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Abstract—Although the field of parametric Pattern
Recognition (PR) has been thoroughly studied for over
five decades, the use of the Order Statistics (OS) of the
distributions to achieve this has not been reported. The
pioneering work on using OS for classification was presented
in [1] for the Uniform distribution, where it was shown that
optimal PR can be achieved in a counter-intuitive manner,
diametrically opposed to the Bayesian paradigm, i.e., by
comparing the testing sample to a few samples distant
from the mean. This must be contrasted with the Bayesian
paradigm in which, if we are allowed to compare the testing
sample with only a single point in the feature space from each
class, the optimal strategy would be to achieve this based on
the (Mahalanobis) distance from the corresponding central
points, for example, the means. In [2], we showed that the
results could be extended for a few symmetric distributions
within the exponential family. In this paper, we attempt to
extend these results significantly by considering asymmetric
distributions  within the exponential family, for some of
which even the closed form expressions of the cumulative
distribution functions are not available. These distributions
include the Rayleigh, Gamma and certain Beta distributions.
As in [1] and [2], the new scheme, referred to as Classification
by Moments of Order Statistics (CMOS), attains an accuracy
very close to the optimal Bayes’ bound, as has been shown
both theoretically and by rigorous experimental testing.

Keywords—Classification using Order Statistics (OS),
Exponential family, Moments of OS.

I. INTRODUCTION

! I HE basis for statistical pattern classification is that the

individual classes are characterized by their distributions.
These distributions have numerous indicators such as their
means, variances etc., and these indices have, traditionally,
played a prominent role in achieving pattern classification, and
in designing the corresponding training and testing algorithms.
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It is also well known that a distribution has many other char-
acterizing indicators, for example, those related to its Order
Statistics (OS). The interesting point about these indicators
is that some of them are quite unrelated to the traditional
moments themselves, and in spite of this, have not been used
in achieving PR. The main question that we shall consider is
whether these indicators/indices possess any potential in PR.

The amazing answer to this question is that OS can be used
in PR, and that such classifiers operate in a completely “anti-
Bayesian” manner, i.e., by only considering certain outliers
of the distribution. This must be contrasted with Bayesian
classifiers which attain the optimal lower bound, and that often
reduces to testing the sample point using the corresponding
distances/norms to the means or the “central points” of the
distributions.

Earlier, in [1] and [2], we showed that we could obtain
optimal results by an “anti-Bayesian” paradigm by using the
OS. This was done in [1] for the Uniform distribution and
in [2] for certain distributions within the exponential family.
Those results, though very fascinating, were possible because
the closed forms of the cumulative distributions were available.
In this paper, we attempt to extend these results significantly
by considering asymmetric distributions within the exponential
family, for some of which even the closed form expressions
of the cumulative distribution functions are not available.
Examples of these distributions are the Rayleigh, Gamma and
certain Beta distributions. Again, as in [1] and [2], we show the
completely counter-intuitive result that by working with a very
few (sometimes as small as two) points distant from the mean,
one can obtain remarkable classification accuracies, and this
has been demonstrated both theoretically and by experimental
verification. Interestingly enough, the novel methodology that
we propose, referred to as Classification by Moments of Order
Statistics (CMOS), is computationally not any more complex
than working with the Bayesian paradigm itself.

Contributions of this Paper: The novel contributions of this
paper are:

o We propose an “anti-Bayesian” paradigm for the classifi-
cation of patterns within the parametric mode of computa-
tion, where the distance computations are not with regard
to the “mean” but with regard to some samples “distant”
from the mean. These points, which are sometimes as
few as two, are the moments of OS of the distributions;

o We demonstrate that the proposed approach can attain
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the optimal bound for symmetric distributions and near-
optimal bound for non-symmetric distributions;

o To justify these claims, we submit a formal analysis
and the results of various experiments which have been
performed for a few distributions within the exponential
family (for which even the closed form expressions of the
distributions are not available), and the results are clearly
conclusive.

Our results for classification using the OS are both pioneering
and novel.

II. RELEVANT BACKGROUND AREAS REGARDING ORDER
STATISTICS

Let x1, X9, ...., X, be a univariate random sample of size
n that follows a continuous distribution function ®, where the
probability density function (pdf) is ¢(-). Let X1 n, X290 «ees
Xn,n be the corresponding Order Statistics (OS). The rth OS,
Xy n, of the set is the rth smallest value among the given
random variables. The pdf of y = x,,, is given by:
n!

