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Abstract—Atherosclerosis is the condition in which an artery 

wall thickens as the result of a build-up of fatty materials such as 
cholesterol. It is a syndrome affecting arterial blood vessels, a 
chronic inflammatory response in the walls of arteries, in large part 
due to the accumulation of macrophage white blood cells and 
promoted by low density (especially small particle) lipoproteins 
(plasma proteins that carry cholesterol and triglycerides) without 
adequate removal of fats and cholesterol from the macrophages by 
functional high density lipoproteins (HDL). It is commonly referred 
to as a hardening or furring of the arteries. It is caused by the 
formation of multiple plaques within the arteries. 
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I. INTRODUCTION 
ORONARY artery disease (CAD), or narrowing of the 
coronary arteries due to atherosclerosis, remains one of 

the leading causes of morbidity and mortality worldwide. 
Atherosclerosis is the condition in which an artery wall 
thickens as the result of a build-up of fatty materials such as 
cholesterol (Figure 1). It is a syndrome affecting arterial blood 
vessels, a chronic inflammatory response in the walls of 
arteries, in large part due to the accumulation of macrophage 
white blood cells and promoted by low density (especially 
small particle) lipoproteins without adequate removal of fats 
and  cholesterol from the macrophages by functional high 
density lipoproteins (HDL). It is commonly referred to as a 
hardening or furring of the arteries. It is caused by the 
formation of multiple plaques within the arteries [1]. 
Atherosclerosis is the main cause of CV disease, including 
ischemic stroke, CHD, and ACS [2-10]. The clinical course 
related to atherosclerotic changes may not be a gradual and 
progressive one; rather, patients may remain asymptomatic for 
years, with sudden death marking the first clinical 
manifestation [3]. Equally unpredictable is the onset of CV 
events, which have not correlated well with the commonly 
used Framingham risk status model. The majority of events 
are seen in patients categorized as low or intermediate risk of 
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CHD based on the Framingham risk equation [3]. These data 
highlight the need for early diagnosis and treatment of 
subclinical disease. Advances in recent research have 
provided greater understanding of the underlying 
pathophysiology of atherosclerosis. Evidence now supports 
that atherosclerosis is a progressive, dynamic, inflammatory 
process, which can indeed be modified by preventive and 
therapeutic measures [7,8,11].  

A. Molecular Mechanisms Involved in Formation of 
Atherosclerotic Plaque 

The atherosclerotic plaque or atheroma is the key feature in 
the development of atherosclerosis. Formation of atheroma 
lasts over decades, starting with early lesions which may 
occur in early adolescence. The velocity of progression 
depends on many factors, such as gender, genetics and some 
well recognized risk factors (e.g. hyperlipoproteinemia as 
mentioned below). Once initiated, the atheroma may remain 
stable for many years, causing only rarely symptoms such as 
stable angina pectoris or claudicatio. But some factors may 
lead to an unstable plaque, resulting in more grave or even 
fatal acute events such as myocardial infarction. In the 
initiation of atherosclerotic lesions, migration of mononuclear 
leukocytes is one key feature. This migration is mediated by 
several cytokines which are produced by the endothelial cells 
under certain influences [12]. Selectins are one family of those 
endothelial leukocyte adhesion molecules. One member of 
this family, namely P selectin, is thought to mediate rolling or 
transitory contact of leukocytes with the endothelium. It is 
found to be expressed in endothelial cells overlying human 
atheromas, but not in those of normal vessels [13]. Another 
important cytokine involved in leukocyte adhesion and 
immigration is vascular cell adhesion molecule 1 (VCAM-1). 
VCAM-1 is found to be expressed early at sites of 
atherosclerotic lesion formation in animal models [14]. After 
adhesion, leukocytes migrate into the artery wall directed by 
various chemoattractant chemokines. In experimental animals, 
macrophage chemoattractant protein-1 (MCP-1) seems to play 
an important role in this process [15]. Oxidized phospholipids 
are present in modified lipoproteins such as oxidized LDL and 
are a link between hyperlipidemia and local increase of 
adhesion molecules or cytokine expressions at sites of 
atherosclerotic lesions. Experimental data suggest that those 
modified phospholipids like lysophosphatidyl choline or 
palmitoyl oxovaleroylglycerophosphoryl choline are able to 
trigger expression of adhesion molecules and cytokines 
involved in plaque formation [16]. After the migration of 
leukocytes into the intima, they accumulate modified lipids 
and were transformed to foam cells. The receptor responsible 

