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Critical Assessment of Scoring Schemes for
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Abstract—Protein-protein interactions (PPI) play acrucia rolein
many biological processes such as cel signaling, transcription,
trangdation, replication, signal transduction, and drug targeting, etc.
Structural information about protein-protein interaction is essential for
understanding the molecular mechanisms of these processes.
Structures of protein-protein complexes are still difficult to obtain by
biophysical methods such as NMR and X-ray crystallography, and
therefore protein-protein docking computation is considered an
important approach for understanding protein-protein interactions.
However, reliable prediction of the protein-protein complexes is still
under way. In the past decades, several grid-based docking a gorithms
based on the Katchal ski-Katzir scoring scheme were developed, e.g.,
FTDock, ZDOCK, HADDOCK, RosettaDock, HEX, etc. However,
the success rate of protein-protein docking prediction is till far from
ideal. In this work, we first propose a more practica measure for
evaluating the success of protein-protein docking predictions,the rate
of first success (RFS), which is similar to the concept of mean first
passage time (MFPT). Accordingly, we have assessed the ZDOCK
bound and unbound benchmarks 2.0 and 3.0. We aso createda new
benchmark set for protein-protein docking predictions, in which the
complexes have experimentally determined binding affinity data. We
performed free energy calculation based on the solution of non-linear
Poisson-Boltzmann equation (nIPBE) to improve the binding mode
prediction. We used the well-studied thebarnase-barstarsystem to
validate the parameters for free energy caculations.
Besides,thenl PBE-based free energy calculations were conducted for
the badly predicted cases by ZDOCK and ZRANK. We found that
direct molecular mechanics energetics cannot be used to discriminate
the native binding pose from the decoys.Our results indicate that
nIPBE-based calculations appeared to be one of the promising
approaches for improving the success rate of binding pose predictions.

Keywor ds—protein-protein  docking,protein-protein interaction,
mol ecular mechanics energetics, Poisson-Boltzmann cal culations

|. INTRODUCTION

ETTER understanding of machinery of lifeis achieved by

in-depth studies of proteins. Although the functions of
individual proteins are important for understanding this
machinery, we usualy also need to move up to a higher level,
i.e., protein-protein interactions (PPI), which areindispensable
in understanding almost all the cellular processes such as cell
signaling, transcription, translation, replication, signal
transduction, and drug targeting etc.

Dhananjay C. Joshi is with the Taiwan International Graduate Program for
Chemical Biology and Molecular Biophysics, Academia Sinica, 115 Taiwan
(phone: +886 2 2782 3212 ext 877; fax: +886 2 2782 3060; e-mail: joshidc@
gmail.com).

Jung-Hsin Lin iswith the Research Center for Applied Sciences & Ingtitute
of Biomedical Sciences, Academia Sinica, Taiwan; School of Pharmacy,
National Taiwan University (e-mail: jhlin@gate.sinica.edu.tw,
jlin@ntu.edu.tw).

Structural information about protein-protein interaction is
essentia for understanding the molecular mechanisms of these
processes. However, structures of protein-protein complexes
are till difficult to obtain by biophysical methods, such as
NMR and X-ray crystalography. Therefore, computational
protein-protein docking is considered as an importantapproach
for elucidating protein-protein interactions. Another emerging
field of biosciencesis peptide-based drug designing or protein
therapies. Engineered peptides could be used as inhibitor for
some PPI. However, similar to protein-protein complexes,
structural information of the protein-peptide complex is also
sometimes difficult to obtain. Hence, it is preferred to carry out
in-silico studies to reduce the efforts and optimize the
biophysical studies.

Althoughin-silico prediction of such protein-protein and
protein-small-peptide interaction is still challenging, recent
progress in protein-protein docking studies suggested several
directions towards future research. In the past two decades,
many grid-based docking algorithms were developed. These
algorithms employ efficient search and scoring schemes such
as Fast Fourier Transform (FFT)(e.g., the Katchalski-Katzir
scheme [1]) for correlation function evaluation, Monte-Carlo
methods, geometric hashing, etc. Electrostatics, desolvation,
and hydrophobic effect have been incorporated in several
scoring functions. Despite of all the efforts, selecting the
correct binding pose from the huge decoy data set, is still abig
challenge.

