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Abstract— The log periodogram regression is widely used in em-
pirical applications because of its simplicity, since only a least squares
regression is required to estimate the memory parameter, d, its good
asymptotic properties and its robustness to misspecification of the
short term behavior of the series. However, the asymptotic distribution
is a poor approximation of the (unknown) finite sample distribution
if the sample size is small. Here the finite sample performance of dif-
ferent nonparametric residual bootstrap procedures is analyzed when
applied to construct confidence intervals. In particular, in addition to
the basic residual bootstrap, the local and block bootstrap that might
adequately replicate the structure that may arise in the errors of the
regression are considered when the series shows weak dependence in
addition to the long memory component. Bias correcting bootstrap
to adjust the bias caused by that structure is also considered. Finally,
the performance of the bootstrap in log periodogram regression based
confidence intervals is assessed in different type of models and how
its performance changes as sample size increases.
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I. INTRODUCTION

Long memory processes have emerged as a useful tool to

fill the gap between weakly dependent stationary processes

and nonstationary integrated processes with a unit root. Long

memory processes are characterized by a strong dependence

such that the lag-j autocovariances γj decrease hyperbolically

as j → ∞
γj ∼ Gj2d−1

for some finite constant G, d is the memory parameter and

a ∼ b means that a/b tends in the limit to 1. Such processes are

usually denoted I(d). For d > 0,
∑

|γj | = ∞ but stationarity

is guaranteed as long as d < 1/2 and mean reversion holds

for d < 1. It is also usually assumed that d > −1/2, which

warrants invertibility.

Long memory can alternatively and equivalently be defined

in the frequency domain. A stationary time series process has

long memory if its spectral density function f(·) satisfies

f(λ) ∼ C|λ|−2d as λ → 0, (1)

for some positive finite constant C. Under positive long

memory, which is the most common case in economic and

financial series, the spectral density diverges at the origin at

a rate governed by d. If d > 1/2 the process is not stationary

and, by definition, the spectral density does not exist. However

pseudo spectral density functions can be similarly defined (e.g.

[1]) with a behavior as in (1).

One issue of main interest in these processes is the es-

timation of d. There is a large number of different proce-

dures, parametric as maximum likelihood or the asymptotically

equivalent Whittle estimation, semiparametric or local as the

log periodogram regression, the local Whittle or the average

periodogram and nonparametric such as the R/S. Perhaps

the most popular is the log periodogram regression estimator

(LPE hereafter) originally proposed by [2] and analyzed in

detail in [3] and [4]. The LPE is widely used in empirical

applications because of its simplicity, since only a least squares

regression is required, its good asymptotic and finite samples

properties and its robustness to misspecification of the short

term behavior of the series. Taking logarithms of the local

specification of the spectral density in (1), the LPE (d̂) is

obtained by least squares in the regression

log Ij = a + dXj + uj , j = 1, ..., m, (2)

where Xj = −2 log λj , a = log C + c, c = 0.577216 is

Euler’s constant, Ij = (2πn)−1|
∑n

t=1 xt exp(−itλj)|
2 is the

periodogram of the series xt, t = 1, .., n, at Fourier frequency

λj = 2πj/n, n is the sample size, uj = log(Ijf(λj)
−1) −

c and m represents the bandwidth, that is the number of
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frequencies used in the estimation. For the asymptotics, this

bandwidth has to increase with n but at a slower rate such that

the band of frequencies used in the estimation degenerates to

zero and the local specification in (1) remains valid. [3] and

[4] proved the consistency of d̂ in the stationary and invertible

region −0.5 < d < 0.5, and obtained its limit distribution

√
m(d̂ − d)

d
→ N

(

0,
π2

24

)

. (3)

Reference [1] showed that the consistency holds even in the

nonstationary region [0.5, 1) and the same limit distribution

remains valid for d ∈ [0.5, 0.75). Consistency is preserved

in the unit root case d = 1 with a mixed normal limit

distribution ([5]) but the LPE is inconsistent for d > 1 ([6]).

For similarities with the local Whittle estimator, the asymptotic

distribution of the LPE for d ∈ [0.75, 1) is expected to be non

normal and non pivotal depending on d ([7]).

In practice the choice of the bandwidth is crucial, a large

m decreases the variance at the cost of a higher bias which

can be extremely large in some situations, for example in the

presence of some short term component such as those analyzed

below. The choice of an optimal bandwidth is not a simple

task. Some attempts have been made in [8], who proposes to

estimate the bandwidth together with the rest of parameters by

minimizing the contrast function, [9] who propose an adaptive

LPE, and [10] with a plug in version of an optimal bandwidth

in an asymptotic mean squared error sense. However, the

performance of all these procedures is not very satisfactory

and the results for a grid of bandwidths are usually shown in

empirical applications.

The log-periodogram estimation of the memory parameter

in economic series raises the problem of the small sample size

since many economic time series consist of low frequency,

monthly ([11]), quarterly ([12] and [13]) or even yearly ([12]

and [13]) data. Furthermore, if the series shows a rich spectral

behavior around the origin the bandwidth has to be low enough

to avoid a large bias in the estimation of d ([14]). Also the

strong seasonality in many quarterly and monthly economic

series compels the use of a small bandwidth to avoid distorting

influence of neighbouring seasonal spectral poles ([15]). As

a result the number of frequencies used in the estimation is

small and, as noted in [16], the asymptotic distribution in (3)

is a poor approximation of the small sample distribution of

d̂. In this situation, the bootstrap could be a useful tool to

make inference without relying on the asymptotic probability

distribution.

The application of the bootstrap to approximate the dis-

tribution of some statistics of a long memory series xt,

t = 1, 2, ..., n, has primarily focus on generating bootstrap

samples of the series to get the bootstrap distribution of

a statistic T (x1, ..., xn) (usually an estimator of d or a t-

statistic). This has been done by a plug-in parametric bootstrap

([17]), by a pre-whitening and re-coloring bootstrap either in

the time domain ([18]) or in the frequency domain ([19]),

or bootstrapping directly the periodogram ([20]). In the LPE

setup the bootstrap is carried out previously to the definition

of the regression model (2) and the bootstrapped dependent

variable is then the logarithm of the periodogram of the boot-

strap samples. Reference [21] proposed instead to bootstrap

directly the residuals in the regression (2) avoiding in that

way the necessity to deal with the temporal dependence of xt

with the corresponding computational savings and robustness

against misspecification. We focus here in this last approach

and analyze the implementation of different bootstraps on the

coverage of confidence intervals.

