accuracy results using the HG feature-level fusion 
technique as seen from Table II, we will continue using the 
HG feature fusion. 

 
Fig. 9 ROC curves for Rt-HG, Lt-HG, bi-instance Rt-Lt-HG 

(Feature-Level Fusion), bi-instance Rt-Lt-HG (Score-Level Fusion 
using Score-Multiply and Score-Sum Rules) biometric systems 

 
Fig. 10 Genuine and imposter distance score distributions for Rt-Lt-

HG (Feature-Level Fusion) bi-instance biometric system 

IV. FINGERPRINT FEATURE EXTRACTION, 
MATCHING, AND FUSION 

A. FP Image Enhancement and Feature Extraction 

For detecting the FP ridge ends and bifurcations features, 
Short Time Fourier transform (STFT) was used to enhance the 
FP image using the frequency and the direction of the ridges 
[48]. The ridges frequency and direction were calculated 
locally in the frequency (Fourier) domain. Image was 
enhanced using a directional bandpass filter in the frequency 
spectrum.  

We used a technique called MINDTCT (Minutiae 
Detection) published by the National Institute of Standards 
and Technology (NIST) for extracting the minutiae points 
(ridge endings, and bifurcations) from the enhanced FP images 
[49]. The algorithm captures the enhanced gray scale FP 
images, generates a block level directional map (assigns one 
direction for each 8X8 block of the FP image), uses the 
directional map to directionally binarize the image, extracts 
the FP minutiae directly from the binary image using set of 
predefined templates, and finally removes the false minutiae 
from the initial extracted feature list using set of post-
processing algorithms. Fig. 11 shows the results of applying 
these algorithms to a random sample from our acquired FP 
images. Enhanced images showed very high quality and a 
successful features extraction for all our acquired FP images. 

 
Fig. 11 Original FP image (1), enhanced image (2), binary image (3), 

extracted minutiae superimposed on the enhanced image (4), 
extracted minutiae superimposed on the binary image (5), extracted 

minutiae feature file example (6) 

B. Graph Matching and Our Proposed Fingerprint Feature 
Fusion Method 

We represented each minutia point with 5 parameters (X, Y, 
Ө, Type, FingerCode), X: is the horizontal coordinate, Y: is 
the vertical coordinate, Ө: indicates the orientation angle, 
Type: determines the type (0: ridge ending, 1: ridge 
bifurcation), FingerCode: indicates from which finger this 
minutia was originated (1: right ring, 2: right index, 3: left 
index, 4: left ring), we used FingerCodes field for FP feature 
fusion, as illustrated below. The example output minutiae file 
is shown in Fig. 11(6). Clearly, The FP matching relies mainly 
on robust feature extraction which is dependent on the quality 
of images. The matching algorithm takes template and 
reference representations (R, T) of two single or fused 
fingerprints and returns a single similarity score S(R,T) that 
can be generated using a very popular approach [7] as in (3): 

    S R, T  
 MR,MT

                            (3) 

where m represents the number of matched minutiae, MR and 
MT represent the number of minutiae in the reference and 
template prints, respectively.  
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We used a graph based minutia points matching algorithm 
[50] for robust fingerprint recognition. The algorithm uses the 
local matching to consolidate and relate minutia points with 
their neighbors, so it accounts for nonlinear transformation of 
minutia points since only the local neighbor points are 
matched at each stage. The algorithm introduced a new 
representation called K-plets for representing each minutia 
point with its neighbor points. The graph constructed by 
looking for 4 neighbors for each minutia point, one nearest 
neighbor in each of the 4 quadrants sequentially, so the 
matches can propagates in all directions of the fingerprint 
pattern. When we fused fingerprints that originated from 
different fingers for the same person in one feature vectors, we 
concatenated the files containing the minutia points 
parameters.  

