
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1983

 

 

  
Abstract—Flash memory has become an important storage device 

in many embedded systems because of its high performance, low 
power consumption and shock resistance. Multi-level cell (MLC) is 
developed as an effective solution for reducing the cost and increasing 
the storage density in recent years. However, most of flash file system 
cannot handle the error correction sufficiently. To correct more errors 
for MLC, we implement Reed-Solomon (RS) code to YAFFS, what is 
widely used for flash-based file system. RS code has longer computing 
time but the correcting ability is much higher than that of Hamming 
code. 
 

Keywords—Reed-Solomon, NAND flash memory, YAFFS, Error 
Correcting Code, Flash File System 

I. INTRODUCTION 
LASH memory has been increasingly used in many 
embedded systems since NAND flash memory’s 

performance and capacity have been grown. Hard disk drive 
based storage devices can save mass data with low price, but it 
has disadvantages such as huge size, less durability for the 
shock, high power consumption and long response time. Flash 
memory has been appropriated for the small portable devices 
because it overcomes these disadvantages. But it has a low 
reliability problem.  

Multi-level cell (MLC) [1] flash memories have been 
replaced single-level cell (SLC) flash memories in recent years. 
Because multiple bits are stored per memory cell in MLC flash 
memory, the probability of the error occurrence is high. That 
means the larger capacity what flash memory has, the more 
error the system can has. Furthermore, the reliability of MLC 
may become more important even if it assume that the 
reliability is same as that of SLC because of some points like 
erase endurance and soft error. 

That is why the powerful error correcting code (ECC) is 
much needed than SLC flash memory. Widely used flash file 
systems such as Yet Another Flash File System (YAFFS) [2] 
 

Sungjoon Sim is with the Department of Electrical and Computer 
Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, 
Republic of Korea (phone: +82-31-290-7173; fax: +82-31-299-4613; e-mail: 
joonii63@ skku.edu). 

Soongyu Kwon is with the Department of Mobile Systems Engineering, 
Sungkyunkwan University (e-mail: caesar01@skku.edu). 

Dongjae Song is with the Department of Electrical and Computer 
Engineering, Sungkyunkwan University (e-mail: dongjae.song@gmail.com). 

Jong Tae Kim is with the Department of Mobile Systems Engineering and 
the Department of Electrical and Computer Engineering, Sungkyunkwan 
University (e-mail: jtkim@ skku.edu). 

 

and Jounalling Flash File System (JFFS2) [3] depend on the 
controller’s ECC or generate a small ECC on the spare area for 
error correction [4]. Generally, single-bit error correcting codes 
such as Hamming codes, are used for SLC. Single-bit error 
correcting codes are no longer sufficient for MLC [5]. To 
handle this problem, ECCs based on non-binary symbol are 
needed. These codes are specialized to correct burst errors.  

In this paper, the result that Reed-Solomon (RS) code is 
applied for ECC in YAFFS instead of Hamming code. RS code 
is very powerful error correction code to handle burst error 
since it is non-binary code. RS code can correct a symbol error, 
which includes m bits, in contrast to correction ability of 
Hamming code which can correct only one bit error in 256 
bytes data block. Because YAFFS uses spare area to store tag 
and ECC parities, the number of parity for ECC would be 
limited. To fit the number of parities, we divided 256 bytes data 
block by 2. Two each RS codes, they are applied at each 
divided block, can handle one symbol error. Implemented RS 
code can correct up to 12 bit error in 256 byte, 24 bit error in a 
page.  

The rest of the paper is organized as follows. Previous flash 
file systems are shown in Section 2. This section also describes 
their advantages and disadvantages. Section 3 presents our 
scheme of RS encoder and decoder. Simulation results and 
hardware tests are provided in Section 4. Section 5 is the 
conclusion. 