As already mentioned, the LPE can be highly biased in the

presence of some weak dependent component. Reference [22]

shows that an autoregressive or moving-average component in

an ARFIMA model can seriously distort the estimation of the

memory parameter with a large bias. The source of the bias is

the effect of these short memory components on the spectral

behavior around frequency zero such that the approximation

(1) is only reliable for frequencies very close to the origin.

This weak dependence, not considered in the regression in (2),

affects the behavior of uj such that it shows some remaining

structure. To try to capture this structure we consider a version

of the local bootstrap of [23], applied also in a similar long

memory context by [20], and compare its performance with

the nonparametric residual and block bootstrap. Contrary to

the local bootstrap that maintains the global structure of the

residuals, the block bootstrap, designed for time dependent

data, conserves the local or neighbouring structure by boot-

strapping different overlapping blocks. We are also concerned

with the effects of the bias in the LPE and evaluate the capacity

of different bias corrections usually employed in the bootstrap

literature, namely the Bias Corrected (BC) percentile of [24],

the accelerated Bias Corrected (BCa) percentile [25] and the

Constant Bias Correcting (CBC) estimator of [26]. In addition

the bootstrap-t method of [24], which implicitly includes a

bias adjustment, is also examined.

The paper is organized as follows. Section II describes the

different bootstrap procedures that we analyze in the Monte

Carlo in Section III. Finally Section IV concludes.

II. DIFFERENT BOOTSTRAPS PROCEDURES IN LPE

The bootstrap, first introduced by [27], is an important

tool for statistical inference to approximate standard errors of

estimators, confidence intervals or p-values for test statistics,

especially in complicated models. The implementation of the

bootstrap relies on using the original sample as if it were a

population to generate pseudo data. New samples, bootstrap

samples, are then obtained resampling from it. Therefore, the

bootstrap is usually interesting to approximate the asymptotic

distribution of a statistic in complicated models or an unknown

finite sample distribution when the asymptotic distribution

does not resembles the finite sample counterpart.

Here the bootstrap to calculate confidence intervals for the

LPE that improve standard confidence intervals based on the

asymptotic distribution in a small sample size situation is used.

We focus on a bootstrap in a regression context, using the

LPE regression (2). There are two general bootstrap based

regression methods: The cases resampling or pairs bootstrap

considers the regressors as random covariates, changing from

sample to sample, whereas the model based resampling or

residual bootstrap takes the regressors as fixed. We use here a
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nonparametric residual bootstrap since the regressor is based

on non stochastic Fourier frequencies and we do not assume

any probability distribution for the error term in the regression

model, involving a nonparametric resampling of the residuals.

In this section the three nonparametric bootstrap procedures

that are considered competitive to replicate the finite sample

distribution of the LPE are described. In all of them, after

obtaining the OLS estimated coefficients, the ûj residuals

are rescaled to account for the leverages of the observations,

since even when the errors are homoscedastic, the residuals

have variances that depend on those leverages. Therefore the

modified residuals are resampled.

A. Residual bootstrap (RB)

The appropriate performance of this simple bootstrap in the

LPE context over other procedures, such as the wild bootstrap,

has been discussed in [21]. The residual bootstrap for the log

periodogram regression follows these steps:

1) Obtain the LPEs, â, d̂, by least squares in the regression

(2) and the residuals ûj = log Ij − â − d̂Xj . Construct

the modified residuals v̂j = ûj/(1 − hj)
1/2 ([28]),

where hj = [X(X ′X)−1X ′]jj and X is the matrix with

columns the regressors in (2), that is 1 and Xj , ensuring

in that way constant variances of v̂j if the disturbances

uj were homoscedastic.

2) Resampling with replacement from the modified resid-

uals v̂j , and giving equal probability 1/m to every

residual, get B bootstrap samples v̂∗bj , b = 1, 2, ..., B and

j = 1, ..., m. Using the empirical distribution function

of the residuals and based on model (2) we obtain the

corresponding bootstrap dependent variable log I∗bj =

â + d̂Xj + v̂∗

bj .

3) Fit the regression model (2) in each bootstrap sample to

obtain the B bootstrap estimates d̂∗

b , b = 1, ..., B.

B. Residual local bootstrap (RLB)

The RB implicitly assumes that the errors do not have any

structure and their behavior approximate an iid sequence. This

can be quite unrealistic, especially when the long memory

series contains also a short memory component. We propose

here a version of the local bootstrap ([23]) that tries to

capture the structure of the errors by bootstrapping only in

a neighborhood of each observation. It follows these steps:

1) Step 1 in the RB.

2) Select a resampling width km ∈ N , km ≤ [m/2] for [·]
denoting ”the integer part of”.

3) Define i.i.d. discrete random variables S1, ..., Sm taking

values in the set {0,±1, , ...,±km} with equal probabil-

ity 1/(2km + 1).
4) Generate B bootstrap series v̂∗

bj = v̂|j+Sj |
if |j + Sj | >

0, v̂∗

bj = v̂1 if j+Sj = 0 for b = 1, 2, ..., B, j = 1, ..., m.

5) Generate B bootstrap samples for the dependent variable

log I∗bj = â+ d̂Xj + v̂∗bj for b = 1, 2, ..., B, j = 1, ..., m.

6) Fit the regression model (2) in each bootstrap sample to

obtain the B bootstrap estimates d̂∗

b , b = 1, ..., B.

C. Residual block bootstrap (RBB)

The local bootstrap attempts to conserve the global structure

of the residuals by resampling locally in a neighborhood of

each residual. On the contrary, the block bootstrap tries to

maintain the local structure of the residuals by resampling

blocks of observations. The idea of the block bootstrap is

similar to the iid nonparametric bootstrap, both resampling

observations with replacement. But instead of resampling

single observations, the block bootstrap resamples blocks of

consecutive observations. Different versions of block bootstrap

have been proposed. We use here the moving blocks bootstrap

proposed by [29] and [30], which has better properties than

the version of non overlapping blocks ([31]).