We matched the fused fingerprints using a single matcher as 
follows. We analyze the input minutia feature files. If we 
found more than 1 FingerCode (i.e. 2 or 4 different 
FingerCodes), it means that this file contains minutia points 
from more than single finger for the same user. We looked for 
more than 1 matched graph within the reference and template 
minutia patterns (i.e. 2 or 4 matched graphs). Finally, we 
searched for largest graph within the minutia points that have 
the same FingerCode preventing the matcher from aligning 
any two minutia points which originates from different fingers 
(i.e. have different FingerCode) together in one graph. 

C. Bi-Instance and Multi-Instance Biometric Systems Based 
on Fingerprints Feature and Score Fusion 

The No. of minutia points that represent the uniqueness is 
variable for each FP, with min., max., and avg. of 21, 74, and 
44.79 points, respectively over all of our 2000 fingerprints. 
We constructed 10 fingerprint biometric systems: 4 are single-
modality FP (Rt-Ring, Rt-Index, Lt-Index, and Lt-Ring), 2 are 
bi-instance FP (Rt-FP, and Lt-FP) using our FP feature-level 
fusion technique, 2 are bi-instance FP (Rt-FP, and Lt-FP) 
using the sum-of-scores score-level fusion method, the 9th is a 
multi-instance FP (Rt-Lt-FP) biometric system using our 
minutiae feature-level fusion scheme (as shown in Fig. 12), 
and finally the 10th is a multi-instance FP (Rt-Lt-FP) 
biometric system using sum-of-scores score-level fusion 
method. We matched the fused minutia vectors from 2 or 4 
different FPs that belong to same person. The similarity score 
for the fused FP feature vectors S(R1, R2, … , Rn,T1,T2, … ,Tn) 
can be generated by a general form of (3) as in (4): 

S R , R , … R , T , T , … , T  ∑
∑  MR ,MT ,

           (4) 

where MR and MT are the No. of minutiae that have the same 
FingerCode, i, within the reference and template input feature, 
respectively, which yielded a matched graph with a minutiae 
count equals to m , and n is the No. of fused fingerprints.  

We constructed 10 different matching matrices, one for 
each of 10 FP biometric systems, each matching matrix width 
and height were 500 elements (a 250000 matches) for each of 
the 10 systems. From each matching matrix, we deduced EER, 

TER and the maximum system accuracy. Also, we had a 
qualitative graphical comparisons between the performance 
and accuracy of the single-modality FP biometric systems, and 
after we performed both the FP minutiae feature fusion and 
score-level fusion using the sum-of-scores technique (Rt-FP, 
Lt-FP, and Rt-Lt-FP as a bi- and multi-instance FP biometric 
systems), as shown in Figs. 13-16. Since we achieved slight 
higher accuracy results using our FP feature-level fusion 
methodology as seen from Table II, we will continue 
throughout this paper using our FP feature fusion schemes. 

 
Fig. 12 Rt-Lt-FP (based on minutiae feature fusion) biometric system 

 
Fig. 13 FAR versus FRR and extracted EER for Rt- Lt (using our 

minutiae feature fusion scheme) multi-instance FP system 

 
Fig. 14 Accuracy for our Rt-Lt multi-instance FP systems 
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Fig. 15 ROC curves for the 4 single-modality (up), ROC curves for 

the 3 bi- and multi-instance (using our FP feature-level fusion 
method) (bottom left), and  ROC curves for the 3 bi- and multi-
instance (using sum-of-scores score-level fusion technique) FP 

biometric systems (bottom right) 

 

Fig. 16 Identification test for genuine and imposter similarity score 
distributions of multi-instance Rt-Lt-FP biometric system using our 

minutiae feature fusion scheme 

V. HAND GEOMETRY AND FINGERPRINT MATCHING 
SCORES NORMALIZATION AND SCORE FUSION 

Score normalization refers to changing the location and 
scale parameters of the match score distributions of the 
individual matchers, so that the match scores of different 
matchers are transformed into a common domain [11].  