Nevertheless, there are many famous docking suites and
algorithms that have shown significant progress in predicting
near-native binding poses by making better use of biophysical
and biochemicad information in combination with
bioinformatics. The information such as protein-protein
interaction data bases, aanine scanning, conserved sequence
data bases etc., in combination with machine learning
approach, helps to identify hot-spots for protein-protein
interactions. Subsequently, there are several issues directly or
indirectly related to protein-protein docking, e.g., protein
conformational flexibility[2], interfacial water molecules[3],
atomic radii optimization [4], implicit versus explicit solvent
and water dielectric constant[5], etc.,which make the route
towards reliable docking predictions more curved and rugged.
Hence, predicting correct bio-molecular complex is still a
formidabl e task.

The protein-protein docking procedure could be usualy
divided into two parts, rigid body docking and flexible docking.
Most of the docking suites employ rigid body docking
procedure as a first step. In rigid body docking, the protein is
considered as non-flexible rigid body. The protein's
coordinates are discretized into a three dimensional Cartesian
grid. The grid cells are sorted out based on whether they
belongto the surface or the core of a protein. Further, surface
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grid cells of protein and ligand are used to s¢beedegree of
overlap between them for different orientations aathtive
positions[1]-[6]. This procedure involves transtatal and
rotational search. The search is very slow andefbes

accelerated by well-known Fast Fourier TransfornkT{F
technique [1] to accelerate the translational seafthe
methods of predicting near-native complex vary dejey

upon various strategies. On the other hand, inflidble

docking part, the flexibility of side chain, backiz etc., were
also taken care in various ways. Well-known sofewérat
implements varieties of these
includesFTDock[7],[8],[9]; HADDOCK]10],[11][12];
ICM[13];RosettaDock, [14], [15], [16];HEX[17], [1819],

[20];ZDOCK][21], [22],[23], [24], [25]; etc.

FTDock (Fourier Transform Dock) is the docking aitiom
that uses simplified grid representation[7]-[9].itiplements
the Fourier correlation theory based
Katchalski-Katziralgorithm[1] plus an electrostatiéunction
amenable to Fourier correlation. It outputs mudtiptedictions
that can be screened using biochemical
Furthermore, RPScore (Residue-level Pair poterBiabre)
uses a single distance constraint empirically @eriypair
potential to screen the output from FTDock. Theatgms are
fully embedded in 3D-DOCK docking suite. As an e&sien to
this approach, MultiDock (Multiple copy side-chagfinement
Dock) is also available to improve quality of pretin.

HADDOCK (High Ambiguity Driven protein-protein
Docking) approach makes use of biochemical
biophysical interaction data such as, for examphemical
shift perturbation data obtained from NMR
experiments or mutagenesis data. The informationtten
interacting residues is introduced as ambiguousraction
restraints (AIRs) to drive the docking. The preeiictomplex
structures are ranked according to their intermdércenergy,
i.e., sum of electrostatic, van der Waals, and ahRrgy terms.
Thus, this approach demonstrates the usefulnesalRf
However, new versiotdADDOCK?2.0 has been modified to
support docking of proteins, DNA,RNA, oligosacclklas, and
small ligand, up to a total of six separate molesulor
domains) per docking. The new version allows tloduision of
anisotropy restraints from NMR (both residual darol
couplings and relaxation data) and supports salvateking,
that is, allowing the explicit inclusion of intedial water
molecules in the docking proc§b8].