1) Step 1 in the RB.

2) Select the block size l and obtain m − l + 1 possible

overlapping blocks of consecutive modified residuals of

length l.

3) Select (m/l) blocks resampling with replacement from

the m − l + 1 overlapping blocks, that is, giving

probability 1/(m − l + 1) to each overlapping block,

and concatenating these blocks to obtain the bootstrap

sample of modified residuals of size m.

4) Generate B bootstrap samples for the dependent variable

log I∗bj = â+ d̂Xj + v̂∗bj for b = 1, 2, ..., B, j = 1, ..., m.

5) Fit the regression model (2) in each bootstrap sample to

obtain the B bootstrap estimates d̂∗

b , b = 1, ..., B.

These bootstrap techniques are used to construct confidence

intervals trying to improve the coverage of confidence intervals

based on the asymptotic distribution defined as

I(1−α) =
(

d̂ − z1−α
2
ŝe(d̂); d̂ − zα

2
ŝe(d̂)

)

where ŝe(d̂) is the OLS estimate of the standard error and zα

indicate de 100 · αth percentile of a N(0, 1) distribution. The

use of the OLS standard error ŝe(d̂) instead of the asymptotic

variance in (3) has proved to significantly improve the finite

sample coverage probabilities.

For each of the three bootstrap resampling strategies we

consider five different classes of bootstraps confidence inter-

vals for the memory parameter: the percentile interval (P), the

constant bias correction percentile interval (CBC), the bias

corrected interval (BC), the accelerated bias corrected interval

(BCa) and the bootstrap-t interval (b-t).

1) The basic percentile method (P), proposed by [27], con-

siders the existence of some monotonic transformation

of the parameter d, φ = g(d), verifying

φ̂ − φ ∼ N(0, σ2) (4)

has the advantage of its simplicity because it does not

require knowledge of the parameters defining the (possi-

bly unknown) distribution of the statistic of interest. This

method does not require of knowing of a σ parameter

or the normalizing function of the parameter φ. The

(1 − α) percentile interval first is calculated for φ̂ and

then transform this back to the d̂ scale The (1 − α)
percentile interval is defined as

I(1−α) =
(

d̂∗

((B+1)( α
2
)) ; d̂∗((B+1)(1−α

2
))

)

.
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where the d̂∗(j) denotes the jth ordered value of the boot-

strap estimates of d. So we estimate the α/2 percentile

by the (B + 1)(α
2 ) ordered value of d̂∗. We choose a B

value such that (B + 1)(α
2 ) is an integer.

For the percentile method to work well we need d̂ to

be an unbiased estimator of the memory parameter. But

this does not usually happen. Next we consider different

alternatives that try to handle this possible bias.

2) Reference [26] proposed a method for reducing the

finite sample bias of consistent estimators using a pre-

bootstrap estimation of the bias. The constant bias

correcting (CBC) estimator is obtained as d̃ = d̂ − b̂

where b̂ is a bootstrap estimate of the finite sample bias

of d̂. This bias correction is adequate when the bias

function does not depend on d, which is the case, at

least asymptotically, for the LPE in many long memory

models [4]. The bias is estimated in a prior bootstrap as

b̂ =
1

B

B
∑

b=1

d̂∗b − d̂

where d̂∗b is the LPE obtained in the bootstrap sample b

out of B replications. With this correction the confidence

interval is obtained as in the basic percentile with the

estimates of d in each bootstrap replication corrected

with the bias estimate b̂

I(1−α) =
(

d̃∗((B+1)( α
2
)) ; d̃∗((B+1)(1−α

2
))

)

.

In fact, for each bootstrap replication a bootstrap bias

correction should be applied resulting in a double boot-

strap. However, this approach would be computationally

infeasible in our Monte Carlo and we instead use the

same bias estimate for every bootstrap replication in a

bootstrap after bootstrap procedure ([32]).

3) In order to improve the coverage probability of the basic

percentile interval [24] introduced the bias-corrected

(BC) percentile. This method, as in the basic percentile

one, based on the existence of some monotonic function

φ = g(d), but in this case considering the possibility

of bias by introducing a bias parameter k0 in the

distribution of the statistic of interest.

φ̂ − φ ∼ N(−k0σ, σ2) ⇒
φ̂ − φ

σ
∼ N(−k0, 1)

The confidence interval is then constructed as

I(1−α) =
(

d̂∗((B+1)( α̂
2
)) ; d̂∗((B+1)(1− α̂

2
))

)

,

where

α̂

2
= Φ

(

2k0 + zα
2

)

and 1 −
α̂

2
= Φ

(

2k0 + z1−α
2

)

,

Φ is the standard normal cumulative distribution func-

tion and k0 is the bias-correction parameter that can be

estimated as

k̂0 = Φ−1

(

♯{d̂∗ < d̂}

B

)

where ♯{d̂∗ < d̂} represents the number of bootstrap

estimates d̂∗ smaller than d̂. This method improves the

performance of the percentile method in non symmetric

situations. However if the distribution of d̂∗ is symmetric

about d̂, then k0 = 0 and P and BC confidence intervals

are the same.

4) The accelerated bias-corrected (BCa) percentile method

of [25] accounts also for some unknown monotone

transformation φ = g(d), some unknown bias factor k0

and some unknown skewness or acceleration correction

factor s so that

φ̂ − φ ∼ N(φ − k0σ(φ), σ2(φ))

where, now, instead of considering a constant σ, we

have the possibility of changing with φ, σ(φ) = 1+ sφ,

such that bias and variance can depend on it. The BCa

confidence interval is defined as

I(1−α) =
(

d̂∗

((B+1)( α̃
2
)) ; d̂∗((B+1)(1− α̃

2
))

)

,

where

α̃

2
= Φ

(

k0 +
k0 + zα

2

1 − s
(

k0 + zα
2

)

)

and

1 −
α̃

2
= Φ

(

k0 +
k0 + z1−α

2

1 − s
(

k0 + z1−α
2

)

)

.