II.  FLASH FILE SYSTEMS 

A. Using Flash Translation Layer 
The widely used existing file systems like FAT cannot be 

applied in flash memory because the architecture of flash 
memory. Some flash file systems include a layer called Flash 
Translation Layer (FTL) [6]. The main purpose of FTL is that 
existing file system can access flash memory as though flash 
memory is general block devices like hard disk drive. The 
Concept of page mapping is as shown in Fig. 1. When file 
system or user access to a stored data, the relevant address has 
to be arrangement. NAND flash memory has a fatal 
disadvantage what is bad block. Physical address has to tangle 
because of bad block. When file system or user access the 
sequential data, they look like be arranged well because FTL 
has address mapping table to solve this problem. And also FTL 
do garbage collection, wear-leveling and bad block 
management to use flash memory appropriately. NAND flash 
memory has limited the number of erase. Usually up to 100 

Implementation of a Reed-Solomon Code as an 
ECC in Yet Another Flash File System 

Sungjoon Sim, Soongyu Kwon, Dongjae Song and Jong Tae Kim 

F



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1984

 

 

thousand in SLC, 10 thousand in MLC is the limit. A page or 
data block has to be broken when a lot of erase occur at the 
particular page. FTL has wear-leveling algorithm to prevent 
this situation is happen. Wear-leveling can partition pages to 
the least used pages. Garbage collection is optimizing 
algorithm to use NAND flash memory. It prevent to waste 
resources by arranging useless pages and using pages.  

No matter how flash file system is constructed using any 
mechanism, it does not matter because FTL switch the flash file 
system to general file system like FAT. This method has some 
advantages that easy to implement and suitable to general file 
system, however it has also disadvantages like its low 
performance because it is not optimized.  

 
Fig. 1 Page mapping method of FTL 

 

B. Using Log Structure Mechanism 
To avoid these problems of FTL, combined flash file systems 

are developed. These file systems are using log-structured 
mechanism [7] because of the disadvantage that flash memory 
cannot be overwritten on the page which has a data already. 
Basically, data can be written on any empty page. In the 
situation that the page that any data is written, however, data 
can be written the page after erase data block what include the 
page instead data are written the page directly.  

Because of a characteristic of flash memory, however, there 
is a weakness that flash memory cannot be used anymore if one 
particular block is erased many times to overwrite data. 
Therefore, log-structured file system is widely used to 
combined flash file systems because of the characteristic that 
file system erases data blocks at a time after collecting 
non-using blocks and writes on empty pages through garbage 
collection and wear-leveling. We can improve performance of 
flash file system from wear-leveling that is one of the properties 
of log-structure if we use log-structured file system. These 
combined flash file systems merely have a disadvantage that 
the early mount time is slow and the amount of memory use is a 
lot. JFFS, JFFS2 and YAFFS are representative example of 
combined flash file systems. Fig. 2 shows the difference 
between the file system with FTL and combined flash file 
system briefly. (a) shows the file system using FTL. The FTL is 
between general file systems, such as FAT, NTFS and EXT3, 
and flash device driver. (b) represents combined flash file 
system. 

JFFS2 is a node based log-structured file system. A node 
including contents information is contained in every page in 
JFFS2. JFFS2 only keeps the minimum index in main memory. 
Because JFFS2 has to build the index each time the file system 

is mounted, its mount time is slow. YAFFS is also one of the 
combined flash file systems, with some advantages over JFFS2 
such as a small taking RAM space and error correction 
mechanisms. However YAFFS also has not enough space for 
ECC parities because it relies on the spare area in each page for 
both error detection and correction. That cause limiting its 
correcting ability to detect and correct lots of errors in page or 
stand the loss if a complete page. 

 
Fig. 2 difference between (a) file system using FTL and  

(b) combined flash file system 

III. OUR SCHEME OF RS ENCODER/DECODER 
YAFFS uses the spare area on each page to store ECC 

parities. This ECC can detect two bit errors and correct one bit 
error per 256 bytes. However its availability is limited by the 
size of spare area what must also be used to store other 
information tags. It is impossible to store a code can correct 
more than one bit error because of the limited size of the spare 
area. To solve this problem, we apply RS code to YAFFS 
instead of Hamming code [8].  

RS code (n, k) using Galois Field (2m) can have (2t) parity 
bits from follow equation (1). 

( , ) (2 1,2 1 2 )m mRS n k t= − − −               (1) 
The number of parities for calculating error position and 

error value is limited because of the flash memory’s 
architecture even though we may correct many errors using RS 
code. Furthermore, the number of total symbols-sum of data 
symbols and parity symbols-should be less than 2m to 
implement RS code, but the number of data symbols is same as 
2m. So we have to divide a data block by 2 to implement RS 
code. One is RS(255,253) using GF(28) and the other is RS(8,6) 
using GF(24).  

