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Seung-Mok Han, Woo-Jin Nam, and Seongsoo Lee

Abstract—This paper proposes and implements an core transform
architecture, which is one of the major processes in HEVC video
compression standard. The proposed core transform architecture is
implemented with only adders and shifters instead of area-consuming
multipliers. Shifters in the proposed core transform architecture are
implemented in wires and multiplexers, which significantly reduces
chip area. Also, it can process from 4x4 to 16x16 blocks with common
hardware by reusing processing elements. Designed core transform
architecture in 0.13um technology can process a 16x16 block with 2-D
transform in 130 cycles, and its gate count is 101,015 gates.
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reuse.

I. INTRODUCTION

ECENTLY, quality and resolution of video images
increase continuously. The advent of UHD (ultra-high
definition) image requires new video compression techniques
beyond H.264/AVC (advanced video coding) [1], since UHD
image requires more compression ratio and more computations.
Therefore, a new video compression international standard,
HEVC (high-efficiency video coding) [2], has been developed.
It was proposed and approved by JTC-VC (joint collaborative
team on video coding), a joint research group of ITU-T
(international telecommunication union — telecommunication
standardization sector) VCEG (video coding experts group)
and ISO/IEC (international standard organization/international
electro-technical commission) MPEG (moving picture experts
group).It significantly improves the compression ratio,
efficiently covers very large image sizes such as 2k and 4k
UHD, and provides parallel-processing features for easy
hardware implementation. Its final version was published on
Feb. 2013.

In this paper, a new architecture for HEVC core transform
was proposed for high-speed and low-power implementation. It
is implemented with only adders and shifters instead of
area-consuming multipliers. Its shifters are implemented in
wires and multiplexers, which significantly reduces chip area.
Also, it can process from 4x4 to 16x16 blocks with common
hardware by reusing processing elements.

I1.HEVC CORE TRANSFORM

Fig. 1 shows a block diagram of HEVC encoder. Its major
processes are core transform, quantization, intra prediction,
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motion estimation, motion compensation, sample adaptive
offset filter, and context adaptive binary arithmetic coding.

Like H.264/AVC transform, HEVC core transform
processes 1-D transforms twice (once horizontal and once
vertical) for 2-D transform. HEVC core transform has the
following 3 characteristics.

First, in HEVC core transform, forward and inverse
transforms exploit same coefficients with transpose [3], as
shown in Fig 2. It means that both forward and inverse
transforms can be processed by same hardware with transpose.

Second, in HEVC core transform, butterfly architecture can
be applied only to only even parts, not to odd part [4], as shown
in Fig. 3. This means that the number of multipliers can be
reduced in only even parts by exploiting butterfly architecture.
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Fig. 1 Block diagram of an HEVC encoder
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Fig. 2 Relationship between forward and inverse transforms in HEVC
core transform
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Fig. 3 Butterfly structures of even and odd parts in HEVC core transform

Third, in HEVC core transform, the coefficients of smaller
block is same with the coefficients of even part of larger block
[5], as shown in Fig. 4. It means that hardware for larger block
can also process smaller block by exploiting only even part.

11l. HEVC CORE TRANSFORM

A. Architecture Design

Fig. 5 shows the coefficients of 16-point HEVC core
transform. It can be implemented as Fig. 6, and it can process
from 4x4 to 16x16 blocks with same hardware [6]. However, it
suffers from speed problems in small blocks, since the
processing time of 44-point transform are 4 times longer than 1
16-point transform.

In this paper, a new architecture is proposed as shown in Fig.
7. By reusing processing elements, it can concurrently process
4 4-point transforms, or 2 8-point transforms, or 1 16-point
transforms. Figs. 7, 8, and 9 show 16-point, 8-point, and 4-point
transforms, respectively.