If the shape, or skewness, of the probability distribution

of d̂ does not change when d varies, the acceleration

parameter s takes a value of zero and this confidence

interval will be equal to the BC confidence interval. In

addition, if the k0 parameter is zero we are in the basic

percentile case.

Although the bias constant k0 is estimated as in the BC,

the acceleration parameter s is not easy to estimate and

different ways have been proposed. In this paper, we use

the estimate of [33], adequate for regression models like

(2)

ŝ = −
1

6m7/2σ̂3
uS

3/2
xx

m
∑

j=1

û3
j

m
∑

j=1

X3
j

where σ̂2
u =

∑

m

j=1
û2

j

m
and Sxx =

∑m

j=1(Xj − X)2,

X =

∑

m

j=1
Xj

m
.

5) The percentile-t or bootstrap-t method ([24]) is based

on a given studentized pivot, in this case: t = d̂−d

ŝe(d̂)
.

Applying the percentile method to the t statistic the

estimates of the required percentiles are obtained. The

resulting (1 − α) confidence interval is

I =
(

d̂ − ŝe(d̂)t∗((B+1)(1−α
2
)); d̂ − ŝe(d̂)t∗((B+1)( α

2
))

)

where the bootstrapped t statistics are t∗ = d̂∗

−d̂

ŝe∗(d̂∗)
. A

bias correction is implicit in the definition of the t∗

statistic. In a general context, the main disadvantage

of this method is the necessity of an estimate of the
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standard error of the parameter. However, in this case,

the estimate of the standard error of the parameter is

easily obtained as

ŝe(d̂) =

(

σ̂2
u

∑m

j=1(Xj − X)2

)1/2

.

For a more detailed description of these and others bootstrap

resample procedures and confidence intervals see, for example,

[34], [33] or [35].

III. MONTE CARLO SIMULATION STUDY

The performance of the bootstrap in LPE based confidence

intervals is assessed in three different type of models:

• Model 1: (1 − 0.9L)(1 − L)dxt = ε1t

• Model 2: (1 − 0.3L)(1 − L)dxt = ε1t

• Model 3: xt = π−1(1 − L)−dε1t + ε2t

where L is the lag operator (Lxt = xt−1), ε1t and ε2t are

independent standard normal series and d ∈ (0, 0.4, 0.8). For

d = 0 the series are short memory such that the spectral

density function is positive, bounded and continuos at every

frequency. The value d = 0.4 corresponds to a stationary long

memory series with a spectral density diverging at the origin.

For d = 0.8 the series is nonstationary and mean reverting.

Note that in this case the asymptotic distribution in (3) does

not apply and the LPE, although consistent, has a nonnormal

limit distribution that depends on d (non pivotal).

The first two models belong to the ARFIMA class and have

a spectral (pseudospectral in the nonstationary case) density

function

f(λ) =
1

2π

[2 sin
(

λ
2

)

]−2d

|1 − φe−iλ|2
∼

1

2π(1 − φ)2
|λ|−2d as λ → 0

for φ = 0.9, 0.3 in Models 1 and 2 respectively. Both include

an AR(1) short memory component with moderate (Model 2)

and high (Model 1) dependence that gives rise to a bias in the

LPE if a large bandwidth is used, especially in Model 1. Model

3 is a long memory series perturbed by an added noise with

a long run noise to signal ratio π2. These models have gained

recently great interest in the econometric modeling since it

encompasses many economic and financial series (e.g. [36]

and [37]). In Models 1 and 2 the asymptotic bias of the LPE

does not depend on d. However, in Model 3 the asymptotic

bias is a function of d ([38]) such that the CBC should perform

worse. The bias in this class of models is also very high if a

large bandwidth is used.

Since the bootstrap is essentially beneficial with a low

sample size, we only consider n = 128, which is comparable

to the number of observations in many economic series as

those analyzed in the next section. For each model three

bandwidths are considered m = 5, 10 and 20. For the local

bootstrap we use different resampling widths km = 2 (for

m = 5), km = 2, 4 (for m = 10) and km = 2, 4, 8 (for

m = 20) and the block bootstrap is analyzed with blocks

of length 5 (for m = 10) and 5, 10 (for m = 20), which are

similar to the lengths of the blocks in the local bootstrap. Since

the results are very sensitive to the choice of the bandwidth

we also consider the plug-in optimal bandwidth proposed by

[10] and defined as m∗ = Ĉn4/5 for

Ĉ =

(

27

128π2

)1/5

K̂−2/5

where K̂ is obtained as the third coefficient in an ordinary

linear regression of log Ij on (1,−2 log λj , λ
2
j/2) for j =

1, 2, ..., Anδ , with 4/5 < δ < 1 and A an arbitrary constant.

Following [10], we use δ = 6/7 and A = 0.25. Note that this

optimal bandwidth is only consistent for Models 1 and 2 in

the stationary region, but we use it also in the rest of cases

for illustrative purposes. In practice m∗ is obtained as the

median of the optimal bandwidths in 1000 series generated

in each model. The use of the median instead of the mean

avoids the distorting effect of extreme cases. We get in this

way m∗ = 12, 13 and 12 for Models 1, 2 and 3 respectively.

The optimal bandwidth is quite robust to different values of d

(for large d the optimal bandwidth differs at most one unity

from the corresponding optimal bandwidth for low d) and we

use the same m∗ for all d. Due to the poor performance of

the RBB, only the RB and RLB (with km = 2, 4 and 6) are

analyzed for m∗. The number of bootstraps is B = 999 which

is large enough for the calculous of confidence intervals ([34]).

The number of simulations is 1000.