CESCET {2} {1 -2} 2ly).

Iyly) =

where r = 1,2, ..., n. The reasoning for the above expression
is straightforward. If the " OS appears at a location given by
Y = X,n, it implies that the » — 1 smaller elements of the set
are drawn independently from a Binomial distribution with a
probability ®(y), and the other n —r samples are drawn using
the probability 1 — ®(y). The factorial terms result from the
fact that the (r — 1) elements can be independently chosen
from the set of n elements.

Using the distribution fy(y), the k' moment of X,
E[xF ] can be formulated as:

n! teo
m/_w yk‘b(y)k_l(x)(l_q)(y))n_T@(y)dy,
provided that both sides of the equality exist [3], [4].

The fundamental theorem concerning the OS that we in-
voke is found in many papers [4]-[6]. The theorem can be
summarized as follows.

Let n > r > k+ 1 > 2 be integers. Then, since ® is
a nondecreasing and right-continuous function from R — R,
®(x,.,,) is uniform in [0,1]. If we now take the k" moment
of ®(x,,,), it has the form [5]:

Bl ()] = DRI

n! (r4+k—1)
n+k)! (r—1)
( ! ( )(1)

where B(a,b) denotes the Beta function, and B(a,b) =
%&bfﬁ)! since its parameters are integers.

The above fundamental result can also be used for charac-
terization purposes as explained in [5], [7]. The implications

of the above are the following:

1) If n = 2, implying that only two samples are drawn from
x, we can deduce from Eq. (1) that:

E[®' (x1,2)] =
E[®(x2,2)] = ; = Elxys] =07" <g> SN )

Thus, from a computational perspective, the first moment
of the first and second 2-order OS would be the values
where the cumulative distribution ¢ equal % and %
respectively.

2) For any n > 2, implying that we are considering the k-
OS from n samples drawn from x, we can deduce from
Eq. (1) that:

B fx)] = ——
= Exp,] =" (nL) , o)
and
B[O ()] =
= Exy_pn] =" <";7_]ﬁ1> Q)

Although the analogous expressions can be derived for the
higher order moments of these OS, for the rest of this paper
we shall merely focus on the first moment of these OS, and
derive the consequences of using them in classification.

III. OPTIMAL OS-BASED CLASSIFICATION: THE GENERIC
CLASSIFIER

Let us assume that we are dealing with the 2-class problem
with classes wy and w9, where their class-conditional densities
are fi1(z) and fo(z) respectively (i.e, their corresponding
distributions are Fy(x) and Fy(z) respectively)'. Let v, and
v be the corresponding medians of the distributions. Then,
classification based on v; and v, would be the strategy that
classifies samples based on a single OS. We can see that for
all symmetric distributions, this classification accuracy attains
the Bayes’ accuracy.

This result is not too astonishing because the median is
centrally located close to (if not exactly) on the mean. The
result for higher order OS is actually far more intriguing
because the higher order OS are not located centrally (close to
the means), but rather distant from the means. Consequently,
we shall show that for a large number of distributions, mostly
from the exponential family [2], the classification based on
these OS again attains the Bayes’ bound. These results are
now extended for asymmetric exponential distributions.

I Throughout this section, we will assume that the a priori probabilities are
equal.
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IV. THE RAYLEIGH DISTRIBUTION

The Rayleigh distribution is a continuous probability distri-
bution which is often observed when the overall magnitude
of a vector is related to its directional components whose
applications are found in [8] and [9].

The pdf of the Rayleigh distribution, with parameter ¢ > 0
is p(x,0) = (%'26*"“2/2"2,1* > 0 and the cumulative distri-
bution function is ®(z) = 1 — e=2°/20* & > 0. The mean,
the variance and the median of the Rayleigh distribution are
0y/%, 5% 0% and o+/In(4), respectively.