B. Processing Element Design

Coefficients of HEVC core transform are fixed constants, so
it can be implemented by adders and shifters without
multipliers [3], [7]. Considering the coefficients in Fig. 5, they
have 28 different absolute values as shown in Table I. It shows
that all coefficients can be calculated by maximum 3
additions/subtractions and maximum 4 shifts. For examples,
A*75 = A*(64+8+2+1) = (A<<6)+(A<<3)+(A<<1)+(A<<0),
and it requires 3 additions and 4 shifts. Similarly, A*87 =
A*(64+32-8-1) = (A<<6)+(A<<5)-(A<<3)-(A<<0), and it
requires 1 addition, 2 subtractions, and 4 shifts.
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Fig. 5 Coefficients of 16-point HEVC core transform
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TABLE |
ADDITION-SHIFT OPERATIONS OF 16-POINT HEVC CORE TRANSFORM
Coefficients  Addition/Shift Operations # of Additions  # of Subtractions  # ofShift
A*4 =A*(4) =(A<<2) 0 0 1
A*9 =A*(8+1) =(A<<3)+(A<<0) 1 0 2
A*13 =A*(8+4+1) =(A<<3)+(A<<2)+(A<<0) 2 0 3
A*18 =A*(16+2) =(A<<4)+(A<<1) 1 0 2
A*22 =A*(16+4+2) =(A<<4)+(A<<2)+(A<<1) 2 0 3
A*25 =A*(16+8+1) =(A<<4)+(A<<3)+(A<<0) 2 0 3
A*31 =A*(32-1) =(A<<5)-(A<<0) 0 1 2
A*36 =A*(32+4) =(A<<5)+(A<<2) 1 0 2
A*38 =A*(32+4+2) =(A<<5)+(A<<2)+(A<<1) 2 0 3
A*43 =A*(32+8+2+1) =(A<<5)+(A<<3)+(A<<1)+(A<<0) 3 0 4
A*46 =A*(32+8+4+2) =(A<<5)+(A<<3)+(A<<2)+(A<<1) 3 0 4
A*50 =A*(32+16+2) =(A<<5)+(A<<4)+(A<<1) 2 0 3
A*54 =A*(32+16+4+2)  =(A<<5)+(A<<4)+(A<<2)+(A<<1) 3 0 4
A*57 =A*(32+16+8+1)  =(A<<5)+(A<<4)+(A<<3)+(A<<1) 3 0 4
A*61 =A*(64-2-1) =(A<<6)-(A<<1)-(A<<0) 0 2 3
A*64 =A*(64) =(A<<6) 0 0 1
A*67 =A*(64+2+1) =(A<<B6)+(A<<1)+(A<<0) 2 0 3
A*70 =A*(64+4+2) =(A<<B6)+(A<<2)+(A<<1) 2 0 3
A*73 =A*(64+8+1) =(A<<6)+(A<<3)+(A<<0) 2 0 3
A*T5 =A*(64+8+2+1) =(A<<6)+(A<<3)+(A<<1)+(A<<0) 3 0 4
A*78 =A*(64+8+4+2) =(A<<6)+(A<<3)+(A<<2)+(A<<1) 3 0 4
A*80 =A*(64+16) =(A<<6)+(A<<4) 1 0 2
A*83 =A*(64+16+2+1)  =(A<<6)+(A<<4)+(A<<1)+(A<<0) 3 0 4
A*85 =A*(64+16+4+1)  =(A<<6)+(A<<4)+(A<<2)+(A<<0) 3 0 4
A*87 =A*(64+32-8-1) =(A<<6)+(A<<5)-(A<<3)-(A<<0) 1 2 4
A*88 =A*(64+16+8) =(A<<6)+(A<<4)+(A<<3) 2 0 3
A*89 =A*(64+16+8+1)  =(A<<6)+(A<<4)+(A<<3)+(A<<0) 3 0 4
A*90 =A*(64+16+8+2)  =(A<<6)+(A<<4)+(A<<3)+(A<<1) 3 0 4

Fig. 10 shows the architecture of the proposed processing
element to process the dataflow of Fig. 7. Shifters in Fig. 10
performs shift operations from 0 to 6 bits, but it is implemented
by only hardwire connections without additional circuits.
Therefore, the processing element is implemented by only
multiplexors, AND gates, adders, and subtractors.
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Fig. 6 Conventional HEVC core transform architecture

In Fig. 10, two inputs of a processing element are selected
among the outputs of other processing elements. There are 26

processing elements in Fig. 7, so 26:1 MUX is required.
However, by careful input assignment, first and second inputs
of a processing element can be selected among maximum 3 and
5 outputs of other processing elements, respectively. Therefore,
3:1and 5:1 MUXs are used in Fig. 10.
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Fig. 7 Proposed architecture of HEVVC core transform
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C.Gate Counts

In this paper, the conventional and the proposed architectures
are designed and synthesized in 0.13um technology to compare
gate counts. Proposed architecture exploits 1 units of core
transform block in Fig. 7, while conventional architecture
exploits 4 units of core transform blocks in Fig. 6 to have same
throughput with proposed architecture.

From the synthesis results, gate counts of the proposed and
conventional architectures are 101,013 and 292,325 gates,
respectively. Therefore, the proposed architecture reduces the
gate counts to about 1/3 with same throughput.
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Fig. 9 4-point inverse transform operation in the proposed architecture

IV. CONCLUSIONS

This paper proposes and implements a low-areaHEVC core
transform architecture. It is implemented with only adders and
shifters instead of area-consuming multipliers. Shifters in the
proposed core transform architecture are implemented in wires
and multiplexers, which significantly reduces chip area. Also, it
can process from 4x4 to 16x16 blocks with common hardware
by reusing processing elements. Designed core transform
architecture in 0.13um technology can process a 16x16 block
with 2-D transform in 130 cycles, and its gate count is 101,015
gates.

Fig. 10 Proposed processing unit of HEVC core transform
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