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Abstract—A nonlinear model of two-beam free-electron laser 

(FEL) in the absence of slippage is presented. The two beams are 
assumed to be cold with different energies and the fundamental 
resonance of the higher energy beam is at the third harmonic of lower 
energy beam. By using Maxwell’s equations and full Lorentz force 
equations of motion for the electron beams, coupled differential 
equations are derived and solved numerically by the fourth order 
Runge–Kutta method. In this method a considerable growth of third 
harmonic electromagnetic field in the XUV and X-ray regions is 
predicted. 
 

Keywords—Free-electron laser, Higher energy beam, Lower 
energy beam, Two-beam 

I. INTRODUCTION 
OWADAYS, there are considerable interests in the 
production of coherent high power short wavelength 
radiation in X-ray regions. The interest in X-ray free-

electron laser has fueled intense interest in infrared-visible-
and ultraviolet-wavelength experiments to test the basic 
physics and technology [1]. The advantage of X-ray FELs 
over high-power optical lasers is that, because of the much 
shorter wavelength, the diffraction limit is three orders of 
magnitude lower, allowing the laser to be focused to a much 
smaller spot-size (of the order of 1 nm) [2]. So FEL is 
required to generate coherent short-wavelength radiation in X-
ray region. To reach this aim, injecting a resonant coherent 
seed field at the beginning of the FEL interaction which is 
significantly amplified over self-amplified spontaneous 
emission (SASE) is proposed. However the sources for 
seeding the FEL to produce high power short wavelength in 
the XUV and X-ray regions are not currently available so 
other methods are proposed to solve this problem. One way to 
achieve this is to use multiple injectors and combine the 
beams by either energy or phase stacking techniques. Initial 
simulations of this concept have been applied to the proposed 
design of the 1.5 0

A  Linac Coherent Light Source (LCLS) and 
indicate that it is a feasible procedure for such a fourth 
generation X-ray light source [3]. An alternative method, 
proposed in two-beam FEL of [6], which uses two electron 
beams in one-dimensional limit, has improved the output 
coherence of the injected seed field  and has opened a new 
way to FEL researchers for generating coherent radiations in  
XUV and X-ray regions of spectrum. The mentioned paper is 
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based on the averaged form of equations while the evolution 
of radiation wave number is not considered. The purpose of 
this study is to present a non-averaged simulation of a two-
beam FEL in 1D Compton limit by using Maxwell’s equations 
and full Lorentz force equations of motion for the electron 
beams. In the computational part, we have used the simulation 
technique of [4]. 

II. THE MODEL 
Here, the same model like the one in [6] is used. First, the 

model is reviewed and then non-averaged equations of 
radiation fields and electron beams of motion will be defined. 
In this model two beams of electron with different energies 
copropagating through a magnetic planar wiggler, are 
considered. The electron beam energies are chosen so that the 
third harmonic of the lower energy beam is at the fundamental 
resonance of the higher energy beam. As a result of the 
interaction of the fundamental resonance field of the lower 
energy electron beam with the electrons, the electron beam is 
bunched [7]. When the bunching is strong enough, higher 
harmonics are generated. The result of this non-linear 
harmonic generation can be the seed for copropagating higher 
energy electron beam. So the seeding of the higher energy 
electron beam is not necessary. The coupling of the lower and 
higher energy beam FEL interactions will lead to the 
transferral properties of the longer wavelength injected seed 
field to the unseeded shorter harmonic wavelength. The lower 
energy electron beam has a Lorentz factor of 1γ and the higher 
energy nγ . It can be shown from the resonance relation that 

3 13γ γ= [6]. It should be noted that the two-stream 
instability as another result of coupling of lower and higher 
energy beams has the potential of degrading beam quality. 
However it can be shown that the instability is either below 
threshold or has an insignificant effect for electron beam 
currents ( 1 )kA≥ and energies ( 500 )Mev≥ typical to those 
used in the FEL interactions presented here [6].  

III. FIELD EQUATIONS 
     In this section we define the field equations which are 
derived from Maxwell’s equations in 1D Compton limit. The 
tapered and planar wiggler magnetic fields are described as 
below:

                                   
 

( ) ( )sin( ) ,yw w wz B z k z=B e$  (1) 
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where ( )wB z refers to the wiggler amplitude and k  = 2w wπ λ  is 
the wiggler wave number. As discussed in previous papers, 
only the odd harmonic components with 1,3,5,...h = are 
considered [7]. If the third harmonic of the lower energy beam 
is at the fundamental resonance of the higher energy beam, the 
strongest coupling occurs in 3h n= = .The coupling of the 
higher harmonics are neglected, as their frequencies are not 
equal to any fundamental resonance. The vector potential and 
phase of radiation fields are written as 

1 1 1( , ) ( ) cos ,xz t A zδ δ α+=A e$    
(2)   

3 3ˆ( , ) ( )cos ,xz t A zδ δ α+=3A e  (3) 
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where ( )z lowu and ( )z highu are the axial velocities of each 
electron in lower and higher energy beams. Besides, the 
amplitudes and wave numbers of the radiation are assumed to 
vary slowly with z. 
    In the Coulomb gauge, the Maxwell-Poisson equations are 
of the form [9] 
 