Theoretical Analysis: Rayleigh Distribution - 2-OS

The typical PR problem involving the Rayleigh distribution
would consider two classes w; and wo where the class wo
is displaced by a quantity 6, and the values of o are o
and oy respectively. We consider the scenario when o1 =

o9 = o. Consider the distributions: f(z,0) = %e% and

2

flx—0,0) = "U}ee%. In order to do the classification
based on CMOS, we shall first derive the moments of the 2-
OS for the Rayleigh distribution. By virtue of Eq. (2) and
(3), the expected values of the first moments of the two
OS can be obtained by determining the points where the
cumulative distribution function attains the values of % and
% respectively. Let u; be the point for the percentile % of the
first distribution, and us be the point for the percentile % of
the second distribution. Then:

Uy, 2
/ % e~ /20" g — 3 = u; =0+/2In(3), and (6)
Jo O

Up = 9+01/2ln (g) 7

We now consider the efficiency of the CMOS.

Theorem 1: For the 2-class problem in which the two
class conditional distributions are Rayleigh and identical, the
accuracy obtained by CMOS, the classification using two OS,
deviates from the optimal Bayes’ bound as the solution of the

—92

transcendental equality In ﬁ) = #29” deviates from

2+ % (Vin®) +/in (3)).

Proof: Without loss of generality, let the distributions of
w1 and wy be R(x, o) and R(x—0, o), where o is the identical
scale parameter. Then, to get the Bayes’ classifier, we argue
that:

Wi

p(xlw)Plwr) 2 p(rlws)Plws)

w2

r -2 @1 x—0 -0
ES S —e202 2 e 202
2
o o
x w1 —(@—0)2 | 52
— § e 202 307
z—0 &,
T w1 —62% 4 20z
- in s — ®)
xz—0 o 20

The discriminant is then the solution to the transcendental

equation: )
x —0° + 20z
l = .
" <9c — 6) 202 ©)

We now consider the classification with respect to the
expected values of the moments of the 2-OS, u; and wus,
where as per Eq. (15) and (16), u1 = o+/2In(3) and
us = 0+ 04/2In (%) The discriminant enforced by the 2-
OS classifier satisfies:

D(z,u1) = D(z,u2). (10)

The condition imposed by Eq. (10) leads to the following:
D(I7u1) - D(ZZL’,’UQ)

—  Dfa Um)—p<x, 9”@)

= 2 = 0+ o0+/2In(3) + o4/ 2in (g)

=== xr =

The difference in the errors of the two classifiers is clearly
related to differences in the corresponding discriminant func-
tions specified by Eq. (9) and (11). Hence the theorem. ®

Remark: Another way of comparing the approaches is by
obtaining the error difference created by the CMOS classifier
when compared to the Bayesian classifier. In Figure 1, the
small area marked as “Error Difference” is the difference
between the probability of error formed by the CMOS classi-
fier when compared to the Bayesian counterpart, and we can
evaluate this area by using the corresponding definite integrals.
As Eq. (9) is transcendental in nature, the only way to find
the Bayesian classifier is to resort to a numerical strategy, for
example, by using a Taylor series expansion. The area under
the curve (in percentage) is depicted in Table 1. From this
table, we can see that the CMOS classifier is bounded by an
error difference of less than 0.15%, which is truly, negligible.

TABLE I
THE DIFFERENCES IN ERROR OBTAINED BY THE CMOS CLASSIFIER
WHEN COMPARED TO THE BAYESIAN CLASSIFIER, FOR DIFFERENT
VALUES OF 6 OF THE RAYLEIGH DISTRIBUTION. IN EACH CASE, 0 = 2.

0 1 1.5 2 2.5 3
Max. Bounded Error(in %) | 0.15 | 0.06 | 0.05 | 0.001 | 0

Theorem 2: For the 2-class problem in which the two class
conditional distributions are Rayleigh and identical, CMOS,
the accuracy obtained by classification using two OS deviates
from the classifier which discriminates based on the distance
from the corresponding medians as g—&—o\ /ln(4) deviates from

8+ 2 (V@) + \fin (3)).

0 o 3
§+E (\/ln(B)Jr In <§>) . (11
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Fig. 1. The differences of the error probabilities.