ICM is another software suite that is facilitatedhwmany
tools. The basic algorithm includes ODA (Optimal dRimg
Areas) method that predicts protein-protein intgoscsites on
protein surfaces. This calculation involves desidve
energy.lt identifies optimal surface patches witle jowest
docking desolvation energy values as calculatedatoynic
solvation parameters (ASP) derived from octanokawaansfer
experiments and adjusted for protein-protein dagkiRirst,
correct solution with lowest energy confirmationféaind by
docking rigid ligand (all-atom) molecule to a seft soft
receptor. The potentials are pre-calculated o% &@yrid from
realistic solvent-corrected force-field energiefeTinclusion
ofthe induced changes, as well as the optimizabbrthe

titrationmulti-dimensionalmulti-propertymulti-resolution

interface side-chains of up to 400 best solutitaise place in
second step.The third step is the filtering stap,wihich
information available from the experiment is implamted.
However, the algorithm is less successful if thekbane
undergoes large scale rearrangements [13].

RosettaDock is the software suite that providemergerver
facility for protein-protein docking. The dockindgarithm
mimics the physical process of docking, i.e., intans a
low-resolution recognition stage and a high-resofubinding
stage. The high-resolution refinement simultangousl

strategiesptimizes the rigid-body displacement and the sidain

conformations. In this suite the Rosetta techniquese
adapted and expanded for docking problems. Theritigo
includes a fast search using low-resolution poaésfiollowed
by an atomic-scale refinement step incorporatinguaneous
optimization of side-chain positions and rigid-body

ordisplacement. The process mimics the steps invoived

diffusional encounter between two macromoleculébpagh
the treatment is certainly not a rigorous physgiaulation.

informatio®coring functions include both physical and phyl§idaspired

statistical potentials derived from structureshia Protein Data
Bank (PDB)[26]. Small-perturbation studies are evgpt to
examine the quality of the scoring function [278]2

HEX software suite handles the docking problem liitle
different way. FFT based algorithms can speed hg t
calculationstremendously. However, it is not reatébsible to
incorporate the prior knowledge about complex aowi$ on

and/ohem. HEX uses closed-form 6 D Spherical Polar ieoySPF)

correlation from which arbitrary
FFT

correlations can be generated. The approach is mktnated by
calculating 1D, 3D and 5D rotationalcorrelations3@f shape
and electrostatic expansions up topolynomial oke®0 on a 2
GB personal computer. The SPF approach providestwarat
way to define one or two simple angular constrawith which
to focus docking searches around known or hypathdsi
binding sites. This accelerates the calculation a@h
significantly reduce the number of false-positivedictions.
The approach provides a practicaland fast tookifpd body
protein-protein docking, especiallywhen prior knedde about
one or both binding sites is available. With onlidexServer
facility, recently, HEX have implemented GraphiPabcessing
Unit (GPU) version to accelerate the calculatiomk[1

ZDOCK is oneof the successful suites that has shgneat
prediction abilities in Critical Assessment of PRedicted
Interactions (CAPRI) [29].ZDOCK uses a fast Fourier
transform to search all possible binding modegtierproteins,
evaluating based on shape complementarity, desmivat
energy, and electrostatics. The top 2000 predistifnom
ZDOCK are then given to RDOCK where they are miagxi
by CHARMM to improve the energies and eliminateshies,
and then the electrostatic and desolvation energies
recomputed by RDOCK (in a more detailed fashiomttie
calculations performed by ZDOCK). However, RDOCK
approach is very time consuming as it involves mular
force-field based energy minimization of macromales. In
the new protocol of ZDOCK, the rescoring schemeARR

expressions,
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[23]has been introduced. It utilizes detailed elestatics, van
der Waals, and desolvation to rescore initial-stdgeking
predictions.Weights for the scoring terms wereroed for a
set of test cases, and this optimized functiontivas tested on
an independent set of non-redundant cases[22].