Genetic Variants and Atherosclerosis  
M. Seifi, A. Ghasemi, M. Khosravi, M. Salimi, S. Jahandideh, J. Sherizadeh, F. S. Hashemizadeh, and 

R. Khodaei 

C 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:3, No:9, 2009

255

 

 

for uptake of lipids is named scavenger receptor [17]. The 
production of mediators like platelet-derived growth factor 
(PDGF) [18], heparin-binding epidermal growth factor [19] 
and insulin-like growth factors by endothelial cells and by the 
mononuclear macrophages themselves mediate the 
accumulation of smooth muscle cells and of extracellular 
matrix macromolecules [20]. This process results in formation 
and growing of progressive atheroma. The stability of such a 
plaque is due to the composition and thickness of its fibrinous 
cap. The majority of acute coronary event result from a 
rupture of this protective cap. The most important factor 
contributing to the biomechanical strength of this cap are the 
interstitial forms of collagen. Main collagen production is 
made by the smooth muscle cells under influence of certain 
factors such as PDGF. Other factors like interferon gamma 
inhibit gene expression and protein synthesis in those cells 
[21]. Gamma interferon is produced by stimulated T cells, 
which are frequently found accumulating at sites of acute 
plaque rupture and thrombosis [22]. So the inhibition of 
collagen synthesis by mediators produced by activated T cells 
seems to be one key factor in transforming stable plaques to 
unstable ones. In addition, enzymes of the matrix 
metalloproteinase family (MMP) produced by activated 
macrophages may play an important role with proteolytic 
degradation of formerly produced collagen fibrils [23]. 

 

Fig. 1 Micrograph of an artery that supplies the heart with significant 
atherosclerosis and marked luminal narrowing. Masson's trichrome 

B.  Types of Plaque 
The major constituents of atherosclerotic lesions are matrix 

proteins (including collagens, proteoglycans, elastin, etc), 
smooth muscle cells, macrophages and lipids [24]. However, 
the relative proportions of these components vary among 
different plaques. At one end of the spectrum are plaques rich 
in lipids and macrophages, which are commonly referred to as 
lipid rich plaques [25,26]. At the other end of the spectrum are 
plaques rich in matrix proteins and smooth muscle cells, 
which are referred to as fibrotic plaques [25,26]. Lipid rich 
plaques are prone to rupture, causing myocardial infarction. In 
comparison, fibrotic plaques are usually more stable but 
bulkier [25,26]. Although a patient may have more than one 

atherosclerotic plaque, an autopsy study of individuals with 
coronary artery disease showed that in 15% of the subjects all 
plaques were the fibrotic type, in 13% of the subjects all 
plaques were of the lipid rich type, and in the remaining 
subjects both types of plaque were present [27].  

C.  Physiologic Factors that Increase Risk 
Risk factors that cause formation of plaque and increase 

occurrence of atherosclerosis are: Modifiable factors (eg. 
Diabetes, dyslipoproteinemia, an LDL:HDL ratio greater than 
3:1, elevated serum C-reactive protein concentrations and etc), 
nonmodifiable factors (eg. Advanced age, male sex, genetic 
abnormalities and having close relatives who have had some 
complication of atherosclerosis), lesser or uncertain factors 
(eg. Being obese, postmenopausal estrogen deficiency, intake 
of trans fat, Chlamydia pneumoniae infection etc) and dietary 
risk factors [28]. 

