
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1865

QSI Dynamical Fetch Policy for SMT
Shu-Chiao Yang, Jong-Jiann Shieh

Abstract—A Simultaneous Multithreading (SMT) Processor is
capable of executing instructions from multiple threads in the same
cycle. SMT in fact was introduced as a powerful architecture to
superscalar to increase the throughput of the processor.

Simultaneous Multithreading is a technique that permits multiple
instructions from multiple independent applications or threads to
compete limited resources each cycle. While the fetch unit has been
identified as one of the major bottlenecks of SMT architecture, several
fetch schemes were proposed by prior works to enhance the fetching
efficiency and overall performance.

In this paper, we propose a novel fetch policy called queue situation
identifier (QSI) which counts some kind of long latency instructions of
each thread each cycle then properly selects which threads to fetch
next cycle. Simulation results show that in best case our fetch policy
can achieve 30% on speedup and also can reduce the data cache level 1
miss rate.

Keywords—SMT, QSI, DL1 miss rate.

I. INTRODUCTION

As the semiconductor technique improvement, the

processor can have more transistors than before. So that
computer designers use their wisdom to create a lot of
architectures, such as branch predictor, memory hierarchy,
trace cache, and superscalar, to improve computer
performance.

In order to gain more performance, processor designers bring
in two innovation concepts: instruction-level parallelism (ILP)
and thread-level parallelism (TLP). Conventional superscalar
processor can issue multiple instructions in single program
each cycle. The purpose of conventional superscalar design is
to exploit the ILP and improve the performance.

Simultaneous Multithreading (SMT) [1, 2, 3, 4] is a
innovative technique combine the benefits of ILP and TLP. It
can issue multiple instructions from multiple independent
applications or threads each cycle. All treads in a SMT
processor is active simultaneously, competing for all available
resources each cycle.

The SMT architecture can be roughly divide into two parts:
fetch engine and execution engine.

The fetch engine which is at the front-end of pipeline stages
composes of fetch unit, instruction cache, branch predictor,
decode unit, and register renaming unit. The major
responsibility of the fetch engine is to fill the later pipeline
stage with instructions. Each cycle, the fetch unit fetches

multiple instructions from instruction cache. After decoding,
the register renaming logic maps the logical register to the
physical register to remove the data dependence that will cause
data hazard. And
then the instructions will be fed into execution engine.

The execution engine which is at back-end of pipeline stages
consists of reorder buffer, issue logic, functional units, data
forwarding mechanism, and memory hierarchy. The
responsibility of execution engine is issuing ready instructions
to appropriate functional units, FUs, for execution. The
renamed instructions will wait in the instruction queue for
operands to become available. If the corresponding functional
unit is free, the ready instruction is issued for execution.

II. THE BOTTLENECKS OF SIMULTANEOUS MULTITHREADING

 Although the SMT architecture dynamically sharing the
processor resources to exploit both Instruction-Level
Parallelism (ILP) and Thread-Level Parallelism (TLP) to
enhance performance, but it does appear to have some potential
drawbacks since the inter-thread contention. In SMT processor,
multiple independent threads run concurrently to share
resource of single processor and to increase resource utilization.
However, the competing for resource between threads will
degrade performance considerably. For example, sharing the
cache with multiple threads, that is, partitioning the cache into
pieces for threads will eventually reducing the cache space used
by each thread, hence decrease the degree of locality and cause
cache misses to arise.

Fetch unit is a prime bottleneck for SMT architecture.
Branch frequency and PC alignment problems prevent SMT
processor from fully utilizing the fetch bandwidth. Besides,
since the instructions are from different threads now, the fetch
unit needs to be smart enough to know which thread to fetch
from. In fact, the fetch unit becomes one of the major
bottlenecks of the SMT processor [3].

Issue logic is another candidate for bottleneck intuitively.
The issue logic selects ready instructions from instruction
queue for issuing in the pipeline stage. When the corresponding
functional unit is free, the ready instruction is issued for an
execution. As a matter of fact, the mechanism of selecting
ready instructions from the instruction queue influences the
throughput of processor significantly. A dynamically
scheduled single thread processor may have enough ready
instructions to be able to choose between them, but in SMT
processor the options are more diverse. Because SMT
processor have higher throughput than a single thread
superscalar processor, the issue bandwidth is potentially a more

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1866

critical resource, so avoiding issue slot waste seems beneficial
[3].

