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Abstract—A Simultaneous Multithreading (SMT) Processor is 
capable of executing instructions from multiple threads in the same 
cycle. SMT in fact was introduced as a powerful architecture to 
superscalar to increase the throughput of the processor.

Simultaneous Multithreading is a technique that permits multiple 
instructions from multiple independent applications or threads to 
compete limited resources each cycle. While the fetch unit has been 
identified as one of the major bottlenecks of SMT architecture, several 
fetch schemes were proposed by prior works to enhance the fetching 
efficiency and overall performance. 

In this paper, we propose a novel fetch policy called queue situation 
identifier (QSI) which counts some kind of long latency instructions of 
each thread each cycle then properly selects which threads to fetch 
next cycle. Simulation results show that in best case our fetch policy 
can achieve 30% on speedup and also can reduce the data cache level 1 
miss rate. 
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I. INTRODUCTION

As the semiconductor technique improvement, the 

processor can have more transistors than before. So that 
computer designers use their wisdom to create a lot of 
architectures, such as branch predictor, memory hierarchy, 
trace cache, and superscalar, to improve computer 
performance. 

In order to gain more performance, processor designers bring 
in two innovation concepts: instruction-level parallelism (ILP) 
and thread-level parallelism (TLP). Conventional superscalar 
processor can issue multiple instructions in single program 
each cycle. The purpose of conventional superscalar design is 
to exploit the ILP and improve the performance.  

Simultaneous Multithreading (SMT) [1, 2, 3, 4] is a 
innovative technique combine the benefits of ILP and TLP. It 
can issue multiple instructions from multiple independent 
applications or threads each cycle. All treads in a SMT 
processor is active simultaneously, competing for all available 
resources each cycle. 

The SMT architecture can be roughly divide into two parts: 
fetch engine and execution engine.  

The fetch engine which is at the front-end of pipeline stages 
composes of fetch unit, instruction cache, branch predictor, 
decode unit, and register renaming unit. The major 
responsibility of the fetch engine is to fill the later pipeline 
stage with instructions. Each cycle, the fetch unit fetches 

multiple instructions from instruction cache. After decoding, 
the register renaming logic maps the logical register to the 
physical register to remove the data dependence that will cause 
data hazard. And
then the instructions will be fed into execution engine.  

The execution engine which is at back-end of pipeline stages 
consists of reorder buffer, issue logic, functional units, data 
forwarding mechanism, and memory hierarchy. The 
responsibility of execution engine is issuing ready instructions 
to appropriate functional units, FUs, for execution. The 
renamed instructions will wait in the instruction queue for 
operands to become available. If the corresponding functional 
unit is free, the ready instruction is issued for execution. 

II. THE BOTTLENECKS OF SIMULTANEOUS MULTITHREADING

      Although the SMT architecture dynamically sharing the 
processor resources to exploit both Instruction-Level 
Parallelism (ILP) and Thread-Level Parallelism (TLP) to 
enhance performance, but it does appear to have some potential 
drawbacks since the inter-thread contention. In SMT processor, 
multiple independent threads run concurrently to share 
resource of single processor and to increase resource utilization. 
However, the competing for resource between threads will 
degrade performance considerably. For example, sharing the 
cache with multiple threads, that is, partitioning the cache into 
pieces for threads will eventually reducing the cache space used 
by each thread, hence decrease the degree of locality and cause 
cache misses to arise.  

Fetch unit is a prime bottleneck for SMT architecture. 
Branch frequency and PC alignment problems prevent SMT 
processor from fully utilizing the fetch bandwidth. Besides, 
since the instructions are from different threads now, the fetch 
unit needs to be smart enough to know which thread to fetch 
from. In fact, the fetch unit becomes one of the major 
bottlenecks of the SMT processor [3].  