TABLE I

LPE 95% CONFIDENCE INTERVALS COVERAGE FOR m = 5

AR(1) p=0.9 AR(1) p=0.3 SPN

d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8

Asym

72.8 72.8 76.9 85.9 85.5 86 86.3 79.4 85

1.790 1.756 1.560 1.766 1.761 1.704 1.814 1.770 1.717

RB

P 70.5 71.4 75.2 84.7 84.9 85.4 85.3 78.1 83.9

1.734 1.702 1.520 1.714 1.713 1.657 1.758 1.718 1.663

CBC 71 72.3 75.6 84.7 85.3 85.8 85.4 78.5 84.7

1.769 1.737 1.553 1.749 1.749 1.690 1.792 1.752 1.697

BC 70.9 70.7 75.1 83.9 84.9 85.3 85 77.8 83.5

1.725 1.693 1.511 1.704 1.706 1.648 1.749 1.709 1.653

BCa 70.9 71.4 75.3 84.3 84.7 85.4 85.2 77.8 84.1

1.740 1.706 1.525 1.719 1.717 1.662 1.763 1.722 1.670

b-t 91.8 88.5 90 95.2 94.8 95.3 95.8 89.8 94.2

2.849 2.802 2.481 2.813 2.806 2.709 2.890 2.818 2.728

RLB(2)

P 66 68.6 73.6 90.5 90.1 91.3 90.6 84.7 90.2

1.668 1.636 1.443 1.631 1.631 1.579 1.657 1.638 1.600

CBC 70.6 70.7 72.4 89.2 89.9 89.9 90 84.2 90

1.813 1.781 1.574 1.783 1.789 1.727 1.815 1.790 1.739

BC 62.5 64 64.2 80 80.6 79.3 79.9 75.2 79.9

1.561 1.524 1.355 1.536 1.518 1.463 1.548 1.519 1.487

BCa 61.5 63.4 64.4 80.8 80 79.3 79.5 75.8 79.6

1.559 1.527 1.356 1.537 1.518 1.465 1.552 1.524 1.488

b-t 89.4 87.3 89.1 95.5 94.4 94.6 95.7 89.6 93.3

2.714 2.665 2.383 2.698 2.668 2.574 2.763 2.686 2.609

SPN stands for the Signal Plus Noise process in Model 3. RB and RLB(km) denote the residual bootstrap and the

residual local bootstrap with resampling width km . In each cell the first number is coverage frequency in percentages

over 1000 simulations and the number below it is the average length of the interval. Asym, P, CBC, BC, BCa and b-t

denote the confidence intervals based on the asymptotic distribution, the basic percentile, the constant bias correcting

percentile, the bias corrected, the accelerated bias corrected and the bootstrap-t respectively.

Tables I-IV show the coverage frequencies in percentage

(first number in each cell) and the average length of the interval

(under the frequencies) of confidence intervals for a 95%

nominal confidence level over 1000 Monte Carlo replications

with bandwidths m = 5, 10, 20 and m∗. The following

conclusions can be extracted:

• The bootstrap confidence intervals clearly beats the

asymptotic distribution with better coverage frequencies.
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TABLE II

LPE 95% CONFIDENCE INTERVALS COVERAGE FOR m = 10

AR(1) p=0.9 AR(1) p=0.3 SPN

d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8

Asym

34.7 38.5 47 92.2 89.6 91 89.9 80.2 82.3

1.097 1.068 0.907 1.085 1.097 1.053 1.086 1.099 1.084

RB

P 37.7 40.5 49 92.4 90.1 90.6 90.5 79.8 81.4

1.102 1.073 0.916 1.086 1.100 1.052 1.090 1.100 1.089

CBC 37.1 40.4 48.9 92.5 90.5 91 90.7 79.9 80.8

1.104 1.074 0.917 1.088 1.102 1.054 1.092 1.102 1.090

BC 39.1 43.5 51.5 92.5 90.5 91.3 90 78.4 80

1.102 1.073 0.916 1.087 1.101 1.053 1.090 1.099 1.090

BCa 39 43.4 51.3 92.5 90.4 91.3 90 78.5 80.1

1.102 1.073 0.915 1.086 1.101 1.053 1.090 1.099 1.089

b-t 50 53.6 62.6 95.2 94.4 95.2 93.7 84.4 85.7

1.297 1.263 1.073 1.285 1.300 1.246 1.286 1.304 1.283

RLB(2)

P 25.8 28.8 36.7 88.9 85.6 87 87.3 75.3 76.5

0.954 0.929 0.792 0.929 0.948 0.895 0.937 0.939 0.915

CBC 26.2 30.7 38 87.6 82.9 84.8 84.9 75.1 75.6

0.967 0.940 0.803 0.942 0.960 0.906 0.952 0.953 0.927

BC 26.1 30.6 38.1 83.7 79.8 81.7 80.8 70.8 71.3

0.947 0.920 0.793 0.924 0.942 0.892 0.932 0.935 0.908

BCa 26 30.6 38.1 83.7 79.8 81.6 80.8 70.9 71.4

0.947 0.920 0.794 0.923 0.941 0.892 0.932 0.935 0.907

b-t 44.5 48.3 57.2 93.4 92.7 93.6 93.5 83.4 83.5

1.275 1.229 1.086 1.236 1.261 1.190 1.259 1.255 1.227

RLB(4)

P 28.8 32.8 42 93.6 91.8 93 92.8 81.5 81.6

1.044 1.018 0.862 1.018 1.040 0.990 1.021 1.032 1.018

CBC 33.7 37.3 44.3 90.1 87.2 88.6 88.1 78.4 80.4

1.053 1.025 0.867 1.032 1.051 1.000 1.035 1.044 1.027

BC 34.3 38.4 44.1 86.1 82.6 86.1 82.3 74.8 76.4

1.030 1.006 0.856 1.005 1.027 0.974 1.008 1.019 1.001

BCa 34.2 38.1 44 86.1 82.5 86 82.4 74.8 76.4

1.030 1.006 0.856 1.004 1.027 0.974 1.008 1.018 1.000

b-t 47 52.8 64 97 96 97.2 96.4 86.6 86.4

1.314 1.278 1.118 1.284 1.310 1.249 1.292 1.300 1.288

RBB(5)

P 21 24.8 31.7 76 74.2 76.7 73.8 60.9 62.6

0.783 0.761 0.646 0.752 0.773 0.741 0.750 0.759 0.770

CBC 21.8 25.1 31.2 76.2 74.6 75.5 75.3 63.2 64.3

0.777 0.758 0.644 0.749 0.772 0.738 0.749 0.760 0.765

BC 20.8 24.3 30.6 73.9 71.7 73.9 72.7 59 60.5

0.740 0.721 0.614 0.717 0.739 0.705 0.712 0.724 0.735

BCa 20.7 24.3 30.6 73.9 71.5 73.9 72.7 58.9 60.5

0.740 0.722 0.614 0.717 0.739 0.705 0.712 0.725 0.735

b-t 28.5 30.5 38.9 79.6 77.2 79.6 76.5 63.9 64.4

0.912 0.885 0.757 0.871 0.890 0.849 0.865 0.865 0.893

SPN stands for the Signal Plus Noise process in Model 3. RB, RLB(km) and RBB(l) denote the residual bootstrap, the

residual local bootstrap with resampling width km and the residual block bootstrap with block length l. In each cell the

first number is coverage frequency in percentages over 1000 simulations and the number below it is the average length of

the interval. Asym, P, CBC, BC, BCa and b-t denote the confidence intervals based on the asymptotic distribution, the

basic percentile, the constant bias correcting percentile, the bias corrected, the accelerated bias corrected and the

bootstrap-t respectively.

