Rational Points on Elliptic Curves $y^{2}=x^{3}+a^{3}$ in \mathbf{F}_{p}, where $p \equiv 5(\bmod 6)$ is Prime

Gokhan Soydan, Musa Demirci, Nazli Yildiz Ikikardes, Ismail Naci Cangul

Abstract

In this work, we consider the rational points on elliptic curves over finite fields \mathbf{F}_{p} where $p \equiv 5(\bmod 6)$. We obtain results on the number of points on an elliptic curve $y^{2} \equiv x^{3}+a^{3}(\bmod p)$, where $p \equiv 5(\bmod 6)$ is prime. We give some results concerning the sum of the abscissae of these points. A similar case where $p \equiv$ $1(\bmod 6)$ is considered in [5]. The main difference between two cases is that when $p \equiv 5(\bmod 6)$, all elements of \mathbf{F}_{p} are cubic residues.

Keywords-Elliptic curves over finite fields, rational points

I. Introduction

Let \mathbf{F} be a field of characteristic not equal to 2 or 3 . An elliptic curve E defined over \mathbf{F} is given by an equation

$$
\begin{equation*}
y^{2}=x^{3}+A x+B \in \mathbf{F}[x] \tag{1}
\end{equation*}
$$

where $A, B \in \mathbf{F}$ so that $4 A^{3}+27 B^{2} \neq 0$ in \mathbf{F}. The set of all solutions $(x, y) \in \mathbf{F} \times \mathbf{F}$ to this equation together with a point \circ, called the point at infinity, is denoted by $E(\mathbf{F})$, called the set of \mathbf{F}-rational points on E. The value $\Delta(E)=$ $-16\left(4 A^{3}+27 B^{2}\right)$ is called the discriminant of elliptic curve E. For a more detailed information about elliptic curves in general, see [4].
For any two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ on E, define

$$
P+Q=\left\{\begin{array}{cc}
\circ & \text { if } x_{1}=x_{2} \text { and } y_{1}+y_{2}=0 \\
Q & \text { if } P=0 \\
\left(x_{3}, y_{3}\right) & \text { otherwise }
\end{array}\right.
$$

where

$$
\begin{gathered}
x_{3}=m^{2}-x_{1}-x_{2} \\
y_{3}=m\left(x_{1}-x_{3}\right)-y_{1}
\end{gathered}
$$

and

$$
m=\left\{\begin{array}{cc}
\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right) & \text { if } P \neq Q \\
\left(3 x_{1}^{2}+A\right) / 2 y_{1} & \text { if } P=Q
\end{array}\right.
$$

where $y_{1} \neq 0$, while when $y_{1}=0$, the point is of order 2. With this definition, $E(\mathbf{F})$ forms an additive abelian group having identity \circ. Here, by definition, $-P=$ $(x,-y)$ for a point $P=(x, y)$ on E.

It has always been interesting to look for the number of points over a given field \mathbf{F}. In [3], three algorithms to find

[^0]the number of points on an elliptic curve over a finite field. Among the well-known results, there are the followings:

Theorem 1.1: (Mordell,1922) Let E be an elliptic curve given by an equation

$$
E: y^{2}=x^{3}+A x+B
$$

with $A, B \in \mathbf{Q}$. There is a finite set of points $P_{1}, P_{2}, \ldots, P_{r}$ so that every point P in $E(\mathbf{Q})$ can be obtained as a sum

$$
P=n_{1} \cdot P_{1}+n_{2} \cdot P_{2}+\ldots+n_{r} \cdot P_{r}
$$

with $n_{1}, n_{2}, \ldots, n_{r} \in \mathbf{Z}$. In other words, $E(\mathbf{Q})$ is a finitely generated group.

Theorem 1.2: (Mazur,1977) The group $E(\mathbf{Q})$ contains at most 16 points of finite order.

If, in particular, we take $A, B \in \mathbf{Z}$ and look for the integer solutions of (1), we have

Theorem 1.3: (Siegel,1928) An elliptic curve

$$
E: y^{2}=x^{3}+A x+B \in \mathbf{Z}[x]
$$

with $A, B \in Z$ and $\Delta \neq 0$ has only finitely many points $P(x, y)$ with integer coordinates.

II. The Group $E\left(F_{p}\right)$ of Points Modulo
 $$
p, p \equiv 5(\bmod 6)
$$

It is interesting to solve polynomial congruences modulo p. Clearly, it is much easier to find solutions in \mathbf{F}_{p} for small \mathbf{p}, than to find them in \mathbf{Q}. Because, in \mathbf{F}_{p}, there is always a finite number of solutions.