2 2 3

2 2
,

( ) ( ) 4 ( , ) ,
n

h x
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a J z t
z t

δ πδ
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− = −
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∑                           (9) 

where 2
h ha e A mcδ δ= ,

wz k z= , wt tk c= and ( , )xJ z tδ is the 
current density. The current density can be written as an 
average over the entry time 0t  (the time at which an electron 
crosses the 0z =  plane) [9]. 
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where 2 2 2 24b b wn e mk cω π= and 0( , )t tβ is the velocity of each 

electron at time t which has entered the plane at time 0t  
and 0( )tσ is the distribution in entry times and 
 

1
0 0 0

0
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z
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The system is assumed to be quasistatic, so that particles 
which enter the interaction region at time 0t separated by 
integral multiples of a wave period will execute identical 
orbits [8]. By substitution of (2) and (3) into (9) a set of 
coupled nonlinear differential equations are derived 
for haδ , hk+ and

h+Γ , where
h+Γ defines the growth rate. For 

the fundamental radiation, the equations are 
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 and the equations for the third harmonic are 
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where 00 tψ ω= − is an initial pondermotive phase and the 
averaging operator is defined as 
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    In (10)-(17), 0zβ is the initial axial velocity of electrons. 
Observe that the electron beams are mono-energetic with a 
vanishing pitch-angle spread and it is assumed that the 
electrons of each beam have the same initial axial velocities. 
Current densities of electron beams are different so we need to 
specify the beam current ratio, 3 3 1R I I= . Since the current 
densities are not equal, the electron beam plasma frequencies 
of electron beams will be related by 

2 2
3 3 3 1 1 3( 1) ( 1)b b Rω ω γ γ γ γ= − − . In (12)-(14), the coupling 

of the lower energy electrons to fundamental and higher 
harmonic fields is seen. However, (15)-(17) indicate that the 
higher energy electrons only couple to the harmonic field 3A . 

IV. DYNAMIC EQUATIONS 
In order to complete the formulation, the electron orbit 

equations should be considered in the presence of fluctuating 
fields. The Lorentz force equation with the electric and 
magnetic fields associated with the vector potentials are used 
to advance the electrons in z. In the below equations we have 
used dimensionless variables 2

w w weB mk cΩ = , mc γ= =u P β  

and wk k k+ += . For the slower electrons of the lower energy 
beam, the equations are of the form  
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and for the faster electrons which belong to the higher energy 
beam, the equations are as the followings 
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    In (19)-(21), the coupling of the lower energy electrons to 
both fundamental and harmonic fields is seen. However, (22)-
(24) indicates that the higher energy electrons only couple to 
the harmonic field 3A .   

V.  NUMERICAL SIMULATION 
In this section, a set of self-consistent first-order differential 

equations are solved numerically by the fourth order Runge–
Kutta method in order to demonstrate the evolution of the 
coupled two-beam FEL system. The initial imposed 
conditions on electron beams are chosen such that the 
electrons are uniformly distributed for 0π ψ π− ≤ ≤ [4]. Since 
the steady-state amplifier model is considered, the initial 
amplitude of the vector potential for an un-bunched beam can 
be selected arbitrarily to represent the amplitude of the 
injected signal [5]. The seed field at the longer wavelength is 

7
1( 0) 10a zδ −= = which is two orders of magnitude greater 

than that of the third harmonic. As mentioned before the 
shorter wavelength harmonic field is seeded when the lower 
energy beam is bunched. In this process the harmonic seed 
retains the coherence properties of the initial radiation seed 
field. Other parameters which are used in this paper are 

0.05w γΩ = , 2
0.1bω γ = and 10wN = . 
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Fig. 1 Evolution of fundamental (dashed line) and third 

harmonic (solid line) radiation amplitudes as a function of wk z  
for 3n = and

3 5R =  
 

In Fig. 1 the evolution of fundamental and third harmonic 
radiation amplitude with wk z is plotted. The third harmonic is 
rapidly amplified by about two orders of magnitude more than 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:6, 2011

908

 

 

the fundamental until it reaches a saturation point. It can be 
expected that harmonic bunching of the lower energy beam 
which leads to the amplification of 3aδ , retains the coherence 
properties of initial radiation seed at the fundamental. After 
the process of seeding, the harmonic radiation field is 
amplified exponentially until the saturation occurs. 
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Fig. 2 Evolution of fundamental (dashed line) and third 

harmonic (solid line) radiation amplitudes as a function of wk z  
for 3n = and 

3 7R =  
 
In Fig. 2, the evolution of fundamental and third harmonic 

radiation amplitude with wk z  is plotted for 3 7R = . It is seen 
that the third harmonic radiation is increased more than the 
fundamental and the saturation length of shorter wavelength 
radiation is decreased.  

VI. CONCLUSION 
A non-averaged simulation of Compton FEL with planar 

wiggler is presented in the absence of slippage. By using two-
beam FEL, a source for generating intensified higher 
harmonics with shorter wavelengths in the XUV and X-ray 
regions, was obtained. In this method, coherent properties of 
the injected seed field are transferred to the shorter 
wavelength radiation as a result of the interaction of the two 
beams. It is important to note that in the present study, 
Maxwell’s and full Lorentz force equations are used and the 
variation of radiation wave number is included. 
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