Proof: As the curve of the Rayleigh distribution is not
symmetric, for the present analysis, we shall consider the
scenario that the classification is done based on the median,
which is the most central point of the distribution, other
than the mean. In order to prove the theorem, we shall
first show that when the class conditional distributions are
Rayleigh and identical, the accuracy of the corresponding
near-optimal discriminant obtained by a comparison to the
corresponding medians is almost equal to the accuracy of the
CMOS. Again, as in the case of Theorem 1, as the equations
are transcendental, we first consider the classification based on
the medians of the given distributions, namely v1 = o+/In(4)
and vo = 0+ 0+/In(4), respectively. The classification will be
based on the distances that the testing point has with respect
to the respective medians. Thus,

D(.TL’71/1) <D(l’,l/2)
= x—oy/In(4) <0+ o/In(4) —z
= 2z < 0+ 20+/In(4)
0
= T <3 + ov/In(4). (12)

The discriminant function with regard to the medians of the
. . . <. _ 0
distributions is: x = 5 + o+/In(4).
We now consider the classification with respect to the
expected values of the moments of the 2-OS, u; and ws,

where as per Eq. (15) and (16), u1 = o04/2In(3) and
ug = 0 4 o4/2ln (%) The discriminant enforced by 2-OS
CMOS is:

D(z,u1) = D(z,u2). 13)

This equation simplifies to:

D(.Z',ul) = D(.’E,UQ)

= Do rvr) =p (s 0 oyfun(5))

— 2= 0+02n@B)+0o 2ln(g>
— x_§+%(\/W+ ln(%)) (14)

The difference in the errors of the two classifiers is clearly

related to differences in the corresponding discriminant func-
tions specified by Eq. (12) and (14). Hence the theorem. W

Corollary 1: By virtue of the almost-identical nature of the

two expressions for the Rayleigh distribution, the classification
using the proximity to the median is almost indistinguishable
from that of the Bayesian classifier.

Proof: The proof of this corollary is straightforward and

omitted here, but can be found in [9]. |

Data Generation: Rayleigh Generation We made use of a
Uniform (0,1) random variable generator to generate data
values that follow a Rayleigh distribution. The expression
x = o04/—21In(l —u), where o is the parameter and u
is a random variate from the Uniform distribution U(0, 1),
generates Rayleigh distributed values [10].

Experimental Results: Rayleigh Distribution - 2-OS

The CMOS classifier was rigorously tested for a number

of experiments with various Rayleigh distributions having the
identical parameter o. In every case, the 2-OS CMOS gave
almost the same classification as that of the Bayesian classifier.
The method was executed 50 times with the 10-fold cross
validation scheme. The test results are tabulated in Table II.
The results presented justify the claims of Theorems 1 and 2.

Theoretical Analysis: Rayleigh Distribution - k-OS We
have seen from Theorem 1 that for the Rayleigh distribution,
the moments of the 2-OS are sufficient for a near-optimal
classification. As in the case of the other distributions, we shall
now consider the scenario when we utilize other k-OS. Let u;
be the point for the percentile 2-L=E of the first distribution,

=}
" k

and us be the point for the percentile -~ of the second
distribution. Then:

n+1

/11,112 @712/20‘26151: _ n—l—l—k}
0 g n+1

1
— w=c ZZn(n;: ),and (15)

n+1

The k-OS results of CMOS follow.
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TABLE 11
A COMPARISON OF THE ACCURACY OF THE BAYESIAN AND THE 2-OS CMOS CLASSIFIER FOR THE RAYLEIGH DISTRIBUTION.

0 3 2.5 2 1.5 1
Bayesian 99.1 97.35 94.45 87.75 78.80
CMOS 99.1 97.35 94.40 87.70 78.65

Theorem 3: For the 2-class problem in which the two
class conditional distributions are Rayleigh and identical,
a near-optimal Bayesian classification can be achieved by
using symmetric pairs of the n-OS, ie., the n — k OS

for wi and the k OS for wy if and only if y/in (%) —

In (nf{i k) < OL\E. The classification obtained by CMOS

eviates from the optimal Bayes’ bound as the solution of the

. p _p2 . .
transcendental equality In ( -%5 ) = % deviates from

Vim0 yin ()|

Proof: The proof of this theorem is omitted here, but is
included in [9]. u

Experimental Results: Rayleigh Distribution - £-OS The
CMOS method has been rigorously tested with different pos-
sibilities of the k-OS and for various values of n, and the
test results are given in Table III. For the distribution under
consideration, the Bayesian approach provides an accuracy of
82.5%, and from the table, it is obvious that some of the
considered k-OSs attains the optimal accuracy and the rest
of the cases attain near-optimal accuracy. Also, we can see
that the approach fails if the condition stated in Theorem 3 is
not satisfied.