First of all, Galois Field (2m) is needed to implement RS code. 
Each Galois Field what is needed for presented RS code is 
generated by using linear feedback shift registers as shown in 
Fig. 3. 

 
Fig. 3 Linear Feedback Shift Register to generate Galois Field  

(a) 28 (b) 24 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1985

 

 

 
The primitive polynomial of each Galois Field, which is based 
on generating method, is represented as following equation (2) 
and equation (3). 

4 4(2 ) 1GF X X= + +                   (2) 
8 2 3 4 8(2 ) 1GF X X X X= + + + +               (3) 

We can calculate the syndrome, the position of errors and the 
value of errors using this GF(2m).  

The partitioning of two RSs in a page is as shown in Fig. 4. 
253 bytes of data from 0 to 252 byte number are used for 
RS(255,253) and 3 bytes of data from 253 to 255 byte number 
are used for RS(8,6). It applies to next 256 bytes of data in same 
way.  

 

 
Fig. 4 partitioning two RSs in a page 

 

A. RS Encoder 
RS encoder is easy to implement because only two parity 

symbols are generated in each RS encoder. At first, 253 bytes 
of data enter the LFSR encoder which is as shown in Fig. 5 (a). 
Then two bytes of generated parity symbols are stored in ECC0 
and ECC1 in spare area. The rest three bytes of data enter the 
encoder, which is as shown in Fig. 5 (b), then one byte of 
generated parity symbol is stored in ECC2. In the same way, 
from 256 to 511 byte number of data handle and parity symbols 
are stored in ECC3-5 because YAFFS code is built to handle 
256 bytes of a page at once. In these calculations, the complex 
computations what are the product of Galois Fields and the 
addition of Galois Fields. The addition of Galois Fields is 
implemented by using exclusive or calculation and the product 
of Galois Fields is implemented by using the addition of two 
degrees of Galois fields.  

 
Fig. 5 LFSR encoder for (a) RS(255,253), (b) RS(8,6) 

 

B. RS Decoder 
Syndrome value is computed from the data when a page read 

occur. Two syndromes are come out from the computation in 
each RS codes in our scheme. That means we can correct one 
symbol if there one symbol error occurs. Since two RS codes 
which have different error correcting ability are implemented in 
a page, we can correct up to four symbols if each error exists in 
different area what the different RS is covered. Total 24 bit 
error can be corrected maximum in a page. Its performance is 
much better than that of Hamming code.  

Error existence is checked by using computed syndrome 
value. There is no error if all syndrome values are zero. Data 
can be used to read operation if there is no error in the data, but 
error correction is next stage if there is error. Error correction 
stage consists of two parts, one is calculating the locations of 
errors and the other is calculating the values of errors. Only one 
computing process is needed to find the locations and values of 
errors because the correction ability of RS code is limited at one 
symbol. The complex computations such as Euclid methods or 
Forney’s algorithm are not necessary for this reason. 

The calculating process of error correction is as follows. At 
first, an error-locator polynomial can be defined as equation 
(4). 

1( ) 1X Xσ σ= +                                 (4) 

The coefficient σ 1 is computed by XOR computation of two 
syndrome values. Second, every degree of Galois Field which 
is related to each RS code is substituted to X in the equation. 
Then the degree of error what the equation is equal to zero is 
found. Third, the location of the error is computed by 
calculating the inverse value of the degree. Forth, the value of 
error is computed by the calculation of divide any syndrome 
value by the location of error.  

 
Fig. 6 The difference of process flow between  
(a) existing decoder and (b) proposed decoder 

 
The difference between the existing decoder of YAFFS code 

and proposed decoder is as shown in Fig. 6 briefly. The basic 
concept of the existing decoder is comparing. To check the 
error exists or not, it generates new parities then compares to 
stored parities which is in spare area. The main idea of 
proposed RS decoder is a syndrome. It calculates syndromes to 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:12, 2010

1986

 

 

check the error exists or not and to compute the location and 
value of the error.  