Scoring functions bearing the information of birglaffinity
isgenerally more useful because they can be used
discriminate
complexes, especially when the shape complemeniarthe
only factor contributing to the binding. Many easch groups
are concerned about experimental data to includscaring
functions. Dissociation constant or binding affinis one of
those experimental data’s that is considered asnportant
criterion for many new benchmarks [30]. However,ompo
correlation between experimental and calculateddibm
affinity indicates the need to improve the scorfgctions
[31]. It has been shown that the combination ofwsesg and
refinement significantly improves the protein dogki
performance [25].Also, molecular recognition andding are
the two main steps involved in protein complex fation. The

recognition Step must depend upon |Ong range forcégcluded in thePPlbindbenchmark set. F|gl shows

Electrostatic complementarities are responsibledoognizing
correct binding pose and the other factors sucthes ranges
van der Waals and hydrophobic interactions are leeb
stabilization of the formed complex.

In this study, we first propose a new benchmarkisethich
experimentally determined binding affinity data asailable.
Specifically, we have assessed the performanc®&f@K and
ZRANK benchmark on Benchmark 2.0 and 3.0 data &®ets
well as our new benchmark data set. Further, wdietua new
scoring scheme based on the solution of non-line
Poisson-Boltzmann equation. We used the well-studi
barnase-barstar complex to address some of thesisslated to
optimization ofthe parameters for free energy datoons.

Il. METHODS

A.ZDOCK and ZRANK assessment

Benchmark 2.0 [32]and 3.0 [33]are used for assessmbe
benchmarks were obtained from
thehttp://zlab.umassmed.edu/zdock/benchmark.shtopage.
The set consists of bound and unbound cases.llittae
bound and unbound cases are separated out andrthees
were marked using the mark_surf script. Some of¢lseues
and ligands (non-protein molecules) were excludadther,
ZDOCK is run in two sets. In the first set,the loveampling
density with resolution of vas used, whichyield 3600 top
predictions. In second set, the higher density $iagnmith
54000 predictions with resolution of Gvere obtained only

forbarnase-barstar case (PDB ID 1BRS). All the 3600

predictions were re-ranked using ZRANK[23].In castr to
other assessment criteria, here we propose a nradigal
measure for the success of the docking predictitwesrate of
first success (RFS), which is similar to the conagpnean first
passage time (MFPT), and the quantity is normalizgdhe
total number of predictions so that predictionshwdifferent

The first rate of success would indicate the avemragmber
of experiments (mutagenesis, chemical-crosslinkietg.,)
needs to be conducted in order to find out the eworr
protein-protein binding pose. Here, theprediatedhplexes
were scanned from the top in the 3600 ranked ptiedic
listuntil the root-mean-squared prediction (RMSD3imaller
than the defined threshold (in this study 3.0 Apt$ were

the binding complexes from non-bindingnade using matplotlib module of python. For benchn&a0,

the plots for ZDOCK and ZRANK bound and unboundesas
appears to be a single red line, in fact, red dod bines are
overlapping.

B. A new benchmark for protein-protein docking

A newbenchmark set for protein-protein docking praon,
with binding affinity information, designated asIBiRd, was
extracted from thePDBbind[34] with the three ciderFirst,
only two chains are present in the protein-proteamplex.
Second, no small molecule or chemical compoundesgnt in
the complex. Third, there should only be one bimalg
assembly in this PDB entry.A total of 62 complexesre
i th
distribution of binding affinity of 1371 protein-piein
complexes out of 1441 from PDBbind(released on &eper
22,2011) and the 62 complexes in PPIbind haviglalues.
It can be seen that the binding free energy digiob of
PPIlbind stays in the central region of the bindafjnity
distribution of PDBbind, which indicates that Pmidbj
although a much smaller dataset, can well repredimetrse

Jprotein-protein interactions.
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Fig. 1 Distribution of binding free energies of th&71 protein-protein

complexes from PDBbind data set (released on Séyetef?, 2011)
and PPIbind. The unit of the x-axis is kcal/mol

C.AMBER Energetics
AEele = Eele,camplex - Eele,receptor - Eele,ligand
AEvdw = Lydw,complex — Evdw,receptor — Lvaw,ligand

The amber energies were obtained from 0 step MD
simulations using AMBER Molecular Dynamics pack#gfg].