In this work, we consider the elliptic curve (1) in modulo p, for $A=0$ and $B=a^{3}$, where a is an integer, and try to obtain results concerning the number of points on E over \mathbf{F}_{p} and also their orders.

In [10], starting with a conjecture from 1952 of Dénes which is a variant of Fermat-Wiles theorem, Merel illustrates the way in which Frey elliptic curves have been used by Taylor, Ribet, Wiles and the others in the proof of FermatWiles theorem. Serre, in [11], gave a lower bound for the Galois representations on elliptic curves over the field Q of rational points. In the case of a Frey curve, the conductor N of the curve is given by the help of the constants in the $a b c$ conjecture. In [9], Ono recalls a result of Euler, known as Euler's concordant forms problem, about the classification of those pairs of distinct non-zero integers M and N for which there are integer solutions (x, y, t, z) with $x y \neq 0$ to $x^{2}+M y^{2}=t^{2}$ and $x^{2}+N y^{2}=z^{2}$. When $M=-N$, this becomes the congruent number problem, and when $M=2 N$, by replacing x by $x-N$ in $E(2 N, N)$, a special form of

ISSN: 2517-9934
Vol:1, No:1, 2007
the Frey elliptic curves is obtained as $y^{2}=x^{3}-N^{2} x$. Using Tunnell's conditional solution to the congruent number problem using elliptic curves and modular forms, Ono studied the elliptic curve $y^{2}=x^{3}+(M+N) x^{2}+M N x$ denoted by $E_{Q}(M, N)$ over Q. He classified all the cases and hence reduced Euler's problem to a question of ranks. In [7], Parshin obtaines an inequality to give an effective bound for the height of rational points on a curve. In [8], the problem of boundedness of torsion for elliptic curves over quadratic fields is settled.

If F is a field, then an elliptic curve over F has, after a change of variables, a form

$$
y^{2}=x^{3}+A x+B
$$

where A and $B \in F$ with $4 A^{3}+27 B^{2} \neq 0$ in F. Here $D=$ $-16\left(4 A^{3}+27 B^{2}\right)$ is called the discriminant of the curve. Elliptic curves are studied over finite and infinite fields. Here we take F to be a finite prime field F_{p} with characteristic $p>3$. Then $A, B \in F_{p}$ and the set of points $(x, y) \in F_{p} \times F_{p}$, together with a point o at infinity is called the set of $F_{p}-$ rational points of E on F_{p} and is denoted by $E\left(F_{p}\right) \cdot N_{p}$ denotes the number of rational points on this curve. It must be finite.

In fact one expects to have at most $2 p+1$ points (together with o)(for every x, there exist a maximum of $2 y^{\prime} \mathrm{s}$). But not all elements of F_{p} have square roots. In fact only half of the elements of F_{p} have a square root. Therefore the expected number is about $p+1$.

Here we shall deal with Bachet elliptic curves $y^{2}=x^{3}+a^{3}$ modulo p. Some results on these curves have been given in [5], and [6].

A historical problem leading to Bachet elliptic curves is that how one can write an integer as a difference of a square and a cube. In another words, for a given fixed integer c, search for the solutions of the Diophantine equation $y^{2}-x^{3}=c$. This equation is widely called as Bachet or Mordell equation. This is because L. J. Mordell, in twentieth century, made a lot of advances regarding this and some other similar equations. The existance of duplication formula makes this curve interesting. This formula was found in 1621 by Bachet. When (x, y) is a solution to this equation where $x, y \in Q$, it is easy to show that $\left(\frac{x^{4}-8 c x}{4 y^{2}}, \frac{-x^{6}-20 c x^{3}+8 c^{2}}{8 y^{3}}\right)$ is also a solution for the same equation. Furthermore, if (x, y) is a solution such that $x y \neq 0$ and $c \neq 1,-432$, then this leads to infinitely many solutions, which could not proven by Bachet. Hence if an integer can be stated as the difference of a cube and a square, this could be done in infinitely many ways. For example if we start by a solution $(3,5)$ to $y^{2}-x^{3}=-2$, by applying duplication formula, we get a series of rational solutions $(3,5),\left(\frac{129}{10^{2}}, \frac{-383}{10^{3}}\right),\left(\frac{2340922881}{7660^{2}}, \frac{113259286337292}{7660^{3}}\right), \ldots$.