Many techniques can be used for score normalization such 
as Min-Max, Decimal-Scaling, Z-Score, Median, Median 
Absolute Deviation (MAD), Double Sigmoid Function, Tanh-
Estimators, Bayes based, or piecewise- linear [22]. We used 
the Min-Max normalization technique. Min-Max 
normalization is best suited for the case where the bounds 
(maximum and minimum values) of the scores produced by a 
matcher are known. Min-Max normalization retains the 
original distribution of scores except for a scaling factor and 
transforms all the scores into a common range [0,1]. Distance 
scores can be transformed into similarity scores by subtracting 
the normalized score from 1 [11]. Let s  denote the ith match 
score output by the jth matcher, i = 1,2,..., N;  j = 1, 2 , . . . , M 
(M is the number of matchers and N is the number of match 

scores available in the training set). The Min-Max normalized 
score, n_s , for the test score s  is given by: 

    n_s  
 N

N  N                            (5) 

Several methods can be implemented for merging and 
fusing the normalized scores like max-score, min-score, sum-
of-scores [11]. In this work, we fused the scores using the 
score-sum method. The sum of score, n_s, for N normalized 
scores, _ , _ , … .. , _  is given by: 

    n_s  ∑ _N

N
                                                           (6) 

Using the Min-Max score-normalization technique and the 
score-sum fusion methodology, we constructed 3 multimodal 
HG-FP biometric systems that resulted from HG and FP score 
fusion of 100 persons. Firstly, Rt-HG-FP MMBS which 
resulted from fusing the Rt-HG, Rt-Ring-FP and Rt-Index-FP 
patterns. The following subsection “A” illustrates the Rt-HG-
FP MMBS schematic and results. Fig. 17 shows the schematic 
of Rt-HG-FP multimodal system, Figs. 18-20 qualitatively 
compare the systems performance between Rt-HG-FP 
multimodal system and its constituents of Rt single-modality 
biometric systems. Secondly, the Lt-HG-FP MMBS which 
resulted from fusing the Lt-HG, Lt-Index-FP, and Rt-Ring-FP 
patterns. Subsection “B” illustrates the Lt-HG-FP MMBS 
construction and results. Fig. 17 shows the schematic of Lt-
HG-FP multimodal system, Figs. 21-23 qualitatively compare 
the systems performance between Lt-HG-FP multimodal 
system and its constituents. Finally, the Rt-Lt-HG-FP MMBS 
which resulted from fusing the Rt-HG, Lt-HG, Rt-Ring-FP, 
Rt-Index-FP, Lt-Index-FP, and Rt-Ring-FP patterns. 
Subsection “C” illustrates the Rt-Lt-HG-FP MMBS 
construction and results. Fig. 24 shows the schematic of Rt-Lt-
HG-FP multimodal system, Figs. 25-28 qualitatively compare 
the systems performance difference between Rt-Lt-HG-FP 
multimodal system and its constituents. Table II gives a 
quantitative performance comparison of all systems based on 
EER and TER. 

A. Rt-HG-FP Multimodal Biometric System 

 
Fig. 17 Schematic for Rt-HG-FP (or Lt-HG-FP) MMBS 
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Fig. 18 FAR versus FRR and extracted EER for Rt-HG-FP MMBS 

 
Fig. 19 ROC curves for Rt-HG-FP MMBS versus its constituents 

 
Fig. 20 Identification test for genuine and imposter sum fused score 

distributions of Rt-HG-FP MMBS 

B. Lt-HG-FP Multimodal Biometric System 

 
Fig. 21 FAR versus FRR and extracted EER for Lt-HG-FP MMBS 

 
Fig. 22 ROC curves for Lt-HG-FP MMBS versus its constituents 

 
Fig. 23 Identification test for genuine and imposter sum fused score 

distributions of Lt-HG-FP MMBS 

C. Rt-Lt-HG-FP Multimodal Biometric System 

 
Fig. 24 Schematic for Rt-Lt-HG-FP MMBS 
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Fig. 25 Extracted EER for our Rt-Lt-HG-FP MMBS 