The block bootstrap performs worse than the local and

basic residual based bootstraps for any block length. We

should not forget that the RBB is designed for time

series to maintain the original time dependence in the

bootstrapped resamples whereas the regression model (2)

is defined in the frequency domain and there is not any

time or serial dependence on it.

• The different bias correction techniques are only slightly

beneficial in Model 1 with a large bandwidth where the

bias of the LPE is especially large. The BC and BCa give

better results in terms of coverage frequencies than the

CBC and the basic P. However the bootstrap-t generally

overcomes all the others even in these highly biased

situations.

• The choice of the bandwidth is crucial. The best results

are obtained with a low bandwidth when there is a highly

dependent short memory component (Model 1) or in the

presence of an additive noise (Model 3 with d > 0) and

with a larger bandwidth for models with low dependent

short memory component (Model 2) or in the white noise

case (Model 3 with d = 0). Especially harmful is the use

TABLE III

LPE 95% CONFIDENCE INTERVALS COVERAGE FOR m = 20

AR(1) p=0.9 AR(1) p=0.3 SPN

d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8

Asym

2.8 4 20.1 90.8 89.6 87.7 92.9 57.6 46.8

0.696 0.678 0.522 0.687 0.690 0.676 0.694 0.693 0.689

RB

P 3.6 5.6 22.9 92.7 91.1 89.4 93.1 55.1 44.1

0.703 0.685 0.531 0.691 0.696 0.681 0.700 0.697 0.696

CBC 3.7 5.8 22.8 92.4 90.8 89.4 93.2 55.1 43.6

0.703 0.685 0.531 0.691 0.696 0.681 0.700 0.697 0.696

BC 4.7 7.4 25.2 92.6 91 90.4 93.1 52.4 40.4

0.705 0.687 0.532 0.693 0.698 0.684 0.702 0.699 0.698

BCa 4.7 7.4 25.2 92.6 91 90.4 93.1 52.4 40.4

0.705 0.687 0.532 0.693 0.698 0.684 0.702 0.699 0.698

b-t 5.1 7.6 25.6 94.5 92.5 92 94.3 57.9 47

0.749 0.729 0.561 0.738 0.742 0.727 0.746 0.744 0.741

RLB(2)

P 4 6 22.2 83.4 81 79 88.7 48 34.9

0.625 0.610 0.492 0.594 0.598 0.576 0.595 0.596 0.597

CBC 4.2 6.4 22.6 83.3 80.8 77.7 88.2 48 35.4

0.629 0.614 0.496 0.598 0.602 0.578 0.600 0.600 0.598

BC 4.5 6.6 23.3 81 78.6 76 86.3 44.4 31.8

0.625 0.613 0.496 0.597 0.601 0.579 0.599 0.599 0.600

BCa 4.5 6.6 23.3 81 78.6 76 86.3 44.4 31.8

0.625 0.613 0.496 0.597 0.601 0.579 0.599 0.599 0.600

b-t 5.7 7.7 27.5 90.1 87.9 84.7 92.7 53.5 43.1

0.712 0.698 0.584 0.672 0.681 0.653 0.676 0.673 0.678

RLB(4)

P 5.2 6.8 25.4 87.5 84.7 83.2 92.3 53.7 37.5

0.677 0.656 0.531 0.644 0.650 0.626 0.647 0.648 0.650

CBC 5.6 7.7 24.2 87.2 85 82.1 90.7 53.6 39.5

0.677 0.659 0.532 0.646 0.651 0.627 0.649 0.650 0.648

BC 7.3 9.2 26.2 85.1 82.2 79.3 87.9 50.2 38.8

0.676 0.657 0.532 0.645 0.650 0.625 0.649 0.647 0.644

BCa 7.3 9.2 26.2 85.1 82.2 79.3 87.9 50.2 38.8

0.676 0.657 0.532 0.645 0.650 0.625 0.648 0.647 0.644

b-t 6.2 9.1 31.1 92.9 92.1 89.5 95.1 58.5 45.2

0.764 0.746 0.621 0.723 0.733 0.705 0.729 0.727 0.728

RLB(8)

P 4.2 6 26.4 90.1 88.8 86.5 95.1 54.8 35.9

0.698 0.676 0.543 0.677 0.681 0.659 0.680 0.680 0.683

CBC 6.2 8.1 25.7 88.8 86.4 84.4 91.9 56.5 44.5

0.695 0.672 0.541 0.675 0.679 0.660 0.681 0.680 0.679

BC 10.1 11.4 27.5 86.3 84.8 81.5 88.4 52.9 44.6

0.700 0.680 0.542 0.679 0.683 0.659 0.678 0.678 0.665

BCa 10.1 11.4 27.5 86.3 84.8 81.5 88.4 52.9 44.6

0.700 0.680 0.542 0.679 0.683 0.659 0.678 0.678 0.665

b-t 4.7 7.6 32 94.2 92.9 92.8 96.7 58.9 38.3

0.763 0.747 0.611 0.739 0.746 0.724 0.746 0.745 0.745

RBB(5)