II. GENETIC VARIANTS RELATED TO ATHEROSCLEROSIS 
Although the plaque develops as a chronic inflammatory 

reaction, there is increasing evidence that DNA damage to 
cells within the lesion plays an important role in both 
atherogenesis and the behaviour of established lesions [29-
31]. DNA damage ranges from ،macro٫ damage, including 
deletions or additions of whole chromosomes or parts of 
chromosomes, to ،micro٫ damage, which includes DNA strand 
breaks, mutations of single bases, modified bases (including 
oxidation) or DNA adducts. Several genetic variants have 
been examined in relation to atherosclerosis, more commonly 
by association than linkage analysis. Findings from the most 
widely studied variants are summarized, followed by a listing 
of variants only beginning to be explored in relation to 
atherosclerosis disease. 

 
A.  Matrix Metalloproteinase 
The matrix metalloproteinases (MMPs), are a family of 

enzymes required for degradation of the extracellular matrix 
during embryo development, morphogenesis and tissue 
remodeling. MMPs degrade most of the extracellular 
matrixconstituents within atherosclerotic plaques [32]. It is 
well accepted that MMPs are key players in most vascular 
diseases and a similar elucidation of the spectrum of 
expression and specific roles has to be effected before a 
therapeutic opportunity can be clearly identified [33-35]. 
MMPs have been implicated in intimal thickening, a repair 
response to damage of the walls of large arteries in human 
atherosclerotic pathologies, as well as in the subsequent 
plaque rupture. Hence, the concept of ‘good’ and ‘bad’ MMPs 
can be invoked in cardiovascular disease as in cancer, but the 
existing data from animal model studies are not clear cut. 
Studies using MMP gene knockout mice have indicated that 
MMP-2 and MMP-9 play key roles in cardiac rupture after 
myocardial infarction [36-42]. A recent study showed that 
MT1-MMP (MMP-14) is increased after ischemia-reperfusion 
[43]. TIMP-3 deficiency in mice disrupted matrix homeostasis 
and caused spontaneous left ventricular dilation, 
cardiomyocyte hypertrophy and contractile dysfunction [44]. 
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A critical role of MMP-2 and MMP-9 has been also shown for 
the development of abdominal aortic aneurysm using MMP 
gene deletion mice [45]. Recent studies on atherosclerotic 
plaque stability using a series of apoE/MMP double knockout 
mice have indicated that MMP-3 and MMP-9 have protective 
roles by limiting plaque growth and enhancing plaque 
stability, but MMP-12 promotes lesion expansion and 
destabilization [46]. Chase and Newby [47] have proposed 
that multiple steps of MMP gene induction occur in vascular 
pathologies due to the progressive recruitment of different cell 
types and inductive factors during different phases of the 
disease. A widening spectrum of MMPs, starting with MMP-2 
and MMP-9, leading to MMP-1, MMP-12 and MMP-14, 
followed by MMP-3, MMP-11 and MMP-13 ultimately leads 
to a transition from matrix turnover to matrix destruction. An 
association between the MMP3 5A/6A promoter 
polymorphism and atherosclerosis was first described in 1995: 
the 6A6A genotype was associated with greater progression of 
coronary atherosclerosis [48]. Functional studies showed that 
the 6A allele was associated with twofold lower 
transcriptional activity [49]. Several investigators have used 
the clinical end point of coronary atherosclerosis or its 
progression, and >6000 people have been included in such 
analyses. The 6A6A genotype was associated with a greater 
progression of CAD after angioplasty [50]. In a study we 
examined 190 patients with coronary artery stenosis and 200 
controls and indicated that there is a significant association 
between 6A/6A genotype MMP3 gene polymorphism and 
Extent of Coronary Atherosclerosis [51]. 
 