 
Fig. 26 Comparison between the accuracy for Rt-HG-FP, Lt-HG-FP, 

and Rt-Lt-HG-FP MMBSs 

 
Fig. 27 ROC curves for Rt-Lt-HG-FP MMBS versus its constituents 

 
Fig. 28 Identification test for genuine and imposter sum fused score 

distributions of Rt-Lt-HG-FP MMBS

TABLE II 
QUANTITATIVE PERFORMANCE COMPARISON BETWEEN OUR SINGLE-MODALITY HG & FP, BI-INSTANCE HG & FP, MULTI-INSTANCE FP,  

MULTIMODAL RT-HG-FP, MULTIMODAL LT-HG-FP, AND MULTIMODAL RT-LT-HG-FP BIOMETRIC SYSTEMS, AT CORRESPONDING 
THRESHOLD BETWEEN [.]. 

Modality FAR% FRR% Accuracy% TER% EER% 
HG Single-Modalities 

Rt-HG 0.091313 17.10 99.772345 [0.018] 2.169293 [0.027] 1.192525 [0.026] 
Lt-HG 0.101010 22.50 99.719439 [0.018] 4.384950 [0.026] 2.285051 [0.027] 

FP Single-Modalities 
Rt-Ring-FP 0.030707 9.40 99.894188 [42%] 1.557172 [30%] 0.778586 [30%] 
Rt-Index-FP 0.018182 6.70 99.928257 [41%] 0.928889 [28%] 0.658636 [30%] 
Lt-Index-FP 0.029899 7.30 99.911824 [39%] 1.417071 [27%] 0.752020 [28%] 
Lt-Ring-FP 0.008081 6.00 99.943888 [37%] 0.788384 [26%] 0.414141 [25%] 

HG Feature Fusion 
Rt-Lt-HG 0.016162 7.15 99.926653 [0.02] 1.015758 [0.027] 0.507879 [0.027] 

HG Score Sum-Rule Fusion 
Rt-Lt-HG 0.040000 4.5 99.924248 [0.042] 1.041919 [0.051] 0.541919 [0.053] 

HG Score Multiply-Rule Fusion 
Rt-Lt-HG 0.038384 4.65 99.924649 [0.004] 1.377575 [0.007] 0.688789 [0.007] 

FP Biometric Feature Fusion 
Rt-FP 0.007677 0.70 99.986774 [34%] 0.112323 [27%] 0.089798 [28%] 
Lt-FP 0.001211 0.80 99.992385 [34%] 0.026667 [28%] 0.013333 [28%] 
Rt-Lt-FP 0.000404 0.05 99.999198 [35%] 0.0020202 [34%] 0.001010 [34%] 

FP Score Sum-Rule Fusion 
Rt-FP 0.005660 1.15 99.985170 [39%] 0.160808 [32%] 0.094242 [33%] 
Lt-FP 0.003230 0.80 99.990380 [34%] 0.1624242 [28%] 0.121515 [30%] 
Rt-Lt-FP 0.000000 0.20 99.998397 [35%] 0.0028283 [33%] 0.001414 [33%] 

 Rt-HG-FP Score Fusion 
Rt-HG-FP 0.000808 0.30 99.996794 [0.61] 0.006868 [0.58] 0.003434 [0.58] 

 Lt-HG-FP Score Fusion 
Lt-HG-FP 0.000808 0.25 99.997194 [0.58] 0.006868 [0.55] 0.003434 [0.55] 

Rt-Lt-HG-FP Score Fusion 
Rt-Lt-HG-FP 0.000000 0.00 100.00 [0.55-0.62] 0.00 [0.55-0.62] 0.00 [0.55-0.62] 
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D. Comparison Table between Our Proposed MMBS and Related Systems 

TABLE III  
COMPARISON OF DIFFERENT MMBSS DISCUSSED IN PRIOR RELATED WORK WITH OUR PROPOSED SYSTEM. 