It can easily be seen that an elliptic curve

$$
\begin{equation*}
y^{2}=x^{3}+a^{3} \tag{2}
\end{equation*}
$$

can have at most $2 p+1$ points in \mathbf{Z}_{p}; i.e. the point at infinity along with $2 p$ pairs (x, y) with $x, y \in \mathbf{F}_{p}$, satisfying the equation (2). This is because, for each $x \in \mathbf{F}_{p}$, there are at most two possible values of $y \in \mathbf{F}_{p}$, satisfying (2).

But not all elements of \mathbf{F}_{p} has a square root. In fact, only half of the elements in $\mathbf{F}_{p}^{*}=\mathbf{F}_{p} \backslash\{\overline{0}\}$ have square roots. Therefore the expected number of points on $E\left(\mathbf{F}_{p}\right)$ is about $p+1$.

It is known, as a more precise formula, that the number of solutions to (2) is

$$
p+1+\sum \chi\left(x^{3}+a^{3}\right)
$$

where $\chi(a)=\left(\frac{a}{p}\right)$ denotes the Legendre symbol which is equal to +1 if a is a quadratic residue modulo $p ;-1$ if not; and 0 if $p \mid a$, ([4], pp132). The following theorem of Hasse quantifies this result:

Theorem 2.1: (Hasse,1922) An elliptic curve (2) has

$$
p+1+\delta
$$

solutions (x, y) modulo p, where $|\delta|<2 \sqrt{p}$.
Equivalently, the number of solutions is bounded above by the number $(\sqrt{p}+1)^{2}$.
¿From now on, we will only consider the case p is prime congruent to 5 modulo 6 . The other possible case where $p \equiv 1(\bmod 6)$ has been discussed in $[5]$. We begin by some calculations regarding the number of points on (2). First we have the following particular case. But we first need the following lemma:

Lemma 2.1: Let p be a prime. If $(p-1,3)=d=1$, then the congruence $x^{3} \equiv a(\bmod p)$ has a solution for each $a \in \mathbf{F}_{p}$, that is every $a \in \mathbf{F}_{p}$ is a cubic residue.

Proof: When $(p-1,3)=1$, we have either $p=3$ or $p \equiv 2(\bmod 3)$, as p is prime. If $p=3$, then $0^{3} \equiv 0(\bmod 3)$, $1^{3} \equiv 1(\bmod 3)$ and $2^{3} \equiv 2(\bmod 3)$ in \mathbf{F}_{3} and therefore every $a \in \mathbf{F}_{3}$ is a cubic residue. Secondly, if $p \equiv 2(\bmod 3)$ is prime, then $p=2+3 k$ for $k \in \mathbf{Z}$. Therefore the norm of p is

$$
N_{p}=p \cdot p=(2+3 k) \cdot(2+3 k)=9 k^{2}+12 k+4
$$

and

$$
\frac{N_{p}-1}{3}=3 k^{2}+4 k+1 .
$$

Now for $a \in \mathbf{F}_{p}^{*}$, we have

$$
a^{\frac{\left(N_{p}-1\right)}{3}}=a^{3 k^{2}+4 k+1}
$$

By Fermat's little theorem

$$
a^{p-1} \equiv 1(\bmod p)
$$

Then

$$
a^{p-1} \equiv a^{3 k+2-1} \equiv a^{3 k+1} \equiv 1(\bmod p) .
$$

Therefore

$$
a^{\frac{\left(N_{p}-1\right)}{3}} \equiv\left(a^{3 k+1}\right)^{k+1} \equiv 1^{k+1} \equiv 1(\bmod p)
$$

Let's now choose an element a between 1 and $p-1$ and choose an integer k between 0 and $p-2$. Let g be a primitive root modulo p such that

$$
g^{k} \equiv a(\bmod p)
$$

Since $(3, p-1)=1$, there are integers $x \prime$ and y^{\prime} such that

$$
3 x^{\prime}+(p-1) \cdot y^{\prime}=1
$$

Then by putting $x=x^{\prime} k$ and $y=y^{\prime} k$, this equation becomes

$$
3 x+(p-1) \cdot y=k
$$

Now, as $g^{p-1} \equiv 1(\bmod p)$, we have

$$
a \equiv g^{k} \equiv g^{3 x+(p-1) \cdot y} \equiv\left(g^{x}\right)^{3}\left(g^{p-1)^{y}} \equiv\left(g^{x}\right)^{3}(\bmod p)\right.
$$

That means, a is a cubic residue modulo p. Further as $0^{3} \equiv$ $0(\bmod p)$, all elements of \mathbf{F}_{p} are cubic residues.