D.APBSEnergetics

density of sampling can be compared. This measums w The adaptive Poisson-Boltzmann solver(APBS) is used

proposed in view of the fact that the top preditsi@f most
protein-protein docking algorithms or ranking sclesmare
usually not to correct binding poses.

calculate the electrostatic contribution of freemges[36]. In
general, calculating binding free energies divites binding
process up into desolvation and Coulombic companent
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AApingG = DAgop, G + ADo1i G
where,
Ao, G = AG + A6

= Asolchomplex - Asolmaall - Asolmaolz

AALy G = —AG
= Acouchomplex - Acouleoll - AcouleolZ
WhereAA,;,G is the solvation energy arAA.,,G is the
electrostatic energy of complex formation (refeg.F for more
details).

E. Barnase-Barstar analysis

The barnase-barstar protein comp(®DB ID: 1BRSwas
used for in depth studies. Th®logical unit was obtained fro
the Protein Data Bank [26].

Ill.  RESULTS ANDDISCUSSION:

A. Assessment of Various Benchmarks

Predicting correct binding pose in proi-protein docking is
indeed a big challenge. In order to address this proplee
performed critical assessment of the benchmarksgithe
well-known ZDOCK software suite ancthe ZRANK
retanking scheme. We used benchmark 2.0 and 3.0 lhay
our own Ky based bertamark from PDIbinddataset for the
assessment.

The assessments onZDO®Knchmark 2.0 and & setswere
carries out as described in theetlods. The data s have
bound and unbound cases. In benchmark 2.0 theBAarets o
complexes [32]whereas in benchmark 3.0 there are
complexes more in addition to 2.0 [33Thus total of 124
complexes were used for the assessment.

Initially, the surface of the ligand and the receptwere
marked and subjected to ZDOCK. Total of 3600 priaohs
were obtained and the RMSD (raoear-square-deviation) is
calculated from the nat@vcomplex. As mentioned Methods,
the rate of first succesgas recorded for each case. Further,
predictions were re-ranked usid®ANK scheme and the ne
rate was determined for each data set.

We used stringent criterion to evaluate the correct b
pose. If the RMSD < 3.0 A the complis considered to be ne
native prediction. The plot®r the rate of first succe(Fig. 2)
show two curves, where the bloerve was the ranking by tl
ZDOCK score,and the red curveby #HIRANK score. The area
under the curve decides thaent of succss of docking. Larger
the area under the curve, léss top ranked comples needed
to scan, thus higher success rdtess rea under the curve
implies more scanning and more success.

In bound cases the plots for benchmark 2.0 ar,Fig. 2, (a)
and (b), shows that the seoring scheme helps to improve
success rate. In the unbound caseglthef the rate of first
success shows the similar trend as th#éhebound case (Fig 2.
(c) and (d)).
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Fig. 2 Comparisownf the rate of firssuccesswith ZDOCK benchmark
data set: ZDOCK and ZRANK comparison for bound24, (b) 3.0

and unbound (c) 2.0, (d) 3.0 benchme (In 3.0 bound and unbound
cases, the red and bluedmare almost perfectly overped)

On comparing theperformance of DOCK, the unbound
cases ardlifficult to rescorethan that of bound cases (Fig. 2,
blue plots). &me is with ZRANK, as the area under the ct
in the unbound sé$ more than that che bound set (Fig. 2 red
plots). In bound 2,0ZRANK rescoring scheme appears t
effective, which is not same in unbound cases, hanesoth
ZDOCK and ZRANK in benchmark 2.0 and 3.0
overlapping suggesting that the-ranking is not improving the
ZDOCK prediction any more