MMBS Biometric Identifiers Fusion Level and 
approaches 

EER or other published 
performance 

Testing Database size Experimental 
Acquisition 
Setup 

Rowe et al. [24]  Hand Shape, Fingerprint 
and Palmprint 

Score-level fusion: sum-
rule method  

GAR=91.5% at 
FAR=0.01 fusing the 
palmprints for the  2 
hands; not from fusing the 
3 modalities 

Experimentally 50 Persons Yes 

Kumar et al. [17] Hand Shape, Palm 
Texture, and Fingerprint 

Score-level fusion: using 
sum rule 

EER=3.53% Virtual 100 Persons as 
discussed in prior work 
section 

Partially, FP 
is from 
different 
database  

Nandakumar et al. [20] Minutiae-based and 
texture-based Fingerprint 

Match score, Quality 
Weighted Sum rule 
(QWS)  

3.39% MCYT [33] database of 
750 FP, 10 per finger   

No 

Wei et al. [30] Palmprint and Hand 
Geometry 

Feature-level fusion Accuracy =99.36% Experimentally 51 Persons Yes 

Wu et al. [31] Fusion of Phase and 
Orientation for Palmprint 

Feature-level fusion 0.31% Experimentally 392 
different palmprints 

Yes 

Zhu et al. [32] Finger Geometry, 
Knuckle print and 
Palmprint 

coarse-to-fine 
hierarchical decision-
level AND rule fusion 

FRR=0.00898 at 
FAR=2.52e-6 

Experimentally 190 
persons 

Yes 

Cui et al. [5] Face and Iris Feature-level fusion Accuracy for random 
choose ranged from 
88.7% to 100% 

Virtual multimodal 
database of 40 persons 

No 

Monwar et al. [9] Face, Ear, and Signature 
(only system to include 
physical and behavioral 
characteristics) 

Rank-level fusion: 
Logistic regression 

1.12% Virtual multimodal 
database of 40 persons 

No 

Sim et al. [27] Continuous verification 
using face and 
Fingerprint  

Holistic fusion New TCR, PTCR, and 
usability measures 
proposed 

Experimentally several 
users for each, 1000FP and 
500 Face images 

Yes 

Snelick et al. [28] Face and Fingerprint Score level fusion: Max-
score on quadric-
linequadric 
normalized scores 

0.63% Virtual 972 persons, 2FP 
and 2 frontal face from 
FERET database[52]  

No 

Current System  Whole Hands Geometry 
and Fingerprint 

Feature-level for similar 
traits and 
Transformation based 
score-level for HG&FP 
fusion 

EER=0.003434 for Lt or 
Rt HG+FP fusion and 
EER=0 for  fusion of Lt 
and Rt HG+FP 

Experimentally 100 
Persons with high quality 
images of designed 
prototype 

Yes 

 
E. Computation Times Table for Different Proposed Single and MMBSs    

TABLE IV 
COMPUTATION TIMES CALCULATED FOR 300H X 300W FP IMAGES AND 320W X 240H HG IMAGES, CALCULATION WAS BASED ON: INTEL 

CELERON 2 GHZ CPU, 512 MBYTES OF RAMS. 
Operation Average Time Programming Language Implementation 

Single FP Enhancement 3 Sec. MATLAB (slow interpreter than C++ compiler) 