III. PREVIOUSLY INVESTIGATED FETCH SCHEMES

 Tullsen et al. proposed several fetch policies for SMT
processors [3]. In order to improve the original fetch policy:
round robin, they first bring in the new idea to choose the
instructions that fetch in next cycle by using the feedback from
the processor pipeline.

 BRCOUNT fetch policy attempts to give highest priority to
those threads which has fewest unresolved branches in the
decode stage, the rename stage, and the instruction queues.
Therefore, instructions fetch from the wrong path will be
reduced by choosing the threads that have fewer branches or
have more resolved branches.

 MISSCOUNT fetch policy attempts to avoid the clog of IQ
causing by long latency instructions. This fetch policy attempts
to give highest priority to those threads which has fewest
outstanding data cache miss instructions. Since dealing with the
data cache miss instructions will spend more clock cycles. The
subsequence instructions of the thread dependent on that data
will wait in the IQs for a period of time that clogs the IQs.

 ICOUNT fetch policy is a more general solution that use to
deal with IQ clog problem. This police gives priority to threads
with the fewest instructions in decode, rename, and the
instruction queues.

 Chen and Shieh [10] proposed a novel fetch policy called
Instantaneous Commit Count (ICC) mechanism that selects
which thread to fetch from according to the collection of each
thread’s retired instructions each cycle.

IV. OUR FETCH POLICY

Let we review the two fetch policies that we mentioned
above: ICOUNT and ICC.

ICOUNT proposed by Tullsen et al. that were designed to
prevent the IQ clog. This fetch policy gives high priority to
those threads which have fewest instruction in decode, rename,
and the instruction queues. However, this priority tends to favor
some threads, such as the thread was just flushed by
mis-speculation. Moreover, the favor behavior results in the
high utility rate of RUU.

ICC proposed by Shieh et al. that also attempted to prevent
the IQ clog. This fetch policy gives high priority to those
threads which have more committed instructions each cycle.
This fetch policy has better performance than ICOUNT. It also
has lower utility rate of RUU than ICOUNT. However, this
priority only count the commit instruction each cycle but didn’t
consider some instructions of high priority thread had stayed in
queues more time than low priority threads.

In order to solve those problems we use several counters to
record the states of the processor. Long latency loads is one of
the well known factors to bring in IQ clog. When thread with
load miss execute in SMT, the thread will eventually stall,
potentially holding resources which other threads could be
using to make forward progress. Hence, we use counters to

count the load miss instructions of each thread each cycle.
Floating point computation is another well known factor that
incurs IQ clog. The average computation time of floating point
operation is almost 6 times of that of integer operation. In all
floating point computation, floating point multiplication and
division spend more cycles than addition and subtraction. In
situation that there are many threads with floating point
computations run currently in SMT, threads that compete the
limited functional units each other and wait the winner to
release the resource will result in clog. So, we use counters to
count the floating point multiplication and division instructions
of each thread each cycle. Finally, we combine the three
information, number of load miss instructions, number of
floating point multiplication and number of division
instructions, to a parameter which we called queue situation
identifier (QSI).

 In this paper, our fetch policy is dynamically switching
according to the QSI. The fetch policy is described as follow:

The fetch unit fetches instructions from instruction cache
according to fetch priority that decided in prior cycle. When an
instruction is fetched and detected that instruction is one of the
three kinds of instructions we mentioned above, the QSI will be
add one. In commit stage, if the instruction is one of the three
kinds instructions we mentioned above, the QSI will be
decrease one. Then, we set a threshold to QSI and check the
QSI at every commit cycle. The switch flag arise or not is
according to which fetch policy used at this cycle and the
relationship between QSI and the threshold. The state diagram
of switching fetch policy is shown in Figure 1. The fetch unit
sorts ICC and QSI counter and looks up which fetch policy is
going to use in this cycle to decide the priority of thread to fetch.
The circuit diagram of switch flag is shown in Figure 2.