B.  Paraoxonase 
The paraoxonase gene family consists of three members of 

PON1, PON2, and PON3, located adjacent to each other on 
the long arm of chromosome 7 [52]. All 3 gene products 
protect low density lipoprotein (LDL) from oxidation, at least 
in vitro [53]. paraoxonase 1 and 3 (PON1 and PON3) 
associated with the circulating high density lipoprotein (HDL) 
particles but paraoxonase 2 (PON2) that expressed widely in a 
number of tissues including the liver, lungs, brain and  heart 
dose not appear to be associated with HDL [54]. PON1 
hydrolyzes organophosphates such as paraoxone, carbomates, 
and nerve gases, therefore it was initially investigated in the 
field of toxicology [55]. PON1 has been shown to protect 
LDL against oxidative modification in vitro by preventing 
accumulation of lipid peroxides [56]. Peroxidation of LDL is 
recognized to plays central role in atherogenesis [57]; 
therefore recently PON1 has been implicated in the 
pathogenesis of atherosclerosis and cardiovascular disease 
(CVD). Several studies have suggested that either 
paraoxonase-1 (PON1) is associated with oxidative stress 
[58,59]. The oxidative modification of low-density lipoprotein 
(LDL) is an important element in the development of 
atherosclerosis [60]. Numerous studies suggest that oxidative 
modification of LDL in the arterial wall initiates development 
of foam cell-laden fatty streaks, which are believed to cause 
atherosclerosis [61]. Recent evidence suggests that high-
density lipoprotein (HDL) inhibits oxidation of LDL and thus, 
may protect against risk of CAD [62]. Paraoxonase-1, an 
HDL-associate enzyme, has been shown to be responsible for 

this antioxidative property of HDL [63]. Paraoxonase-1 is a 
44-kD Ca+2–dependent enzyme that is associated with 
apolipoprotein (Apo) A1 and Apo J on HDL [64,65]. The 
PON1 gene has 2 common polymorphisms in the coding 
region, which lead to a glutamine→arginine substitution at 
position 192 and leucine→methionine substitution at position 
55. These sites are identical to positions 54 and 191, when 
alanine is defined as the N-terminal residue. The variants are 
designated PON1 M/L55 and R/Q192 [66,67]. Only 2 studies 
examined the PON 2 S311C polymorphism and found no 
relationship with carotid atherosclerosis [68,69]. Examination 
of 2 additional promoter polymorphisms, as well as a 
haplotype comprising polymorphisms at -162/-108/55/192, 
failed to detect any association with stenosis cases[70].  Of 13 
studies considering the PON 1 192 polymorphism separately 
or jointly with PON 1 55, 10 showed no association with PON 
1 192 considered alone [68,69,70,71,72-77], although 1 of 
these showed IMT to be higher in subjects homozygous for 
the PON 1 55 L and PON 1 192Q alleles compared with 
LL/RR and MM/QQ subjects [77], and another showed the 
PON 1 192RR genotype to be more common than QQ in 
stenosis cases but only after adjustment for PON activity level 
[76]. This report was subsequently refuted in an expanded 
sample from the same authors, who found no association 
regardless of adjustment for PON activity [70]. An eleventh 
study showed higher IMT in RR homozygotes than Q allele 
carriers [78]; the twelfth showed plaque to be more frequent in 
PON 1 192R carriers with high levels of high-density 
lipoprotein, but no difference in plaque by genotype in 
subjects with low levels of high-density lipoprotein [79]. The 
thirteenth showed the R allele to be more frequent in older 
persons with moderate versus no atherosclerosis [80]. It has 
been shown that the PON1 R allozyme is less efficient at 
retarding the oxidation of LDL than is the Q allozyme because 
of the decreased hydrolysis of lipid peroxides by he R 
allozyme [81,82]. This finding may explain why in our study 
the PON1 R allele has been found to be present at an 
increased frequency in coronary artery disease (CAD).This 
finding is accordance to some studies that performed in 
different population and coronary artery disease; as in 81 
stroke patients who were compared with 2553 control 
subjects, PON1R was shown to be an independent risk factor 
for stroke [83]. Similarly in a case-control study of 139 CAD 
patients and 119 control subjects; RR genotype not only 
defined as an independent risk factor for CAD; but also as a 
factor that related with the severity of disease [84]. 
 