P 2.1 3.4 16.1 82.5 81.4 78.2 86.1 41.8 32.9

0.568 0.560 0.437 0.562 0.557 0.549 0.564 0.562 0.574

CBC 2.4 3.2 17 82.4 80.4 78.6 86 41.7 33.2

0.567 0.559 0.437 0.560 0.557 0.550 0.564 0.562 0.573

BC 2.9 3.8 17.9 82.4 81 79 85.7 40.9 31.8

0.568 0.559 0.438 0.562 0.557 0.549 0.564 0.562 0.574

BCa 2.9 3.8 17.9 82.4 81 79 85.7 40.9 31.8

0.568 0.559 0.438 0.562 0.557 0.549 0.564 0.562 0.574

b-t 3.2 4.7 20.5 85 83.8 80.6 87.7 44.3 35.3

0.612 0.603 0.476 0.599 0.598 0.585 0.597 0.598 0.615

RBB(10)

P 1.9 2.1 13.5 74.1 71.1 68.6 77.8 33.9 21.5

0.481 0.474 0.381 0.471 0.472 0.462 0.474 0.476 0.485

CBC 2 2.7 14.8 75.7 72.7 70.6 79.9 35.9 27.8

0.486 0.481 0.387 0.476 0.478 0.467 0.480 0.482 0.490

BC 1.8 2.4 13.7 74.3 69.5 67.9 76.9 31.5 22.9

0.462 0.456 0.366 0.455 0.453 0.446 0.456 0.460 0.461

BCa 1.8 2.4 13.7 74.3 69.5 67.9 76.9 31.5 22.9

0.462 0.456 0.366 0.455 0.453 0.446 0.456 0.460 0.461

b-t 2.2 2.7 18.1 77.7 73.1 71.4 79.7 34.2 22.9

0.512 0.507 0.419 0.500 0.501 0.486 0.496 0.502 0.516

of a large bandwidth (m = 20) in Model 1, with very

low coverage frequencies.

• The performance of the local bootstrap depends on the

choice of the resampling width km. Reference [20]

suggested a value of km = 1 or 2. These values can

be too small when the short memory component is of

lesser importance and a larger km gives better results

in these cases. An excessively large km can however be

harmful in those cases where the estimator is subject to

a large bias as in Models 1 and 3 (d > 0) with a large

bandwidth. Thus a larger km should be chosen when the

bias component is low. In this situation a large bandwidth

should also be used. Then, as a rule of thumb, a larger km

can be chosen when the optimal bandwidth m∗ is large

and a low m∗ should be accompanied by a small km. For
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TABLE IV

LPE 95% CONFIDENCE INTERVALS COVERAGE FOR OPTIMAL BANDWIDTH

m∗

AR(1) p=0.9 AR(1) p=0.3 SPN

d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8

Asym

22.6 25.4 39.6 91.5 92.4 89.9 92.3 74.2 74.5

0.971 0.946 0.762 0.904 0.908 0.883 0.904 0.905 0.928

RB

P 26.9 28.6 41.8 91.9 92.4 90.7 92.5 73 73.8

0.977 0.952 0.773 0.908 0.914 0.887 0.910 0.909 0.937

CBC 27.1 28.6 41.5 92.1 93 91 92.4 72.9 74

0.978 0.952 0.774 0.909 0.914 0.887 0.911 0.909 0.937

BC 29.3 31.1 43.6 91.8 92.7 90.9 91.9 71.1 71.1

0.979 0.952 0.774 0.911 0.916 0.889 0.911 0.910 0.939

BCa 29.2 30.9 43.6 91.9 92.6 91 91.9 71.2 71.2

0.978 0.951 0.774 0.911 0.916 0.888 0.911 0.910 0.939

b-t 35.2 38.6 51.3 94.3 95.3 93.7 94.9 76.8 77.5

1.109 1.077 0.871 1.018 1.025 0.995 1.019 1.020 1.049

RLB(2)

P 17.2 20.6 35 86.5 86.7 83.2 88.7 66.7 67.3

0.840 0.826 0.675 0.785 0.783 0.757 0.785 0.764 0.802

CBC 17.7 21 34.9 83.9 86.2 82 87 66.4 66.8

0.847 0.835 0.683 0.793 0.790 0.765 0.793 0.770 0.809

BC 17.8 21.1 35.1 81.3 82.8 79.8 83.8 63 62

0.838 0.826 0.680 0.788 0.787 0.758 0.786 0.766 0.804

BCa 17.8 21.1 35.1 81.3 82.8 79.8 83.8 63 62

0.838 0.826 0.680 0.788 0.787 0.758 0.786 0.766 0.804

b-t 31.1 32.9 47.4 92.5 92.8 90.3 92.5 73.3 73.9

1.059 1.040 0.886 0.975 0.971 0.939 0.972 0.943 1.001

RLB(4)

P 19.5 23.7 39.8 91.1 91.5 88.3 92.7 72.6 70.8

0.919 0.906 0.736 0.854 0.856 0.827 0.858 0.842 0.874

CBC 21.8 24.8 38 87.8 89.8 85.9 90.2 71.9 71.6

0.922 0.910 0.738 0.858 0.862 0.832 0.863 0.847 0.878

BC 23.2 27.7 40.7 83.9 85.2 82.2 86.8 68 67.8

0.910 0.897 0.735 0.850 0.853 0.822 0.852 0.838 0.864

BCa 23.1 27.7 40.7 83.8 85.2 82.1 86.8 68 67.9

0.910 0.897 0.734 0.850 0.853 0.822 0.852 0.837 0.864

b-t 34.4 37.5 53.4 95.2 96 93.6 95.5 78.2 77.8

1.117 1.101 0.927 1.027 1.030 0.993 1.029 1.009 1.054

RLB(6)

P 19.9 24.5 40.5 92.7 94.6 91.1 94.3 75.7 70.8

0.949 0.933 0.755 0.883 0.884 0.859 0.883 0.876 0.903

CBC 25.3 28.1 40.2 88.3 90.6 86.4 90.5 73.2 71.9

0.954 0.938 0.758 0.888 0.888 0.862 0.888 0.881 0.907

BC 28.1 31 41.9 84.4 86.2 83 86.8 69.2 69.9

0.938 0.924 0.752 0.878 0.878 0.852 0.876 0.867 0.886

BCa 27.8 31 41.8 84.4 86.2 83 86.8 69.2 69.9

0.938 0.924 0.752 0.878 0.879 0.852 0.876 0.867 0.886

b-t 31.5 36.7 55.1 96.5 96.8 95 96.5 79.3 76.4

1.107 1.093 0.910 1.021 1.027 0.993 1.024 1.017 1.055

SPN stands for the Signal Plus Noise process in Model 3. RB and RLB(km) denote the residual bootstrap and the

residual local bootstrap with resampling width km . In each cell the first number is coverage frequency in percentages

over 1000 simulations and the number below it is the average length of the interval. Asym, P, CBC, BC, BCa and b-t

denote the confidence intervals based on the asymptotic distribution, the basic percentile, the constant bias correcting

percentile, the bias corrected, the accelerated bias corrected and the bootstrap-t respectively.

the optimal bandwidths in table IV we found that a value

around km = 4 is adequate.