B. Assessment on PPIbind

Similar to above ZDOCK benchmarkO and 3.0, we
performed critical assessment for our benchmarkis
benchmark s essentially a boundenchmarkwith entries
extracted from thHeDBbind databas[34] and the three criteria
mentioned in the Method sect. Basically, PDBbind database
provides a comprehensive collection of the expeniadby
measured binding affinity data for all typesbio-molecular
complexes deposited in the Protein Data Bank (PBRB we
are interested only in proteprotein interactions in this study,
we choose proteiprotein binding affinity dataseThere are
1441 entriesvere found according to out criteri. The binding
free energyistribution is shown in Ficl. Most of the binding
free energyalues spans betwe -20 to -2 kcal/mol, suggesting
a large diversity in proteiprotein interactior. However, 1441
is a significantlylarger number than the number of comple
in ZDOCK benchmark sets, and it is often diffictdt judge
which biological unit of a given PDB entry repretsethe true
binding scenario.On the other hand, in some pro-protein
interactions, small chemical molecules could plays roles ir
facilitating or inhibiting the binding. Finally, to simplify tF
scenario for proteiprotein docking, only binary complexes i
considered. Nevertheless, binding free energy distribution
of PPIbind overlaps with the central region of bieding free
energy distribution of the proteprotein interactions in
PDBbind.
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Fig. 3The rate of first success of ZDOCK and ZRANk thePPIbind
benchmark set, which can be considered an exterstade
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The PDB IDswere extracted from the PDB data bibased
on the criterion as described in Methods. Theset is further
subdivided based on number of biological units ala# in the
PDB data base. We found that out ofdé4es, one has seven
have 2 and rest have one biological unit each. Eachplex
has experimentally determined, Kdissociation constant) «
Ki(inhibitor constant) valuesThe proteil-protein complexes
were separated in to subunit according to chai The larger
subunit is treated as theceptor and the smaller treate the
ligand.

We performed ZDOCK and ZRAK prediction and foun
that the plots of the rate of first sucdeiew similar pattern as
that of Benchmark 2.0 and 3.0 (Fig.. Similar to ZDOCK
benchmarks, ZDOCK has larger area under the cus
compare to ZRANK suggesting that the ZRAlre-ranking
does not help tdamprove the predictic according to RFS
definition.

whitebackground represents the vacuemaironment, and thblue
background represents the aquesxngironmer

C.AMBER and APBS based energetics

From all aboe assessment, it has been clear that there |
of scope to develop energy functions in order &gt correc
binding poses. Although, ZRANK is performing on ievel
best, there is a need to design remering function that could
perform better Han the present one. On these grounds
proceed with some basic tests to define new etics. We
used two approaches, the simphaolecular mechanic

energetics and free energy mod (Fig. 4) based on solutions
of non-linear PoissoBoltzmann equatic (APBS Energetics).
The aim of these studies is to check wheisimple or bit
complicatecenergetics can distinguish between -native and
far-native predictions. For this purpose,e used the
barnase-arstar protein complewith two models, one is in
vacuum and the other in implicit solvent (GeneraiBoin).
The 0 step simulation is performedzhe electrostatic and Van
der Waal componentsere extracte. These components were
used for define energeticBhetarnase-barstar complex is first
separatednto receptor and ligand. Using ZDOCK 540C°
sampling) complexes were obtain

(&) Polential Isusurface

(a) Barnes-Bars:rar complex

Chain A Chain D

.( ‘
(c) SAS and surface potartial

s

.
Chanhil = e ChainD

Fig. 5 (a) The barnadwarstar biological subunit with chains A and
(b) APBS generated potential isosurface and (c) 8Adsurfac
potentia

The barnase-barstar sgstis awell-studied protein-protein
complex [37] The potential isosurface and solvent acces
surface area (SAS) is shown in Fig.The interface surface
shows etctrostatic complementaritlBRS is a protein-protein
complex, having totalofi96 residue, with remarkably high
binding affinity, i.e. Kr 13 fM. This is an excellent complex
system for energetic studies.

We chose 10 topanked predictior by ZDOCK and one
far-native prediction for the energetic studies as siin Table
I. The native structure has lowest energy and asoxe away
from the nativeconformation (i.e. from native complex
complex 10) the energy increases. For the randaméser
far-native conformation (complex 399119), the energpimd
to be lowest in théable. Thus, in tis preliminary analysis, we
found that the AMBER energet, as a general trend,may be
useful for distinguishing the conformations. Heneee
performed calculationfor all 54000 predictions. On analyzi
the energetics, weofind that thereare huge number of
energetically decoy poses exists (Fig. 6). This suggests that
some refinement in theriteria need to be included f
recognizing the decoys.