C.  Apolipoprotein E 
Apolipoprotein E, a key protein in the transport of 

cholesterol, has been a suspect in regard to the role played by 
genetic polymorphisms as risk factors for cardiovascular 
disease due to atherosclerosis, either as a result of variances in 
cholesterol transport among genotypes or by direct effect of 
the polymorphisms upon human atherogenesis [85-87]. 
Apolipoprotein (apo) ε is a member of the apolipoprotein gene 
family. Other members of this multigene family include apo 
A-I, apo A-II, apo A-IV, apo C-I, apo C-II, and apo C-III. The 
coding regions of these genes are composed of tandem repeats 
of 11 codons, which suggests that they have evolved through 
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duplications of a primordial gene[88]. While there are rare 
variants, it is the polymorphism with its three alleles, *ε2, *ε3, 
and *ε4, that has been studied in relation to cardiovascular 
disease. From these alleles arise six phenotypes; their ranking 
from most to least common is generally 3/3, 4/3, 3/2, 4/4, 4/2, 
and 2/2 [89]. Apo E helps to stabilize and solubolize 
lipoproteins as they circulate in the blood. In general, the role 
of apolipoproteins in lipid metabolism includes maintaining 
the structural integrity of lipoproteins, serving as cofactors in 
enzymatic reactions, and acting as ligands for lipoprotein 
receptors. Apo E is critical in the formation of very low 
density lipoprotein (VLDL) and chylomicrons. compared with 
carriers of the *ε3 or *ε4 allele, carriers of the *ε2 allele are 
slower to clear dietary fat from their blood [90]. The 
difference in uptake of postprandial lipoprotein particles 
results in differences in regulating hepatic low density 
lipoprotein (LDL) receptors, which in turn contributes to 
genotypic differences in total and LDL cholesterol levels 
[89,91-95]. High levels of LDL cholesterol have been 
associated with increased risk of coronary heart disease 
(CHD). Sing and Davignon demonstrated that 8.3 percent of 
the total variance for LDL cholesterol is accounted for by the 
apo ε gene locus [96]. Apo ε contributes more to normal 
cholesterol variability than any other gene identified thus far 
in cholesterol metabolism [96]. In a population- based study 
Venkutaramana et al [97] reported that the allele frequencies 
in Indian population 85%-92% for ε3 allele, 3.9% for ε4 allele 
and 3.5% for ε2 allele. In a study [98] we indicated that Apo ε 
allele frequencies in the control group of Tehran population 
are 34%, 34% and 32% for ε4, ε3 and ε2 respectively which are 
not comparable with the study of Venkutaramana et al and 
others [97]. The reasons for these discrepancies could be 
genetic heterogeneity and gene environment interactions in 
different ethic population. It is well known that the ε4 allele of 
Apo E is associated with increased prevalence of 
arthrosclerosis and cardiac heart disease (CHD) [99,100]. 
However there are controversial results concerning the 
association between Apo E genotypes and some 
cardiovascular risk factors.  Some studies have suggested that 
high blood pressure may be associated with the presence of 
the ε4 allele [101-103], while others have found its association 
with ε2 allele [104]. However no association was found in few 
studies [104].  In our study we evaluated the distribution of 
Apo E genotype and alleles in angiogaraphically defined CAD 
patients and control subjects, and found these polymorphisms 
as risk factors for atherosclerosis [98].  
 

D.  Rennin-angiotensin System 
The renin–angiotensin system, a two-enzyme cascade, plays 

an important role in the regulation of blood pressure, fluid 
balance, and electrolyte homeostasis [105,106] and in the 
pathogenesis of cardiovascular disease [107,108]. The initial 
enzyme, renin, cleaves its substrate, angiotensinogen, to 
angiotensin I, a decapeptide. Angiotensin I undergoes a 
second cleavage, mainly by tissue-bound angiotensin-
converting enzyme and serine proteinase [109], to generate 
angiotensin II (an octapeptide), which via the angiotensin II 
type 1 receptor acts as a potent vasocon-strictor and 
aldosterone stimulating peptide. The angiotensin-converting 