IV. SIMULATION AND HARDWARE TEST RESULTS 
The implementation of RS code to YAFFS is constructed by 

C language as same as YAFFS base code is. We evaluate 
implemented RS code in two ways. One is computer simulation 
in the Ububtu 8.04 and the other is measuring read and write 
computation times to compare Hamming code and RS code in 
the hardware environment that the Android, including YAFFS, 
is ported as an operating system.  

 

 
 
Table 1 represents the time overhead for error correction in 

the computer simulation. Every result is average of 1 million 
times of simulation. We can recognize that the decoding time of 
the Hamming code when error detected is nearly twice than that 
of Hamming code when no error detected, on the other hand the 
RS code has almost same time overhead between them. 

Fig. 7 shows the simulation results of BERs for using 
Hamming and RS codes. In our simulation, every error is 
randomly located. RS code is applied to three cases. One is that 
every error separates from each other and another is 4-bit burst 
error. The other is 8-bit burst error. As a result, implemented 
RS code is the most efficient in the case of 8-bit burst error.  

 

 
Fig. 7 BER performance for several situations 

 
The environment of hardware test is as follows. The system’s 

processor is S5PC100 from SAMSUNG which is based on 
ARM Cortex™-A8 and the flash memory is K9F2G08 which is 

256MB NAND flash manufactured by SAMSUNG. Android 
1.6 is ported as an operating system with linux kernel 2.6.27 
and the root file system is YAFFS. We compare both read and 
write times in each file system that one is reference YAFFS and 
the other is modified YAFFS. Only ECC has changed from 
Hamming code to RS code in the modified YAFFS.  

There is different time result in two different file systems. 
The time overhead that about 9% of read operation and 34% of 
write operation is obtained. The results represent the process 
time to read or write per 1MB data which is same as 2048 
pages.  

V.  CONCLUSION 
The MLC flash memories have been developed and are 

widely used for a storage device. However, error correction 
codes which are in flash file systems are not enough to 
overcome the disadvantages of MLC. To make error correction 
ability high, we proposed RS code for ECC to YAFFS instead 
of Hamming code. We can recognize that Hamming code is 
faster than RS code, however Hamming code can correct only 
one bit error in 256 bytes of data in contrast to proposed RS 
code can correct up to 12 bits error. 

REFERENCES   
[1] R. Micheloni, R. Ravasio, A. Marelli, et. Al, “A 4Gb 2b/cell NAND Flash 

Memory with Embedded 5b BCH ECC for 36B/s System Read 
Throughput,” IEEE Inter. Solid-state Circuits Conf., Feb. 2006. 

[2] ALEPH ONE LTD. “Yaffs: Yet another flash file system,” 
http://www.yaffs.net. 

[3] D. Woodhouse, “The jounalling flash file system,” In Ottawa Linux 
Symposium (Ottawa, ON, Canada, July 2001). 

[4] Y. Kang, E. L. Miller, “Adding Aggressive Error Correction to a 
High-Performance compressing Flash File System,” EMSOFT’09, 
October 12-16, 2009, Grenoble, France. 

[5] B. Chen, X. Zhang, and Z. Wang, “Error correction for multi-level NAND 
flash memory using Reed-Solomon codes,” Signal Processing Systems, 
2008. SiPS 2008. IEEE. 

[6] A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-memory based file 
system,” In Proceedings of the Winter 1995 USENIX Technical 
Conference (New Orleans, LA, Jan. 1995), USENIX, pp. 155-164. 

[7] M. Rosenblum, J. K. Ousterhout, “The design and implementation of a 
log-structured file system,” ACM Transactions on Computer Systems 10, 
1 (Feb. 1992), 26-52. 

[8] R. W. Hamming, Coding and Information Theory, second ed. 
Prentice-Hall, Englewood Cliffs, New Jersey, 1986. 

 

TABLE I 
TIME OVERHEAD FOR ERROR CORRECTION 

Hamming Encoding Decoding 

No error 30.14 11.56 
Error Detected 30.42 22.76 

RS Encoding Decoding 

No error 360.50 1002.34 
Error  Detected 360.38 1006.14 

*time unit is usec.  
*results from handling one page(512 bytes). 