To clarify the table, consider the cases in which the 6-OS
were invoked for the classification. For 6-OS, the possible
symmetric OS pairs could be (1, 6), (2,5), and (3,4) respec-
tively. Observe that the expected values for the first moment
of the k-OS has the form E[x,] = o4/(2 In ( "*1 )). For

In (22) =, /In (n_ﬁlk) <

\/5, the accuracy attained is either optimal or near-optimal,
as indicated by the results in the table (denoted by Trial
Nos. 5 and 6). Now, consider the results presented in the
row denoted by Trial No. 7. In this case where the CMOS

positions were o (2 ln( ) and 0 + U,/ 2 ln

inequality of the condition imposed in Theorem 3 snnphﬁed
to 1.002339 < 0.88388, which is not valid. Observe that if

the cases where the condition

n+l—=k
should be reversed to obtain the near-optimal Bayes’ bound.
This concludes our study on the CMOS for the Rayleigh
distribution.

n (rLZrl) \/@ > UL\}T the symmetric pairs

V. THE GAMMA DISTRIBUTION

The Gamma distribution is a continuous probability dis-
tribution with two parameters - a, a shape parameter and
b, a scale parameter. The pdf of the Gamma distribution is
W"Ea 1671’ 3 (L>O, b>0,

with mean ab and variance ab?> where a and b are the
parameters. Unfortunately, the cumulative distribution function
does not have a closed form expression [11]-[13].

Theoretical Analysis: Gamma Distribution

The typical PR problem invoking the Gamma distribution
would consider two classes w; and wo where the class wo
is displaced by a quantity 6, and in the case analogous to
the ones we have analyzed, the values of the scale and shape
parameters are identical. We consider the scenario when a; =
as = a and by = by = b. Thus, we consider the distributions:
f(2,2,1) =ze* and f(z —0,2,1) = (z — 0)e~ =9,

We first derive the moments of the 2-OS, which are the
points of interest for CMOS, for the Gamma distribution. Let
uy be the point for the percentile % of the first distribution, and
ug be the point for the percentile % of the second distribution.

Then:
uy
/ e Pdr =
0

= In(u1) —2uy =In (%) , and 17)

wil N

In(us — 0) — 2(us — 0) = In (é) “ind). (18

The following results hold for the Gamma distribution.
Theorem 4: For the 2-class problem in which the two
class conditional distributions are Gamma and identical, the
accuracy obtained by CMOS, the classification using two OS,
deviates from the accuracy attained by the classifier with
regard to the distance from the corresponding medians as
1.7391 + £ deviates from 1.6783 + 4.
Proof: The proof of this theorem can be found in [9]. W

Data Generation: Gamma Distribution There are a number
of data generation algorithms reported for the Gamma distri-
bution, all of which make use of the Uniform random variate
U(0,1). The data is generated using the built-in function
available in MatLab, namely gamrnd(a, b, sz), where a is the
shape parameter, b is the scale parameter, and sz is the size
of the array. To be specific, gamrnd(2,1,10) will generate
100 values that follow the Gamma distribution with the shape
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TABLE III
A COMPARISON OF THE ACCURACY OF THE BAYESIAN(I.E., 82.5%) AND THE k-OS CMOS CLASSIFIER FOR THE RAYLEIGH DISTRIBUTION BY
USING THE SYMMETRIC PAIRS OF THE OS FOR DIFFERENT VALUES OF n. THE VALUE OF o AND §# WERE SET TO BE 2 AND 1.5 RESPECTIVELY.
NOTE THAT IN EVERY CASE, CMOS ATTAINED NEAR-OPTIMAL ACCURACY WHENEVER THE CONDITIONS STATED IN THEOREM 3 WERE SATISFIED.