Theorem 2.2: Let $p \equiv 5(\bmod 6)$ be prime. Then there are exactly $p+1$ rational points on the curve

$$
y^{2} \equiv x^{3}+a^{3}(\bmod p)
$$

Proof: By Lemma 5, all elements of \mathbf{F}_{p} are cubic residues modulo $p, p \equiv 5(\bmod 6)$.For every quadratic residue q in \mathbf{F}_{p}, there are two solutions $y_{1}=t$ and $y_{2}=p-t$ of $y^{2} \equiv$ $q(\bmod p)$. It is well known, see [1], that the number of such q is equal to the order of Q_{p}, the group of quadratic residues modulo p, which is equivalent to $\frac{p-1}{2}$. Then we must look for $x \in \mathbf{F}_{p}$ such that $x^{3}+a^{3} \equiv{ }_{q}^{2}(\bmod p)$. Hence $x^{3} \equiv$ $q-a^{3}(\bmod p)$ and since $q-a^{3} \in \mathbf{F}_{p}$, there is only one solution of $x^{3} \equiv q-a^{3}(\bmod p)$ in \mathbf{F}_{p}. That is, for each of $\frac{p-1}{2}$ quadratic residues, there is exactly one solution of the congruence $x^{3} \equiv$ $q-a^{3}(\bmod p)$ since $(p-1,3)=1$. That means that there is a total of $\frac{p-1}{2}$ values of x. Going backwards, we find $2 \cdot \frac{p-1}{2}=$ $p-1$ rational points, since there exist two different values of y for each x. By adding the obvious point $(-a, 0)$ and the point at infinity, the result follows.

Corollary 2.3: Let $p \equiv 5(\bmod 6)$ be prime. Then there are either no values or 2 values of $y \in F_{p}$ for every $x \in \mathbf{F}_{p}-\{a\}$ such that (x, y) lies on the curve $y^{2} \equiv x^{3}+a^{3}(\bmod p)$. When this number is 2 , the sum of these values of y is equal to p. Further for $x=a$, there is only one point $(a, 0)$ on the curve.

Proof: Follows by Theorem 6.
Corollary 2.4: Among all rational points on the curve

$$
y^{2} \equiv x^{3}+a^{3}(\bmod p),
$$

the sum of ordinates of the points with the same abscissa is either 0 or p.

Corollary 2.5: Let $p \equiv 5$ (mod6) be prime. Then the number of all possible different values of x obtained for $y=0,1,2, \ldots, p-1$ in the equation

$$
y^{2} \equiv x^{3}+a^{3}(\bmod p),
$$

is $\frac{p+1}{2}$.
${ }^{2}$ Proof: Follows by Corollary 8 as $1+\frac{p-1}{2}=\frac{p+1}{2}$.
In Theorem 6, we have seen that the curve $y^{2} \equiv x^{3}+$ $a^{3}(\bmod p)$ has exactly $p+1$ rational points. We further can say that no two of these points have the same ordinate:

Theorem 2.6: Let $p \equiv 5(\bmod 6)$ be prime. Then no two points on the curve

$$
y^{2} \equiv x^{3}+a^{3}(\bmod p)
$$

have the same ordinate.
Proof: Let $u \equiv y^{2}-a^{3}(\bmod p)$. As each element of \mathbf{F}_{p} is a cubic residue, u is a cubic residue. Then the congruence $x^{3} \equiv u(\bmod p)$ has solutions, and the number of these solutions can not be more than 3 , as p is prime. By Theorem 6 ,
it is known that there are exactly p rational points (x, y) apart from the point at infinity on $y^{2} \equiv x^{3}+a^{3}(\bmod p)$. Since there are p values of modulo p, for each such value, $x^{3} \equiv u(\bmod p)$ can have only one solution.