Issue logic is another candidate for bottleneck intuitively. 
The issue logic selects ready instructions from instruction 
queue for issuing in the pipeline stage. When the corresponding 
functional unit is free, the ready instruction is issued for an 
execution. As a matter of fact, the mechanism of selecting 
ready instructions from the instruction queue influences the 
throughput of processor significantly. A dynamically 
scheduled single thread processor may have enough ready 
instructions to be able to choose between them, but in SMT 
processor the options are more diverse. Because SMT 
processor have higher throughput than a single thread 
superscalar processor, the issue bandwidth is potentially a more 
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critical resource, so avoiding issue slot waste seems beneficial 
[3]. 

III. PREVIOUSLY INVESTIGATED FETCH SCHEMES

  Tullsen et al. proposed several fetch policies for SMT 
processors [3]. In order to improve the original fetch policy: 
round robin, they first bring in the new idea to choose the 
instructions that fetch in next cycle by using the feedback from 
the processor pipeline. 

 BRCOUNT fetch policy attempts to give highest priority to 
those threads which has fewest unresolved branches in the 
decode stage, the rename stage, and the instruction queues. 
Therefore, instructions fetch from the wrong path will be 
reduced by choosing the threads that have fewer branches or 
have more resolved branches. 

 MISSCOUNT fetch policy attempts to avoid the clog of IQ 
causing by long latency instructions. This fetch policy attempts 
to give highest priority to those threads which has fewest 
outstanding data cache miss instructions. Since dealing with the 
data cache miss instructions will spend more clock cycles. The 
subsequence instructions of the thread  dependent on that data 
will wait in the IQs for a period of time that clogs the IQs.  

  ICOUNT fetch policy is a more general solution that use to 
deal with IQ clog problem. This police gives priority to threads 
with the fewest instructions in decode, rename, and the 
instruction queues.  

 Chen and Shieh [10] proposed a novel fetch policy called 
Instantaneous Commit Count (ICC) mechanism that selects 
which thread to fetch from according to the collection of each 
thread’s retired instructions each cycle. 

IV. OUR FETCH POLICY

Let we review the two fetch policies that we mentioned 
above: ICOUNT and ICC. 

ICOUNT proposed by Tullsen et al. that were designed to 
prevent the IQ clog. This fetch policy gives high priority to 
those threads which have fewest instruction in decode, rename, 
and the instruction queues. However, this priority tends to favor 
some threads, such as the thread was just flushed by 
mis-speculation. Moreover, the favor behavior results in the 
high utility rate of RUU. 

ICC proposed by Shieh et al. that also attempted to prevent 
the IQ clog. This fetch policy gives high priority to those 
threads which have more committed instructions each cycle. 
This fetch policy has better performance than ICOUNT. It also 
has lower utility rate of RUU than ICOUNT. However, this 
priority only count the commit instruction each cycle but didn’t 
consider some instructions of high priority thread had stayed in 
queues more time than low priority threads. 

In order to solve those problems we use several counters to 
record the states of the processor. Long latency loads is one of 
the well known factors to bring in IQ clog. When thread with 
load miss execute in SMT, the thread will eventually stall, 
potentially holding resources which other threads could be 
using to make forward progress. Hence, we use counters to 

count the load miss instructions of each thread each cycle. 
Floating point computation is another well known factor that 
incurs IQ clog. The average computation time of floating point 
operation is almost 6 times of that of integer operation. In all 
floating point computation, floating point multiplication and 
division spend more cycles than addition and subtraction. In 
situation that there are many threads with floating point 
computations run currently in SMT, threads that compete the 
limited functional units each other and wait the winner to 
release the resource will result in clog. So, we use counters to 
count the floating point multiplication and division instructions
of each thread each cycle. Finally, we combine the three 
information, number of load miss instructions, number of 
floating point multiplication and number of division 
instructions, to a parameter which we called queue situation 
identifier (QSI). 