enzyme also inactivates the nonapeptide bradykinin and 
blocks the tissue kallikrein system. Inhibition of the 
angiotensin-converting enzyme and antagonism of the 
angiotensin II type 1 receptor decrease blood pressure in 
hypertensive patients [110,111], and more importantly also 
prevent mortality and morbidity in patients with symptomatic 
or asymptomatic congestive heart failure [112-114], acute 
myocardial infarction [115], or diabetic nephropathy [116] 
Cloning of the human genes coding for the angiotensin-
converting enzyme [117,118], an- giotensinogen [119], and 
the angiotensin II type 1 receptor [120] has led to the 
discovery of several polymorphisms, which may play a role as 
risk factors for cardiovascular disorders, such as hypertension, 
coronary heart disease, or cardiomyopathy. Among these 
genetic mutations, the angiotensin-converting enzyme gene 
deletionrinsertion (D/I) [121], angiotensinogen gene M235T 
[122], and the angiotensin II type 1 receptor gene 
A1166C[120] polymorphisms have been extensively 
investigated in various populations with a variety of 
cardiovascular disorders. Several other polymorphisms, in 
particular in the promoter region of the angiotensinogen gene, 
were also found to be associated with cardiovascular disease 
[123-127].  
 

1.  D/I polymorphism of the angiotensin-converting enzyme 
gene 

In a landmark study, Cambien et al [128] observed an 
increased prevalence of the angiotensin-converting enzyme 
DD genotype in 610 Caucasian patients with a history of 
myocardial infarction. Subsequent studies found that the D 
allele was also associated with a higher risk of coronary heart 
disease [129,130], stroke [131,132], other atherosclerotic 
manifestations [133], or having a history of coronary heart 
disease [134,135]. One quantitative overview [121] 
demonstrated a strong association between atherosclerotic 
cardiovascular complications and the D/I polymorphism of the 
angiotensin-converting enzyme gene. 

 
2.  M235T angiotensinogen gene polymorphism 
Several studies [136-138] demonstrated a significant 

association between coronary heart disease and the M235T 
polymorphism. However, in 12 studies combined, the T allele 
was not associated with atherosclerotic cardiovascular 
complications [122]. The pooled excess risk of 17%(P=0.08) 
in TT vs. MM homozygotes did not exceed the threshold of 
statistical significance in nine reports on coronary heart 
disease, including myocardial infarction. Similarly, for stroke 
and various other atherosclerotic manifestations, such as 
restenosis after angioplasty or the presence of atherosclerotic 
lesions [139,140], there was no excess risk in TT 
homozygotes compared with MM homozygotes. 
 

3.  A1166C polymorphism of the angiotensin II type 1 
receptor gene 

At least three studies observed synergistic effects of the 
angiotensin-converting enzyme D/I and the angiotensin II type 
1 receptor A1166C polymorphisms on the risk of myocardial 
infarction [141] or coronary heart disease [142-143]. In a 
case-control study of 613 myocardial infarction cases and 723 
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age-matched population controls [141], the odds ratio 
associated with the angiotensin-converting enzyme DD 
genotype was 1.05 (95% CI 0.75–1.49) in subjects without the 
C allele of the angiotensin II type 1 receptor gene, 1.52 (95% 
CI 1.06–2.18) in AC hetero- zygotes and 3.95 (95% CI 1.26–
12.4) in CC homozygotes(test for trend P<0.02). 

 

III. OTHER POLYMORPHISMS 
Genetic variants related to hemostatic and inflammatory 

factors, interleukins and immune response [144-152], platelet 
receptors [153-160], and oxidative pathways [161-163], have 
also been studied sporadically. Associations with hemostasis-
related variants have generally been absent [164-166] or 
present only in subgroups [153,167]. The Marburg I variant of 
factor VII activating protease and factor V Leiden, however, 
have been shown to be more frequent in those with plaque 
progression [168], whereas the β-fibrinogen C148T 
polymorphism in the homozygous TT form was associated 
with higher plaque score [168], although none of these 
associations was replicated in a large sample from the 
Framingham Heart Study [154]. 

 

IV. CONCLUSION 
There is much to be learned regarding the genetic 

contribution to the observed phenotypic variability of 
atherosclerosi. Several questions that require answers include 
the following: To what extent do polymorphisms in relevant 
genes account for the observed variability in the phenotypic 
expression of pathologies that cannot be accounted for by risk 
factors alone, and what are their frequencies in populations? 
How do genetic differences alter the response to treatment 
strategies?  
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