No. | Order(n) Moments 0S5, OS> CMOS | Pass/Fail
1 Two 2 1y o /@I () | 040/ (3) | 8205 | Passed
2 Four | (3E,4)1<i<2 | o/@In(3) | 0+0/@In(3) | 818 | Passed
3 Fur | (35 0)1<i<y | of(2in(3) | 040/ () | 820 | Passed
4 Six (H)1<i<y | o/Cm(d) | 0+0/(2in(D) | 184 | Faild
5 Six (7;7) 1<i<2 | o/(2in(]) | 0+0,/2In(Z) | 8210 | Passed
6 Six (4)1<i<2 | o/ (3) | 0+0/(2 (%) | 8215 | Passed
7| Een | (F.4)1<i<2 | 0/@W(3) | 0+0y/(2n(2) | 1845 | Failed
8 Bight | (255,4),1<i<2 | o/(2n(3) | 0+0/2in(3) | 8205 | Passed
9 Eight | (%58)1<i<y | of/(@In(9) | 0+0y/2In(2)) | 8215 | Passed

parameter 2 and the scale parameter 1. For our experiments,
we generated 1,000 points for each of the distributions, where
the second distribution was displaced by a constant, 6.

Experimental Results: Gamma Distribution - 2-OS The
CMOS classifier was rigorously tested for a number of exper-
iments with various Gamma distributions having the identical
shape and scale parameters a; = as = 2, and b; = by = 1.
In every case, the 2-OS CMOS gave almost the same classifi-
cation as that of the classifier based on the central moments,
namely, the mean and the median. The method was executed
50 times with the 10-fold cross validation scheme. The test
results are tabulated in Table IV.

Theorem 5: For the 2-class problem in which the two class
conditional distributions are Gamma and identical, a near-
optimal Bayesian classification can be achieved by using
certain symmetric pairs of the n-0S, i.e., the (n— k)" OS for
w1 (represented as 1) and the k" OS for wy (represented as
ug) if and only if u; < us.

Proof: The proof of this theorem is included in [9]. M

Experimental Results: Gamma Distribution - k-OS The
CMOS method has been rigorously tested for numerous sym-
metric pairs of the k-OS and for various values of n, and a
subset of the test results are given in Table V. Experiments
have been performed for different values of #, and we can
see that the CMOS attained near-optimal Bayes’ bound. Also,
we can see that the approach fails if the condition stated in
Theorem 5 is not satisfied.

Interestingly enough, if we examine the table, we can see
that the Bayes’ accuracy is the highest value except for the
case where 6 = 3.0, although this result must, in fact, be be
considered as an aberration. This concludes the study of the
Gamma distribution with regard to the CMOS classification.

VI. THE BETA DISTRIBUTION

The Beta distribution is a family of continuous probability
distributions defined in (0,1) parameterized by two shape
parameters « and (3. The distribution can take different shapes
based on the specific values of the parameters. If the parame-
ters are identical, the distribution is symmetric with respect to
1. Further, if o = 8 = 1, B(1,1) becomes U(0,1). The pdf
of the Beta distribution is f(z;a, 3) = % x> 11—

x)P~1. The mean and the variance of the distribution are P

and 0 respectively. We consider the case when

G (e
a=[8>1.

For this study, we mainly consider three cases:

e o =1, 8 = 1: Uniform Distribution.

e « = (3: Symmetric about %

e a>1, B> 1: Unimodal Distribution.

Earlier, in paper [8], when we first introduced the concept
of CMOS-based PR, we had analyzed the 2-OS and k-
OS CMOS for the Uniform distribution, and had provided
the corresponding theoretical analysis and the experimental
results. We had concluded that, for the 2-class problem in
which the two class conditional distributions are Uniform and
identical, CMOS can, indeed, attain the optimal Bayes’ bound.
So, in this paper, to avoid repetition, we skip the analysis
for the Beta distribution, B(1,1), as this case reduces to the
analysis for Uniform U(0,1). Thus, we reckon that the first of
these cases (i.e., when o = 1 and = 1) as being closed.

We now proceed to consider the Beta distribution in which

a=p.