Single FP Feature Extraction 0.125 Sec. MS VC++ 

1:1 FP Matching 0.15 Sec. MS VC++ 

1:500 FP Matching 66 Sec. MS VC++ 

1:1 2-Fused FPs Matching 0.27 Sec. MS VC++ 

1:1 4-Fused FPs Matching 0.49 Sec. MS VC++ 

Single HG Processing and Feature Extraction 3 mSec. MS VC++ 

1:1 HG Matching 1 mSec MS VC++ 

1:500 HG Matching 0.7 Sec. MS VC++ 
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VI. DISSCUSION 
The main advantages of our prototype design is its 

compactness, low cost (using on the shelf components as NIR 
CCD of 40$ and FP chips of 50$ each per single finger which 
can be cheaper if more chips are used), user convenience 
(single or double hands landings), and acquisition of more 
than single biometric trait in single or double user interactions. 
As practical biometric system is all about a trade-off between 
individuality and usability, and is mainly specified by the level 
of security (low-medium-high) required [2], [6], [11], [25], we 
attempted to optimize both by selecting unique biometric 
features and its easy usability in one system design for a whole 
hands FP and NIR dorsal HG MMBS. In addition to the 
previous merits, its high performance may make it a candidate 
to various security levels systems, from low security level like 
in most time-attendance control systems to border control high 
security and e-passports. A one practical merit for our 
hardware prototype design is its modularity, we can use it for 
single user maneuver acquisition for HG+FP, or we can use 
either FP PCB or freestyle platen alone to implement a multi-
instance FP or HG system with main advantages of: (a) High 
accuracy through multiple independent FP instances from 
different fingers for the same user, and (b) User convenience 
(i.e. scan 2 FP instances as the same way of a single FP). 

The single modality-FP systems that rely on such small size 
sensors (0.6”X0.6”) can only target simple applications like 
employee time attendance. Our 2-instance HG and 4-instance 
FP system showed high accuracy and can be used for higher 
level security applications like accessing secure resources 
[27]. This fact was evidenced from the increase of accuracy 
(with our high quality images) from single-modality, 2-
instances, and finally to 4-instances FP MMBS. 

It is evident that the price for any solid-state FP sensor is 
one-tenth its equivalent optical scanner. Furthermore, the 
capacitive sensor is very compact in its size, normally a 
surface mount IC package. The main drawback for most 
capacitive FP scanners is its small image array size and short 
durability. Our FP chips have size of 0.6”X0.6”. Any FP 
matching algorithm must rely only on the local FP features 
(i.e. minutia points) to be used for matching on such small size 
images. It is well-known that when we fuse medium-size FP 
instances from different user fingers can lead to better results 
than acquiring a large size one instance FP. Multiple instances 
ensure the validity of identity based on multiple evidences 
produced from different independent sources and will make it 
hard on fakers to do it for more than one FP. We soldered 2 FP 
sensors in the same PCB and on the same data bus for ease of 
single step acquisition. As we showed through this paper’s 
results, that the multiple FP instances fusion have a huge 
influence on the FP system accuracy. Another drawback of the 
HG module is its non-compactness due to focal length of the 
camera. It can be more compact with set of mirrors. 

This work contributed the study of similarity between Rt 
and Lt NIR HG shapes for the same person. To our 
knowledge, the existing biometrics literature has never got 
benefits from both hands for enhancing the HG systems 
accuracy. Furthermore, the HG prototype system proposed in 

[51] and found in most commercial HG systems don’t support 
the left hand as they use pegs to control opening of fingers 
while we proposed solutions to that issue by freestyle 
prototypes [39], [43]-[45]. Also, most pegs controlled systems 
do not take thumb finger features into account while we 
considered it in our current prototype despite its 
discrimination power studied in [39].  