    In this paper, our fetch policy is dynamically switching 
according to the QSI. The fetch policy is described as follow: 

The fetch unit fetches instructions from instruction cache 
according to fetch priority that decided in prior cycle. When an 
instruction is fetched and detected that instruction is one of the 
three kinds of instructions we mentioned above, the QSI will be 
add one. In commit stage, if the instruction is one of the three 
kinds instructions we mentioned above, the QSI will be 
decrease one. Then, we set a threshold to QSI and check the 
QSI at every commit cycle. The switch flag arise or not is 
according to which fetch policy used at this cycle and the 
relationship between QSI and the threshold. The state diagram 
of switching fetch policy is shown in Figure 1. The fetch unit 
sorts ICC and QSI counter and looks up which fetch policy is 
going to use in this cycle to decide the priority of thread to fetch. 
The circuit diagram of switch flag is shown in Figure 2. 

Figure 1. State diagram of switching fetch policy 
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TABLE 1.
Baseline parameter of simulator 
Parameter configure

Base Fetch Policy ICOUNT
Fetch/Issue/Commit Width 8

Fetch Queue Size 32
Register Update Unit Size 128

Load/Store Queue Size 64
L1/L2 Cache Block Size 32Byte/64Byte 
Instruction/ Data Cache 128KB,2 way 

L2 Cache 2MB,4 way 
Fast-Forward Instructions(Each 250,000,000

Commit Instructions(Each thread) 200,000,000

Figure 3.The block diagram of QSI architecture 

V. EVALUATION METHOLOGY

     Our simulator is derived from the SimpleScalar 
Multithreading (SSMT) simulator which originally developed 
by Madon et al. [7] to implement our  fetch schemes and gather 
detailed statistics. The simulator implements simultaneous 
multithreaded processor pipeline based on the out-of-order 
processor model from SimpleScalar tool set [8]. 

The major parameters of the simulator we used are shown in 
Table 1, and the configuration of functional units are shown in 
Table 2. The Instruction and memory access latency is shown 
in Table 3. 
    In this paper, we select 11 applications (alpha ISA) from the 
SPEC CPU2000 suite to construct our workloads. The 
workloads consist of eight integer based applications from 
CINT2000 benchmark suite and three floating-point based 
applications from CFP2000 benchmark suite. 

TABLE 2.
Functional Units Configuration 

Parameter Value
Integer ALU 8

Integer MULT/DIV 2
Floating ALU 8

Floating MULT/DIV 2

TABLE 3. 
 Instruction and memory access latency 

Latency Type cycles 
Integer 1
FP Add 2

FP Multi 4
FP Div 12
L1 Hit 1
L2 Hit 10

Memory Access 122

TABLE 4. Workloads of 2, 4, 6 and 8 applications 
Number of thread 

2 4 6 8
Integer Integer Integer Mix

W21 mcf, W41 mcf, gzip, crafty, W61 mcf, gzip, crafty, twolf, vpr, 
W22 bzip2, W42 gcc, crafty, gzip, W62 vpr, gcc, mcf, bzip2, twolf, 

W81 mcf, gcc, gzip, crafty,  
twolf, bzip2, vpr, art  

W23 gap, W43 mcf, gap, bzip2, Mix
Floating W44 mcf, crafty, gcc, W63 gcc, twolf, gzip, mesa, art, 

W82 mcf, gcc, gzip, gap,  
bzip2, vpr, art, mesa 

W24 equake, Mix W64 bzip2, crafty, gzip, twolf, 
W25 mesa, W45 mcf, bzip2, mesa, W65 mcf, gzip, twolf, equake, 

W83 mcf, gcc, gzip, twolf,  
bzip2, mesa, art, equake

W26 equake, W46 gcc, gzip, equake, W66 mcf, gzip, crafty, twolf, gcc, 
Mix W47 twolf , vpr, mesa, 

W84 mcf, vpr, gzip, twolf,
bzip2, mesa, art, equake 

W27 gcc, art W48 bzip2, mcf, vpr, 
W28 vpr,
W29 bzip2,

Floating: All Floating Point Based 
Integer: All Integer Based 
MIX: Mix of Integer and Floating Point Based
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VI. SIMULATION RESULTS