Theoretical Analysis: Beta Distribution (o« = () Consider
two classes w; and wy where the class wo is displaced by a
quantity 6, and the values of the shape parameters are identical.
We consider the scenario when oy = g = «, 1 = (2 =
[, and for the sake of simplicity, « = [ = 2. Then, the
distributions are: f(x,2,2) = 62(1 —x) and f(x —6,2,2) =
6(z—0)1—z+0).
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TABLE IV
A COMPARISON OF THE ACCURACY WITH RESPECT TO THE MEDIAN AND THE 2-OS CMOS CLASSIFIER FOR THE GAMMA DISTRIBUTION.

n 4.5 4.0 3.5 3.0 2.5 2.0 1.5

Median 94.83 94.25 92.74 90.77 86.51 80.15 72.64

CMOS 95.01 94.49 92.92 90.43 85.99 79.54 72.34
TABLE V

A COMPARISON OF THE k-OS CMOS CLASSIFIER WHEN COMPARED TO THE BAYES” CLASSIFIER AND THE CLASSIFIER WITH RESPECT TO MEDIAN
AND MEAN FOR THE GAMMA DISTRIBUTION FOR DIFFERENT VALUES OF n. IN EACH COLUMN, THE VALUE WHICH IS NEAR-OPTIMAL IS RENDERED

BoLb.
No. | Classifier | Moments | 0 = 4.5 4.0 3.5 3.0 2.5 2.0
1 Bayes - 97.06 | 95.085 | 93.145 | 90.68 | 86.93 | 81.53
2 Mean - 96.165 | 94.875 | 9252 | 88.335 | 83.105 | 77.035
3 | Median - 90.04 | 93.57 | 92735 | 90.775 | 86.275 | 80.115
4 2-08 (2,5) | 95285 | 93.865 | 92.87 | 90.61 | 86.085 | 79.48
5 4-08 (2,2) | 95905 | 94.605 | 93.11 | 89.57 | 84.68 | 22.125
6 4-08 (2,2) | 95185 | 93.675 | 92.82 | 90.855 | 86.02 | 80.32
7 6-08 (2,2) | 96405 | 95.01 | 92.125 | 88.005 | 17.29 | 23.565
8 6-0S (2,%) 9547 | 94.11 | 93.135 | 90.16 | 85.495 | 79.55
9 6-08 (3,2) | 95135 | 93.625 | 92.78 | 90.745 | 86.135 | 80.165
10 8-08 (5,5) | 96.815 | 94.895 | 91.555 | 13.095 | 19.41 | 24.06
11 8-08 (3. 2) 95.8 | 94.445 | 93.11 | 89.885 | 84.81 | 78.535
12 8-0S (2.%) 95.135 | 93.625 | 92.735 | 90.7 | 86.085 | 80.045

We first derive the moments of the 2-OS, which are the
points of interest for CMOS, for the Beta distribution. By
virtue of Eq. (2) and (3), the expected values of the first
moments of the two OS can be obtained by determining
the points where the cumulative distribution function attains
the values of % and % respectively. As the distribution takes
different forms based on the values of the shape parameters,
we have to solve each case separately, and so we can obtain
numerical values for the CMOS positions. Let u; be the point
for the percentile % of the first distribution, and u2 be the point
for the percentile % of the second distribution. Then:

U )
/ 6x(1 — z)de =
Jo

3
— —6u +9ul —2=0. (19)

Similarly, if we don’t take the displacement, 6, into consid-
eration, the form for us leads to the equation:

—6u3 +9u2 —1=0. (20)

We shall now prove that the CMOS, indeed, attains the
Bayes’ bound.

Theorem 6: For the 2-class problem in which the two class
conditional distributions are Beta(c, 3) (v = /) and identical,
CMOS, the classification using two OS, attains an accuracy
that is exactly identical to the optimal Bayes’ bound.

Proof: Without loss of generality, let the distributions
of wy and we be B(x,2,2) and B(xz — 0,2,2), where 6 is
the displacement for the second distribution. Then, to get the
Bayes’ classifier, we argue that:

palw)Pw) 2 plafws)Plws)
— 6x(1—2) = 6(z—0)(1—(z—0))
— < 9%1. 1)

We now consider the classification with respect to the
expected values of the moments of the 2-OS, u; and us. In
order to prove our claim, we need to show that

w1 0 1 w1
S % = D(z,u1) S D(z,u2). (22)
w2 w2

If we examine the Egs. (19) and (20), we can see that Eq.
(20) can be obtained by substituting 1 — us for u; in Eq. (19)
as:

—6(1—up)® +9(1 —u2)>—2=0 = —6us+9us—1=0.
(23)
From this, it is obvious that uo = 4 u; — 1. Consequently,
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the RHS of the claim given by Eq. (22) leads to the following:

w
D(z,u) §1 D(z,us2)
= D(x,uq) §1 D(x,0 +1—uy)
w2
wi 41
— L2 (24)
o 2
The result follows by observing that Eqs. (21) and (22) are
identical comparisons. Hence the theorem. |

Experimental Results: Beta Distribution (« = ) - 2-
OS The CMOS has been rigorously tested for various Beta
distributions with 2-OS with a« = § = 2. In the interest of
brevity, a few typical results are given below. For each of
the experiments, we generated 1,000 points for the classes
w1 and wo characterized by B(z,2,2) and B(xz — 6,2,2)
respectively. We then invoked a classification procedure by
utilizing the Bayesian and the CMOS strategies. In every case,
CMOS was compared with the Bayesian classifier for different
values of 0, as tabulated in Table VI. The results were obtained
by executing each algorithm 50 times using a 10-fold cross-
validation scheme. The results given in this table justify the
claim of Theorem 6.

We have seen from Theorem 6 that the moments of the 2-OS
are sufficient for the classification to attain a Bayes’ bound.
Now we shall examine the scenario where the k-OS CMOS
is invoked, and thus determine the strength of the proposed
method.

Let u; be the point for the percentile ”Z_:k of the first
distribution, and us be the point for the percentile nL_H of the
second distribution. Then:

w 1—k
/ 6x(1 —x)de = nrlok
0 n+1
+1-k
Y B 1 S 25
= —2uj + 3uy ] 0 (25)

By a similar argument, if we ignore the displacement 6, the

CMOS point for the nLH percentile of the second distribution
leads to the equation:
k
—2u3 +3uj — —— = 0. 26
up + 3z — T1 (26)

We shall now prove that the CMOS attains the Bayes’ bound.
Theorem 7: For the 2-class problem in which the two class
conditional distributions are Beta and identical as B(z, «, 3)
and B(z — 0,«,3) where @ = [ = 2, optimal Bayesian
classification can be achieved by using symmetric pairs of
the n-0S, i.e., the n — k OS for w; (represented by ;) and
the k& OS for wo (represented by us) if and only if u; < us.
Proof: The proof of this theorem is included in [9] and
omitted here in the interest of space. |

Experimental Results: Beta Distribution (« = () - k-
OS The CMOS method has also been tested for the Beta
distribution for other £ OS when o« = 3 = 2. In the interest of
brevity, we merely cite one example where the distributions for

w1 and wo were characterized by (x,2,2) and b(x — 6,2, 2)
respectively. For each of the experiments, we generated 1,000
points for each class, and the testing samples were classified
based on the selected symmetric pairs for values k and n — k
respectively. A subset of the results are found in Table VII.

To clarify the table, consider the cases in which the 8-OS
were invoked for the classification. For 8-OS, the possible
symmetric OS pairs could be (1, 8), (2,7), and (4,5) respec-
tively. Wherever the condition u; < us is satisfied, the CMOS
attained the optimal Bayes’ bound, as indicated by the results
in the table (denoted by Trial Nos. 8 and 9). Now, consider the
results presented in the row denoted by Trial No. 7. In this case
where the CMOS positions were 0.79269 and 6+ 0.20731, the
inequality of the condition imposed in Theorem 7 simplified
to 0.79269 < 0.78731, which is not valid. Observe that if
uy > ug, the symmetric pairs should be reversed to obtain
the optimal Bayes’ bound. This concludes the study on the
symmetric Beta distribution.

VII. CONCLUSIONS

In this paper, we have shown that optimal classification
for symmetric distributions and near-optimal bound for asym-
metric distributions can be attained by an “anti-Bayesian”
approach, i.e., by working with a very few (sometimes as small
as two) points distant from the mean. This scheme, referred to
as CMOS, Classification by Moments of Order Statistics, op-
erates by using these points determined by the Order Statistics
of the distributions. In this paper, we have proven the claim
for some distributions within the exponential family, and the
theoretical results have been verified by rigorous experimental
testing. Our results for classification using the OS are both
pioneering and novel.
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