Figure 1. State diagram of switching fetch policy

AND2

inst

AND2

inst1

OR2

inst3

VCC
s0 INPUT

VCC
t1 INPUT

VCC
s1 INPUT

VCC
t0 INPUT

Switch f lagOUTPUT

s0: state 0 s1: state 1
t0: QSI > threshold t1: QSI < threshold

Figure 2. The circuit diagram of switch flag

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1867

TABLE 1.
Baseline parameter of simulator
Parameter configure

Base Fetch Policy ICOUNT
Fetch/Issue/Commit Width 8

Fetch Queue Size 32
Register Update Unit Size 128

Load/Store Queue Size 64
L1/L2 Cache Block Size 32Byte/64Byte
Instruction/ Data Cache 128KB,2 way

L2 Cache 2MB,4 way
Fast-Forward Instructions(Each 250,000,000

Commit Instructions(Each thread) 200,000,000

Figure 3.The block diagram of QSI architecture

V. EVALUATION METHOLOGY

 Our simulator is derived from the SimpleScalar
Multithreading (SSMT) simulator which originally developed
by Madon et al. [7] to implement our fetch schemes and gather
detailed statistics. The simulator implements simultaneous
multithreaded processor pipeline based on the out-of-order
processor model from SimpleScalar tool set [8].

The major parameters of the simulator we used are shown in
Table 1, and the configuration of functional units are shown in
Table 2. The Instruction and memory access latency is shown
in Table 3.
 In this paper, we select 11 applications (alpha ISA) from the
SPEC CPU2000 suite to construct our workloads. The
workloads consist of eight integer based applications from
CINT2000 benchmark suite and three floating-point based
applications from CFP2000 benchmark suite.

TABLE 2.
Functional Units Configuration

Parameter Value
Integer ALU 8

Integer MULT/DIV 2
Floating ALU 8

Floating MULT/DIV 2

TABLE 3.
 Instruction and memory access latency

Latency Type cycles
Integer 1
FP Add 2

FP Multi 4
FP Div 12
L1 Hit 1
L2 Hit 10

Memory Access 122

TABLE 4. Workloads of 2, 4, 6 and 8 applications
Number of thread

2 4 6 8
Integer Integer Integer Mix

W21 mcf, W41 mcf, gzip, crafty, W61 mcf, gzip, crafty, twolf, vpr,
W22 bzip2, W42 gcc, crafty, gzip, W62 vpr, gcc, mcf, bzip2, twolf,

W81 mcf, gcc, gzip, crafty,
twolf, bzip2, vpr, art

W23 gap, W43 mcf, gap, bzip2, Mix
Floating W44 mcf, crafty, gcc, W63 gcc, twolf, gzip, mesa, art,

W82 mcf, gcc, gzip, gap,
bzip2, vpr, art, mesa

W24 equake, Mix W64 bzip2, crafty, gzip, twolf,
W25 mesa, W45 mcf, bzip2, mesa, W65 mcf, gzip, twolf, equake,

W83 mcf, gcc, gzip, twolf,
bzip2, mesa, art, equake

W26 equake, W46 gcc, gzip, equake, W66 mcf, gzip, crafty, twolf, gcc,
Mix W47 twolf , vpr, mesa,

W84 mcf, vpr, gzip, twolf,
bzip2, mesa, art, equake

W27 gcc, art W48 bzip2, mcf, vpr,
W28 vpr,
W29 bzip2,

Floating: All Floating Point Based
Integer: All Integer Based
MIX: Mix of Integer and Floating Point Based

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1868

VI. SIMULATION RESULTS

 Figure 4 to 7 show the number of instructions fetch per cycle
normalized to base fetch scheme. As Figure 4 shows our fetch
scheme fetches almost the same number of instructions (the
difference is within 1% on average) as ICOUNT and ICC in
2-thread workloads because the fetch unit can only fetch from
two threads each cycle. In 4-thread workloads, our QSI fetch
policy improves the fetch rate 11%, 10%, 13%, 5%, 18%, 11%
and 3% in W41, W42,W43, W44, W45, W46 and W47
respectively, as shown in Figure 5. However, for workload
W48 our fetch policy fetches fewer instructions because the
counted number in QSI shows that for these benchmarks the
number of the three specified instructions are distributed more
looser than other workloads. This situation resulted in the
switch to QSI state less than other workloads. In 6-thread
workloads as we shown in Figure 6, QSI can achieves 36%,
16%, 7%, 24%, 31% and 23% in W61, W62, W63, W64, W65
and W66 respectively. In 8-thread workloads as we shown in
Figure 7, our fetch policy can achieves 39%, 36%, 43% and
39% in W81, W82, W83 and W84 respectively.