• The optimal bandwidth of [10] is obtained by minimizing

an asymptotic approximation of the mean squared error of

the LPE but need not give the best coverage frequencies.

This is the case in Models 1 and 3 where the bias com-

ponent is especially large and better coverage frequencies

are achieved with a lower bandwidth than the optimal m∗

in Table IV.

• Overall the basic and local residual bootstrap-t give

the best performances. Table V displays the outcome

obtained with the asymptotic distribution and the RB and

RLB bootstrap-t with the values of m and the resampling

width km that give the best coverage frequencies. Note

that the optimal bandwidth m∗ does not generally corre-

spond to the best performance. The improvements of the

bootstrap over the asymptotic distribution are significant.

The local bootstrap gives similar coverages to the basic

residual bootstrap but with narrower intervals.

TABLE V

BEST RESULTS FOR COVERAGE FREQUENCIES WITH ASYMPTOTIC

DISTRIBUTION AND BOOTSTRAP-t

AR(1) p=0.9 AR(1) p=0.3 SPN

d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8 d=0 d=0.4 d=0.8

Asym

m 5 5 5 10 m∗ 10 20 10 5

cov 72.8 72.8 76.9 92.2 92.4 91 92.9 80.2 85

ampl 1.790 1.756 1.560 1.085 0.908 1.053 0.694 1.099 1.717

RB

m 5 5 5 10 5 10 m∗ 5 5

cov 91.8 88.5 90 95.2 94.8 95.2 94.9 89.8 94.2

ampl 2.849 2.802 2.481 1.285 2.806 1.246 1.019 2.818 2.728

RLB

m 5 5 5 m∗ 5 m∗ 20 5 5

km 2 2 2 4 2 6 4 2 2

cov 89.4 87.3 89.1 95.2 94.4 95 95.1 89.6 93.3

ampl 2.714 2.665 2.383 1.027 2.668 0.993 0.729 2.686 2.609

SPN stands for the Signal Plus Noise process in Model 3. Asym, RB and RLB denote the confidence intervals based on

the asymptotic distribution, the residual bootstrap-t and the residual local bootstrap-t with resampling width km .

Although in the LPE context bootstrap is specially beneficial

with low sample sizes, it is also interesting to analyze how

its performance changes as sample size increases, in order

to learn about the asymptotic behaviour. Fig. 1 shows the

coverage frequencies, in percentages over 1000 replications, of

95% confidence intervals based on the asymptotic distribution

and the basic and local residual bootstrap-t in Model 1 with

sample sizes n = 64, 128, 256, 512 and 2048 and bandwidths

of the closest integer number larger than n0.4, m = 6, 7, 10, 13
and 22 respectively. These bandwidths are lower than the

values given in the proposal by [10] -around 7, 12, 20, 31

and 38- and are adequate for purposes of comparison. The

resampling width is km = 2 for n = 64, 128, km = 4 for

n = 256, 512 and km = 8 for n = 2048. In all cases the

coverage approaches the nominal 95% confidence level as the

sample size increases, with the bootstrap coverages always

closer to the nominal confidence level. The lengths of the

intervals (not reported but available upon request) decrease

as expected with sample size and, as before, are larger for the

bootstrap proposals, indicating that confidence intervals wider

than the asymptotic intervals are required to approximate the

nominal confidence level.

IV. CONCLUSION

This paper shows the improvements of some residuals

based nonparametric bootstrap strategies over the asymptotic

distribution of the LPE in the construction of confidence

intervals with a small sample size. It is noteworthy the crucial

role played by the choice of the bandwidth. The coverage

frequencies and length of the confidence interval vary signif-

icantly with m and an appropriate m should be selected as a

first step. Whereas the performance of the RBB is quite poor,

the RB and the RLB bootstrap-t seems to perform well with

an appropriate selection of the resampling width. We have

proposed a rule of thumb for approximate selection of the

resampling width of the RLB linked to the optimal bandwidth

estimation of [10], a high optimal bandwidth requires a high



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:2, No:8, 2008

967

8

Asym RB RLB

n=64

n=128

n=256

n=512

n=2048

0
2
0

4
0

6
0

8
0

1
0
0

a) d1=0

Asym RB RLB

n=64

n=128

n=256

n=512

n=2048

0
2
0

4
0

6
0

8
0

1
0
0

b) d1=0.4

Asym RB RLB

n=64

n=128

n=256

n=512

n=2048

0
2
0

4
0

6
0

8
0

1
0
0

c) d1=0.8

Fig. 1. Coverage frequencies with different sample sizes

resampling width. The advantage of using the RLB over the

RB is the reduction of the length of the confidence intervals

without significantly affecting the coverage.

Our analysis has focused on the basic LPE, which is the

most popular method of estimation of the memory parameter.

There have been recently further refinements either in a linear

regression setup or in a nonlinear regression approach. For

example [39] proposed a bias reduced LPE by including

linearly extra regressors that account for the weak dependent

components. This extension can be applied to ARFIMA mod-

els such as Models 1 and 2 in our Monte Carlo, but not to

Model 3. In the perturbed long memory case, a somewhat

similar refinement has been considered by [38] and [36] who

proposed to include extra regressors to account for the added

noise. The resulting regression model is non linear in this case.

The bootstraps here proposed could be useful also in these

cases since they are nonparametric and based on residuals.

Further analysis in these setups is however required.
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