 Figure 4 to 7 show the number of instructions fetch per cycle 
normalized to base fetch scheme. As Figure 4 shows our fetch 
scheme fetches almost the same number of instructions (the 
difference is within 1% on average) as ICOUNT and ICC in 
2-thread workloads because the fetch unit can only fetch from 
two threads each cycle. In 4-thread workloads, our QSI fetch 
policy improves the fetch rate 11%, 10%, 13%, 5%, 18%, 11% 
and 3% in W41, W42,W43, W44, W45, W46 and W47 
respectively, as shown in Figure 5. However, for workload 
W48 our fetch policy fetches fewer instructions because the 
counted number in QSI shows that for these benchmarks the 
number of the three specified instructions are distributed more 
looser than other workloads. This situation resulted in the 
switch to QSI state less than other workloads. In 6-thread 
workloads as we shown in Figure 6, QSI can achieves 36%, 
16%, 7%, 24%, 31% and 23% in W61, W62, W63, W64, W65 
and W66 respectively. In 8-thread workloads as we shown in 
Figure 7, our fetch policy can achieves 39%, 36%, 43% and 
39% in W81, W82, W83 and W84 respectively. 

Figure 4. Normalized fetch rate of 2-thread workloads 

Figure 6. Normalized fetch rate of 6-thread workloads 

Figure 8. DL1 Miss Rate of 2-thread workloads 

Figure 8 shows the level 1 data cache miss rate in 2-thread 
workloads, our fetch policy has same  DL1 miss rate (the 
reduction percentage is 0.7) as ICOUNT and ICC. In 4-thread 
workload as shows in Figure 9, QSI can reduce the DL1 miss 
rate 3.55% in average. In Figure 10 shows the 6-thread 
workloads, QSI can reduce the DL1 miss rate 7%. And in 
Figure 11, our QSI fetch policy use in 8-thread workloads can 
reduce the DL1 miss rate up to 8.2% in average. 

Figure 12 to 15 show the IPCs of the combined workloads. 
As illustrating in Figure 12, 2-thread workloads get almost the 
same performance on each scheme (the difference is between 
1%). In 4-thread workload as shown in Figure 13, our fetch 
policy improve IPC by 11.4%, 9.5%, 11.9%, 12.1%, 3.9%, 
11.8% and 2.56% in W41, W42, W43, W44, W45, W46 and 
W47 respectively. In 6-thread workload as shown in Figure 14, 
QSI will gain 30.6%, 19.8%, 6.0%, 0.7%, 21.4% and 14% 
more IPC in W61, W62, W63, W64, W65 and W66 
respectively. In 8-thread workload as shown in Figure 15, these 
numbers are 30.2%, 22.3%, 23.7% and 17.6% for W81, W82, 
W83 and W84 respectively. 

Figure 5. Normalized fetch rate of 4-thread workloads 

Figure 7. Normalized fetch rate of 8-thread workloads 

Figure 9. DL1 Miss Rate of 4-thread workloads 
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Figure 10. DL1 Miss Rate of 6-thread workloads Figure 11. DL1 Miss Rate of 8-thread workloads 

Figure 12. Performance of 2-thread workloads Figure 13. Performance of 4-thread workloads 

Figure 14. Performance of 6-thread workloads Figure 15. Performance of 8-thread workloads 
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In this paper, we proposed a fetch policy which is based on 
ICC to solve the problem of clog that we find in ICC fetch 
policy. In our policy, we add QSI counters per-thread and 
dynamical monitor the QSI value. If the QSI is greater than the 
threshold then the fetching policy is switched to QSI mode, 
otherwise the used fetching scheme is ICC. Our motivation is to 
gain further performance by fast forwarding thread and using 
the resource effectively. Our results showed a significant 
improvement (achieve the highest performance up to 30.1% in 
some workloads) over the ICOUNT fetch policy and also can 
reduce the DL1 miss rate. 
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