We found similarity to some extent between the right and 
left HG for the same person (11%) and we can’t say the right 
hand features are similar to left hand (this is obvious for 
example in case of handball players “they use one hand most 
of the time to catch and throw the ball”). Hand geometry can 
change a bit with working conditions and adaptations (for 
right and left handed persons). So, we can’t average the Rt-
HG with the Lt-HG (to consolidate the personal HG patterns) 
assuming that they are the same, as we proved this uniqueness 
through inter-personal and intra-personal studies. The previous 
published work in the literature always propose the 
concatenation of similar distances from different traits like: 
Geometrical distances of HG with distance measurements of 
face in addition to texture measurements of the palmprint. Our 
system is superior in the fusion of similar traits in a single 
feature vector, as we fused the Lt and Rt hands in one array to 
completely represent the personal HG pattern. The obtained 
result after fusing (Rt-Lt-HG system) is much better than Rt-
HG or Lt-HG as a single modality. 

Biometric systems that integrate information at an early 
stage of processing are believed to be more effective than 
those which perform integration at a later stage [8] and this is 
the case for our system. Furthermore, it is evident that the 
fusion at the feature vector levels is the powerful fusion 
methodologies due to some reasons: (a) Fusion at the sensor 
level contends with the presence of noise in the primary 
sensed data. (b) When we fuse at the feature level, we are sure 
that we fuse the genuine unique noise-free biometric data, 
which validate the identity based on multiple evidences 
acquired from different sources even if these sources are for 
similar biometric traits (e.g. Rt-Index-FP and Rt-Ring-FP). (c) 
After deploying the matcher stage, the data is drastically 
reduced and the only choice is to fuse them using this little 
available data. 

We added a definition for minutiae fusion, collecting the 
minutiae from different FPs into a single feature file, and we 
added a new field (in addition to the classical X-Y-Ө-Type 
fields) called FingerCode, as a code for representing which 
finger of the person this minutia came from (1 for right ring, 2 
for right index, 3 for left index, and 4 for left ring). We 
matched these minutiae with a single matcher (the output is 1 
or 2 or 4 different matched graphs and a single similarity 
ratio). Fingerprint matching searches for 1 or 2 or 4 graphs 
instead of looking for just single one based on how many 
FingerCodes in the input minutiae file to let it matches 
different minutia points sources. 

If the resultant FP and HG images that acquired in [16]-
[18], [24] are compared qualitatively with our acquired 
images, these images are of lower quality compared to our 
NIR dorsal HG images acquired by low price NIR CCD 
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camera and FP images acquired by FPS200 FP capacitive 
sensors.  

The results of fusion between HG&FP on the level of single 
hand is accurate (EER=0.003434) for both Rt/Lt hands as can 
be seen in Table II. Its main merit is the single user interaction 
with the system. This high accuracy may make these systems a 
candidate for med-high security applications. Furthermore, It 
is very hard to spoof a biometric system with these bi-instance 
HG and 4-instances FP arrangements. As can be seen from 
Fig. 28, our Rt-Lt-HG-FP MMBS was very accurate (EER=0 
based on the 100 volunteers database size of high quality 
images shown in Fig. 3) and the identification genuine and 
imposter matching scores were not only separated on a single 
threshold but also through a range of score thresholds (0.55-
0.62) that allow feasibility of system operability with 
expanded database size. Rt-Lt-HG-FP system validated our 
main objective through proving that: if more than one form of 
unique features were used to represent a single identity, the 
biometric system will robustly identify the individuals like 
human eyes (i.e. based on multiple evidences). We want to 
emphasize that these accurate results are based on our 
experimental dataset of 100 persons with high quality images 
acquired to both NIR dorsal HG and FP modalities [26]. As 
Nandakumar et al. [20] illustrated that with good quality 
images, the matcher performance can be very accurate and 
that is our Rt/Lt HG-FP MMBS case.  

One interesting finding and coincidence in our quantitative 
analysis is that Lt-HG-FP EER is equal to that of Rt-HG-FP 
fusions (EER=0.003434, as in Table II and Figs. 18-23), with 
different corresponding optimal thresholds for EER and 
efficiencies. That is due to different combinations of Rt/Lt HG 
and FP features fused. The individuality power of Rt hand 
combined HG-FP features equal that of Lt hand. The practical 
impact of this finding is that, we can use (preselect at 
enrollment or when there is FTE) either right or left hand, in 
cases of persons with one hand cut due to accidents or persons 
who have one erased FP features in one hand (hard 
mechanical, chemical factories workers, and farmers), with no 
accuracy degradation (based on this high quality images 
database).  