TABLE |
AMBER ENERGETICS
AE AE AE AE,
ele ele vdw vdw
Complex

vac GB vac GB

386



International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612
Vol:6, No:6, 2012

TABLE Il
APBSENERGETICS FOR BARNASEBARSTAR
kcal/mol DIELECTRIC CONSTANT ~ AAG (KCAL/MOL)
) 1 -5231.41
Native -538.57  -603.09  66.8] -85.27 5 -3050.59
4 -1887.09
1 -513.82 -573.41 500 -77.44 10 -1109.14
12 -1013.51
2 -506.68  -591.04  63.10 77.17 20 -252.37
40 -645.85
3 50452  -602.79  55.1¢ 66.20
The overall assessment of the ZDOCK and ZRANK help
4 -49450  -562.54  61.6: -79.78 us to understand the chalenge in prediction of correct binding
pose and insilico identification of atomistic level
5 49647 | -588.27| 5351 | -75.76 proteinprotein interactions. The molecular mechanics
6 52724 | -55730| s21 76.73 energeticscan be consdere_d as useful tool for ruling out many
decoys. More comprehensive free energy approaches based on
7 52503  -580.24  44.5¢ 7145 non-linear PoissoBoltzmann equation, which is more realistic
to invivo or invitro protein system, is still a big challenge.lt is
8 528.12  -601.52  68.3i -84.57 worthwhile to note that recent study indicate the scope to
achieve reliable electrostatics for protein-protein interaction by
9 <495.10 | 57843 48.0: | -75.38 alteringthe electrostatic properties of proteing[38].
10 -550.46  -647.64  46.9: -55.47
IV. CONCLUSION
39119 -26.31 9100 27U 8.76 The wellknown docking suite, ZDOCK and the rescoring
scheme, ZRANK, do not aways generate correct binding
Loox1o’ T Cwe o ;’j‘:’ % ¢ modes of the proteiprotein interacting partners, especially in
R e unbound cases. APBS based free energy calculation based
_ Tale,h Weas? analysis for BarnasBarstar model suggests the possible used
g Semedon, ?3%0&{.,” of nondinear PBE based free energy calculation in scoring
3 LR T A3 pe scheme The simple molecular mechanics energetics with the
@ ol °°° ‘E "‘f%’{ oF o AMBER force fieldmay be used to combine with PB-based
g 0%, S5 ot o8 energeticgor better prediction of binding poses. However, it is
= ool %&3; found thatAMBER energetics shows huge number decoys,
S oo amte '%; a”?-f?" thus other criteria need to be introduced for better prediction.
< o {.:1%3;0,3"?8;;{2:& The difference between calated and experimental binding
%8s .° A energy, correspondsto lack of proper weighting factors as well
-L00x10° | L po o 24 as important free energetic components, such as entropic term,

0 - 10 20 .
RMSD [A]

Fig. 6AMBER Energetics. Energetically decoy data pc

We also took another stratedpased on the solutis of
non-linear PoissoBoltzmann equation nPBE), calculated
bythe APBS software suit[36]Ve used this method to evalui
the binding free energy of the barnasedba system. From the
dissociation constarthe free energy is estimated toAGgy =
RT In (Kg) =-19.18 kcal/molHowever, for the native comple
the calculated free energy is stifar away from the
experimental value, as shown ifable Il. We performed
calculations at 7 diérent dielectric constants and found tha
calculation converges todtexperimental values. Thiit is not
straightforward to apply this approaébr discriminating the
decoys from the native poses and more investigations (dift
atom radii set for PB calculatiordifferent molecular boundary
definitions, optimizing the contacts of interfaces, etc.)
needed.

hydrophobicinteraction term, etc. New datasets based on
experimental bindingffinity or dissociation constant may help
in improvingtheoretica predictions.
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