Theorem 2.7: Let $p \equiv 5(\bmod 6)$ be prime. There are exactly

$$
1+\sum_{x \in \mathbf{F}_{p}} \rho(x)
$$

values of x such that there are two values of y, having a sum equal to p, where the rational point (x, y) is on the curve $y^{2} \equiv x^{3}+a^{3}(\bmod p)$. This number is therefore equivalent to $\frac{p+1}{2}$. Here

$$
\rho(x)=\left\{\begin{array}{cc}
2 & \text { if } \chi\left(x^{3}+a^{3}\right)=1 \\
0 & \text { if } \chi\left(x^{3}+a^{3}\right)=-1 \\
1 & \text { if } \chi\left(x^{3}+a^{3}\right)=0
\end{array}\right.
$$

Proof: For $x=0,1,2, \ldots, p-1$ calculate the values $x^{3}+$ $a^{3}(\bmod p)$. If $x^{3}+a^{3} \in Q_{p}$, i.e. if $\chi\left(x^{3}+a^{3}\right)=1$, then there are exactly two values of $y \in U_{p}$, such that $y^{2} \equiv x^{3}+$ $a^{3}(\bmod p)$. By Theorem 6 , there are exactly $p+1$ points on the curve with integer coefficients. Apart from the point at infinity and the point $(-a, 0)$, the others have ordinates different than 0 . Since they are paired so that the ordinates of each pair add up to p, the number of all possible values of x is $\frac{p+1}{2}$.
Note that the number given in this theorem is three less than the number given for $p \equiv 1(\bmod 6)$ in $[5]$. This is because the cubic root $w=\frac{-1+\sqrt{3} i}{2}$ is not in \mathbf{F}_{p} in this case.
We can easily formulate the sum of abscissae of all points on the curve $y^{2} \equiv x^{3}+a^{3}(\bmod p)$.
Theorem 2.8: Let $p \equiv 5(\bmod 6)$ be prime. The sum of abscissae of the points on the curve $y^{2}=x^{3}+a^{3}(\bmod p)$ having integer coefficients is equal to

$$
\sum_{x \in \mathbf{F}_{p}}\left(1+\chi_{p}\left(x^{3}+a^{3}\right)\right) \cdot x
$$

Proof: It is clear from the definition of the function χ_{p}. Theorem 2.9: Let $p \equiv 5(\bmod 6)$ be prime. Then there is a unique \mathbf{F}_{p}-point on the curve

$$
y^{2} \equiv x^{3}+a^{3}(\bmod p)
$$

with $y \equiv 0(\bmod p)$, which is $(-a, 0)$.
Proof: Let $y \equiv 0(\bmod p)$. Then $x^{3} \equiv a^{3}(\bmod p)$, and hence

$$
(x-a)\left(x^{2}+a x+a^{2}\right) \equiv 0(\bmod p)
$$

iff

$$
x \equiv a(\bmod p) \text { or } x^{2}+a x+a^{2} \equiv 0(\bmod p) .
$$

Now, $x \equiv a(\bmod p)$ is obvious solution. To have another solution, one must be able to solve

$$
(x+b)^{2} \equiv-3 b^{2}(\bmod p)
$$

To do this, -3 must be a quadratic residue modulo p. i.e. $\left(\frac{-3}{p}\right)=+1$ must be satisfied. But it is well-known that $\left(\frac{-3}{p}\right)=$ -1 for $p \equiv 2(\bmod 3)$ is prime, see, e.g. ([2],pp $93-94)$.

Conclusion 2.1: One can generalize the result concerning the number of \mathbf{F}_{p}-points on an elliptic curve using the Weil conjecture as explained below:

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:1, No:1, 2007

Theorem 2.10: (Weil Conjecture) The Zeta-function is a rational function of T having the form

$$
Z\left(T ; E / \mathbf{F}_{q}\right)=\frac{1-a T+q T^{2}}{(1-T)(1-q T)}
$$

where only the integer a depends on the particular elliptic curve E. The value a is related to $N=N_{1}$ as follows:

$$
N=q+1-a .
$$

In addittion, the discriminant of the quadratic polynomial in the numerator is negative, and so the quadratic has two conjugate roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ with absolute value $\frac{1}{\sqrt{q}}$. Writing the numerator in the form $(1-\alpha T)(1-\beta T)$ and taking the derivatives of logarithm both sides, one can obtain the number of $F_{q^{r}}$ points on E, denoted by N_{r}, as follows:

$$
N_{r}=q^{r}+1-\alpha^{r}-\beta^{r}, r=1,2, \ldots
$$

Example 2.1: Let us find the \mathbf{F}_{25}-points on the eliptic curve $y^{2}=x^{3}+8$. There are $N_{1}=6 \mathbf{F}_{5}$-points on the elliptic curve:

