
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2865

Abstract—In this paper we present the PC cluster built at R.V.

College of Engineering (with great help from the Department of

Computer Science and Electrical Engineering). The structure of the

cluster is described and the performance is evaluated by rendering of

complex 3D Persistence of Vision (POV) images by the Ray-Tracing

algorithm. Here, we propose an unexampled method to render such

images, distributedly on a low cost scalable.

Keywords—PC cluster, parallel computations, ray tracing,

persistence of vision, rendering.

I. INTRODUCTION

OMPUTATIONAL image rendering is widely used for

generating images and graphics for the motion pictures

industry and bio-modeling. From the mathematical point Ray-

tracing is a rendering technique that calculates an image of a

scene by shooting rays into the scene. The scene is built from

shapes, light sources, a camera, materials, special features, etc.

For every pixel in the final image one or more viewing rays

are shot into the scene and tested for intersection with any of

the objects in the scene. Viewing rays originate from the

viewer, represented by the camera, and pass through the

viewing window (representing the final image). Every time an

object is hit, the color of the surface at that point is calculated.

For this purpose the amount of light coming from any light

source in the scene is determined to tell whether the surface

point lies in shadow or not. If the surface is reflective or

translucent new rays are set up and traced in order to

determine the contribution of the reflected and refracted light

to the final surface color, but in order to achieve results

comparable with those generated by conventional techniques

experimental we need supercomputers power or parallel

computers cluster. In this way such tasks are solved during the

last decade of 20th century.

Clusters based on PCs running Linux have become the

cheapest supercomputers in the academic and commercial

field. We created such a cluster at R.V. College (CSE, EEE,

Manuscript received October 15, 2005. This work was supported in part by

the Department of Computer Science and Department of Electrical and

Electronics Engineering, R.V.C.E.

Arjun Jain is a Development Engineer at PI Corporation, Bangalore, India

560080 (phone: +91-98447-28123; e-mail: arjun@picorp.com).

 Himanshu Agrawal is a student at R.V. College of Engineering, Electrical

& Electronics Department, Bangalore, India 560059 (phone: +91-98862-

19916 e-mail: himanshu.rvce@gmail.com).

 Nalini Vasudevan is a Software Developer, Yahoo Inc., Bangalore, India

560001 (phone: +91-94481-07482, e-mail: naliniv@yahoo-inc.com).

RVCE). The clusters performances have been tested by

generating many such benchmark images.

II. PERSONAL COMPUTER CLUSTER

With the power and low prices of today s PCs and the

availability of 100 Mb/s Ethernet interconnect, it makes

possible to combine them to build High-Performance-

Computing and Parallel Computing environment. Today, there

is a wide range of switches available, ranging from 8 to over

100 ports, some with one or more Gigabit modules that lets

you build large systems by interconnecting such switches or

by using them 5 with a Gigabit switch. Switches have become

inexpensive enough, so there is not much reason to build your

network by using cheap hubs or by connecting the nodes

directly in a hypercube network. The local area PC cluster was

made in the RVCE Hostel with the help of Department of

Computer Science, RVCE for image processing and

rendering. PC cluster of 7 nodes :(as shown in figure) - all of

them single AMD 1.8 G Hz processors; all have 128 MB

RAM, a 40 GB disk drives.

Fig. 1 The ‘Linux Cluster Supercomputer’

 Machines have been installed with the standard RedHat 9.0

and WinXP (parallel cluster runs in Linux OS at this time).

All PCs are assumed to boot from a their own hard drive and

have a fast Ethernet network (100 Mb/s) connection to a

switch controlling the private cluster network. The suggested

range of addresses for a private network is from

192.168.100.1 to 192.168.100.20. Nobody is able to connect

directly to a compute node from outside this network anyway.

This keeps normal traffic from interfering with inter-node

communication and vice versa. Thus the total memory 896

LINUX Cluster Possibilities in 3-D PHOTO

Quality Imaging and Animation

Arjun Jain, Himanshu Agrawal, and Nalini Vasudevan

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2866

MB; total disk space 280 GB. We use custom made PVM-Pov

Cluster software - a high-performance parallel image

rendering environment for workstation and PC clusters [3].

PVM-Pov uses the PVM 3.1 [1] high performance

communication library - a dedicated communication library

for cluster computing (it allows using many types of

networks). Communication library used is faster than usual

TCP protocol. In addition a trunking is possible (installation

and use of up to 4 NICs). Under the PVM virtual machines

users are not aware whether or not a system is a cluster of

single/multi-processor computers or a cluster of clusters. PVM

system has check point function. It allows restart function and

improves a reliability of the system. Available compilers are

gcc and g++ compilers C, C++ and HPF. The cluster differs

from the network of workstations in security, application

software, administration, booting and file systems.

Application software uses underlying message passing system

like Parallel Virtual Machine (PVM). There are many ways to

express parallelism, but message passing is the more effective

and more modern. For administering the cluster we have a

login node with a keyboard, monitor and mouse (as shown in

the figure). Other nodes can be headless (no keyboard, mouse,

or monitor) but in our way there are all machines like login

node, because our cluster is made on the basis all equal class.