Figure 4. Normalized fetch rate of 2-thread workloads

Figure 6. Normalized fetch rate of 6-thread workloads

Figure 8. DL1 Miss Rate of 2-thread workloads

Figure 8 shows the level 1 data cache miss rate in 2-thread
workloads, our fetch policy has same DL1 miss rate (the
reduction percentage is 0.7) as ICOUNT and ICC. In 4-thread
workload as shows in Figure 9, QSI can reduce the DL1 miss
rate 3.55% in average. In Figure 10 shows the 6-thread
workloads, QSI can reduce the DL1 miss rate 7%. And in
Figure 11, our QSI fetch policy use in 8-thread workloads can
reduce the DL1 miss rate up to 8.2% in average.

Figure 12 to 15 show the IPCs of the combined workloads.
As illustrating in Figure 12, 2-thread workloads get almost the
same performance on each scheme (the difference is between
1%). In 4-thread workload as shown in Figure 13, our fetch
policy improve IPC by 11.4%, 9.5%, 11.9%, 12.1%, 3.9%,
11.8% and 2.56% in W41, W42, W43, W44, W45, W46 and
W47 respectively. In 6-thread workload as shown in Figure 14,
QSI will gain 30.6%, 19.8%, 6.0%, 0.7%, 21.4% and 14%
more IPC in W61, W62, W63, W64, W65 and W66
respectively. In 8-thread workload as shown in Figure 15, these
numbers are 30.2%, 22.3%, 23.7% and 17.6% for W81, W82,
W83 and W84 respectively.

Figure 5. Normalized fetch rate of 4-thread workloads

Figure 7. Normalized fetch rate of 8-thread workloads

Figure 9. DL1 Miss Rate of 4-thread workloads

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:7, 2009

1869

Figure 10. DL1 Miss Rate of 6-thread workloads Figure 11. DL1 Miss Rate of 8-thread workloads

Figure 12. Performance of 2-thread workloads Figure 13. Performance of 4-thread workloads

Figure 14. Performance of 6-thread workloads Figure 15. Performance of 8-thread workloads

[3] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm, “Exploiting
choice: Instruction fetch and issue VII. CONCLUSIONS

In this paper, we proposed a fetch policy which is based on
ICC to solve the problem of clog that we find in ICC fetch
policy. In our policy, we add QSI counters per-thread and
dynamical monitor the QSI value. If the QSI is greater than the
threshold then the fetching policy is switched to QSI mode,
otherwise the used fetching scheme is ICC. Our motivation is to
gain further performance by fast forwarding thread and using
the resource effectively. Our results showed a significant
improvement (achieve the highest performance up to 30.1% in
some workloads) over the ICOUNT fetch policy and also can
reduce the DL1 miss rate.

on an implementable simultaneous multithreading processor,” In 23rd Annul
International Symposium on Computer Architecture, May 1996
[4] S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm, and D. Tullsen,
“Simultaneous multithreading: A platform for next-generation processors,”
IEEE Micro, Sep. 1997, Pages 12-18
[5] D. Tullsen, and J. Brown, “Handling long-latency loads in a simultaneous
multithreading processor” In 34th Annual International Symposium on
Microarchitecture, December, 2001
[6] Y-H. Chen, and J.-J. Shieh, “ICC: A Simultaneous Multithreading Fetch
Engine”2005 National Computer Symposium, 15-16 Dec. 2005, Pages 59-59
[7] D. Madon, E. Sanchez, and S. Monnier, “A Study of a Simultaneous
Multithreaded Architecture,” In Proceedings of EuroPar'99, Toulouse, Lectures
Notes in Computer Science, Volume 1685, Springer-Verlag, Sep. 1999, Pages
716-726
[8] T. Austin, E. Larson, D. Ernst, “SimpleScalar: an infrastructure for
computer system modeling,” IEEE Computer Journal, Feb. 2002, Pages 59-67
[9] D.M. Tullsen, J.A. Brown.“Handling Long-latency Loads in a Simultaneous
Multithreading Processr,”In 34th International Symposium on
Microarchitecture, , Dec. 2001, Pages 318-327.

REFERENCES
[1] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous multithreading:
Maximizing on-chip parallelism,” In 22nd Annul International Symposium on
Computer Architecture, June 1995, Pages 392-403

[10]Y-H. Chen, and J.-J. Shieh, “ICC: A Simultaneous Multithreading Fetch
Engine”2005 National Computer Symposium, 15-16 Dec. 2005, Pages 59-59

[2] D. Madon, E. Sanchez, and S. Monnier, “A Study of a Simultaneous
Multithreaded Architecture,” In Proceedings of EuroPar'99, Toulouse, Lectures
Notes in Computer Science, Volume 1685, Springer-Verlag, Sep. 1999, Pages
716-726