One of our merits in system design is its hardware 
modularity, for example, we can scan both Rt-Lt-HG-FP in 
one acquisition step if we simply doubled the used H/W (2 
NIR CCD images and 4 FP sensors) and re-design the 
compact space to allow landing of the two hands together, that 
space can be even smaller and compact by rotating the right 
hand 45 degrees CCW and the left hand 45 degrees CW, as 
well the FP sensors and cameras can be also re-oriented at 
angles to save and minimize space. We compared our system 
to similar existing MMBs (to our knowledge) in Table III, 
with comparison basis of few 5 characteristics such as: types 
of modalities fused, fusion level and approach, EER or other 
performance measure as accuracy, testing database size, and 
whether these modalities in datasets belong to same subjects 
or virtually combined from different databases. Computation 
times were presented in Table IV based on a standard 
capability PC and the results based on this ordinary PC with 

500MB RAMs (can be replaced by single board PC embedded 
with this prototype scanner unit) showed the timing and 
practical feasibility for a future optimization by an accelerated 
embedded fast hardware. 

VII. CONCLUSIONS 

An increasing number of biometrics-based identification 
and verification systems, which are deployed for many civilian 
and forensic applications, are emerging. In recent years, hand 
has become a very popular access control biometrics 
(including fingerprints, palmprints, hand geometry, and hand 
veins), which has captured almost half of the commercial 
access control market.  

In order to limit the tradeoffs of the unimodal biometric 
systems and for realizing a whole hand-based MMBS using 
fingerprint, hand geometry, and hand vein, our system was 
designed in 2008 with all these tradeoffs [26] in mind. The 
proposed MMBS was built to tackle the tradeoffs found in 
unimodal systems, and for its usage in med-high security 
applications. A sample database of 3000 different images 
belonging to 100 volunteers was collected. We captured 30 
images per person (5 Rt Ring FP, 5 Rt Index FP, 5Lt Index 
FP, 5 Lt Ring FP, 5 Rt HG, and 5 Lt HG). The database 
consisted of 2000 fingerprint images and 1000 hand shape 
images. Each volunteer provided FP and HG biometric traits 
with a written consent. 

We discussed how we obtained a single decision about the 
identity for the user from multiple biometric traits. First, we 
showed how we fused the Rt and Lt HG features in a single 
feature vector to represent and validates the user identity. 
Second, we illustrated how we fused the minutia lists 
originating from different fingers for the same person. Finally, 
we showed how we normalized and fused different biometric 
modalities (HG and FP) using the Min-Max score 
normalization method and the sum-of-scores fusion technique. 
The important analysis that was experimentally emphasized in 
this paper is, what is the effect of biometric feature and score 
levels fusion on the accuracy of the HG-FP biometric system?.  

Results of our single and whole hands showed an accurate 
performance for our systems. Our future work include adding 
the analysis of hand vein (HV) pattern that was implemented 
in [35], [47] and was added to our prototype into our current 
proposed bi-modalities (HG-FP), to achieve with this tri-
modalities even a much better performance with single a 
acquisition steps. The proposed acquisition prototype is able to 
acquire the NIR dorsal hand vein patterns with shown 
preliminary images acquisition results in [26]. We are 
currently collecting a dataset of 100 HV patterns (5 for each Lt 
and Rt hands) belonging to the same enrolled volunteers under 
the same acquisition standard protocol. One final future work 
to our current systems is a combined HG-FP-HV feature 
selection stage prior to feature fusion (as a continuation to our 
HG features discrimination power conducted in [39], [45]), for 
all our current (HG-FP) and our added future modality (HV). 
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