Any machine can be logged into from the login node using

secure shell (ssh) and can be administered.

III. DESIGN OF DISTRIBUTED RAY TRACING CLUSTER

Image generation using Ray-tracing is a is a rendering

technique that calculates an image of a scene by shooting rays

into the scene. The scene is built from shapes, light sources, a

camera, materials, special features, etc. For every pixel in the

final image one or more viewing rays are shot into the scene

and tested for intersection with any of the objects in the scene.

Viewing rays originate from the viewer, represented by the

camera, and pass through the viewing window (representing

the final image). Every time an object is hit, the color of the

surface at that point is calculated. For this purpose the amount

of light coming from any light source in the scene is

determined to tell whether the surface point lies in shadow or

not. If the surface is reflective or translucent new rays are set

up and traced in order to determine the contribution of the

reflected and refracted light to the final surface color.

Fig. 2 ‘Ray Tracing’

 Now this is a very heavy and time-taking job for the

processor. For every pixel at least three to four rays are shot

and tested for intersection. Each ray has its equation and each

equation has to be solved for intersection. Each pixel needs to

be rendered and simple ray tracing can be done for a

uniprocessor system using the following algorithm:

Select center of projection and window on view plane

1) for (each scan line in image)

a) for (each pixel in scan line)

i) determine ray from center of projection through

pixel;

ii) for (each object in the scene)

(1) if (object is intersected and is closest

considered thus record intersection and

object name;

(2) set pixel s color to that at closest object

intersection;

Now, instead of rendering the entire image on the same

system we here use a clustered system in the following way:

the image is broken up into still smaller blocks. Each slave is

to then render one or more of these blocks independently and

send the rendered image back to the master where all the

blocks are integrated to form the final image

This can be explained using the following algorithm. This is

an algorithm to add 75 integers on a clustered system with 3

slave nodes and one master node.

Algorithm for the Master Program:

 Initialize the array items.

/* send data to the slaves */

For i = 0 to 3

 Send items [25*i] to

 Items [25*(i+1)-1] to slave Pi

End for

/* collect the results from the slaves */

For i = 0 to 3

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2867

 Receive the result from

 Slave Pi in result[i]

End for

/* calculate the final result */

Sum = 0

For i = 0 to 3

 Sum = sum + result[i]

End for

Print sum

Algorithm for the Slave Programs:

Receive 25 elements from the master

in some array say items

/* calculate intermediate result */

Sum = 0

For i = 0 to 24

 Sum = sum + items[i]

End for

Send sum as the intermediate

Result to the master

 Here each slave is given the task of adding 1/3 of the total

no of integers and the final result of these 25 addition is sent

to the master 10 where it adds the 3 results from the slaves to

get the final result of the addition of 75 integers. Thus the job

is done in parallel.

IV. RESULTS

The algorithms described and developed were used to

generate many benchmark 3-D images such as the famous

skyvase.pov, chess.pov and blob.pov. All the experiments

under consideration here were carried on clusters with 4, 3, 2,

and single processor systems.

A. skyvase.pov

The benchmark SKYVASE rendered at 1024x768

resolutions is as shown:

Fig. 3 ‘SKYVASE.POV’

This image takes approximately 14 seconds in a quard

processor system and 17 in the tri-processor cluster system.

 In a uniprocessor system the same takes 38 seconds and in

a bi processor system 20 seconds thus with a degradation of

only 2% to 14%.

Fig. 4 Results of rendering skyvase.pov on a cluster

with varying number of processing slave nodes

B. This is a more complex and heavier image than the Sky

Vase. The benchmark CHESS 2c rendered at 1024x768

resolution is shown bellow:

Fig. 5 ‘CHESS.POV’

This image takes approximately 150 seconds in a quard

processor system and 210 in the tri processor system.

In a uniprocessor system the same takes 580 seconds and in

a bi processor system 350 seconds thus with a degradation of

only 12% to 14%, where degradation is given by

(Time taken on ni processors*ni) / (Time taken on nj

processors*nj)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2868

Fig. 6 Results of rendering chess.pov on a cluster

with varying number of processing slave nodes

REFERENCES

[1] Al Geist, Adam Beguelin, Jack Dongarra, Robert Manchek, Weicheng

Jiang and Vaidy Sunderam, PVM: Parallel Virtual Machine - A Users

Guide and Tutorial for Networked Parallel Computing, MIT Press.

Available at http://www.netlib.org/.

[2] Marc Snir, Steve Otto, Steven Huss-Lederman, David Waker and Jack

Dongarra, MPI: The Complete Reference, MIT Press. Available at

http://www.netlib.org/.

[3] Clay Breshears and Asim YarKhan, Joint Institute of Computational

Science, University of Tennessee, USA. www-jics.cs.utk.edu/PVM/pvm/

guide.html, A Beginner s Guide to PVM Parallel Virtual Machine.

[4] Emily Angerer Crawford, Information Technology, High Performance

Computing, www.hpc.gatech.edu/seminar/pvm.html, \it PVM: An

Introduction to Parallel Virtual Machine.

[5] http://clusters.top500.org/db.