$$
(1,2),(1,3),(2,1),(2,4),(3,0)
$$

and \circ. Now as $r=2$ we want to find

$$
N_{2}=25+1-\alpha^{2}-\beta^{2} .
$$

To find the "reciprocal roots" α and β, we first consider the formula

$$
N_{1}=q+1-a .
$$

Hence

$$
6=5+1-a
$$

gives $a=0$.Then we consider the quadratic equation

$$
1+5 T^{2}=0
$$

which has two roots $\frac{ \pm i}{\sqrt{5}}$. Then $\alpha=\sqrt{5} i$ and $\beta=-\sqrt{5} i$ and finally

$$
N_{r}=\left\{\begin{array}{cc}
5^{r}+1 & \text { if } r \text { is odd } \\
5^{r}+1-2 \cdot(-5)^{\frac{r}{2}} & \text { if } r \text { is even }
\end{array} .\right.
$$

Hence we found

$$
N_{2}=5^{2}+1-2(-5)^{\frac{2}{2}}=36
$$

Similarly $N_{3}=5^{3}+1=126$ and $N_{4}=576$ can be calculated.
Example 2.2: Let us find the \mathbf{F}_{25}-points on the eliptic curve $y^{2}=x^{3}-x$. There are $N_{1}=8 \mathbf{F}_{5}$-points on the elliptic curve:

$$
(0,0),(1,0),(2,1),(2,4),(3,2),(3,3),(4,0)
$$

and \circ. Now as $r=2$ we want to find

$$
N_{2}=25+1-\alpha^{r}-\beta^{r} .
$$

To find the "reciprocal roots" α and β, we first consider the formula

$$
N_{1}=q+1-a .
$$

Hence

$$
8=5+1-a
$$

gives $a=-2$.Then we consider the quadratic equation

$$
1+2 T+5 T^{2}=0
$$

which has two roots $\frac{-1 \pm 2 i}{5}$. Then $\alpha=-1+2 i$ and $\beta=-1-2 i$ and finally

$$
N_{2}=26-(-1+2 i)^{2}-(-1-2 i)^{2}=32 .
$$

Similarly $N_{3}=104$ can be calculated.

References

[1] Jones,G.A., Jones,J.M., Elementary Number Theory, Springer-Verlag, (1998),ISBN 3-540-76197-7
[2] Esmonde, J. \& Murty, M. R., Problems in Algebraic Number Theory, Springer-Verlag, (1999), ISBN 0-387-98617-0.
[3] Schoof, R., Counting points on elliptic curves over finite fields, Journal de Théorie des Nombres de Bordeaux, 7(1995), 219-254.
[4] Silverman, J.H., The Arithmetic of Elliptic Curves, Springer-Verlag, (1986), ISBN 0-387-96203-4.
[5] Demirci, M. \& Soydan, G. \& Cangül, I. N., Rational points on the elliptic curves $y^{2}=x^{3}+a^{3}(\bmod p)$ in F_{p} where $p \equiv 1(\bmod 6)$ is prime, Rocky J.of Maths, (to be printed).
[6] Soydan, G. \& Demirci, M. \& Ikikardeş, N. Y. \& Cangül, I. N., Rational points on the elliptic curves $y^{2}=x^{3}+a^{3}(\bmod p)$ in F_{p} where $p \equiv 5$ $(\bmod 6)$ is prime, (submitted).
[7] Parshin, A. N., The Bogomolov-Miyaoka-Yau inequality for the arithmetical surfaces and its applications, Seminaire de Theorie des Nombres, Paris, 1986-87, 299-312, Progr. Math., 75, Birkhauser Boston, MA, 1998.
[8] Kamienny, S., Some remarks on torsion in elliptic curves, Comm. Alg. 23 (1995), no. 6, 2167-2169.
[9] Ono, K., Euler's concordant forms, Acta Arith. 78 (1996), no. 2, 101123.
[10] Merel, L., Arithmetic of elliptic curves and Diophantine equations, Les XXemes Journees Arithmetiques (Limoges, 1997), J. Theor. Nombres Bordeaux 11 (1999), no. 1, 173-200.
[11] Serre, J.-P., Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.

[^0]: Gokhan Soydan, Musa Demirci, Ismail Naci Cangul are with the Uludag University, Department of Mathematics, Faculty of Science, BursaTURKEY, emails: gsoydan@uludag.edu.tr, mdemirci@uludag.edu.tr, cangul@uludag.edu.tr. Nazli Yildiz İkikardes is with the Balikesir University, Department of Mathematics, Faculty of Science, Balkesir-TURKEY. email: nyildiz@balikesir.edu.tr. This work was supported by the research fund of Uludag University project no: F-2003/63.

