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Optimization of a Three-Term Backpropagation
Algorithm Used for Neural Network Learning

Yahya H. Zweiri

Abstract— The back-propagation algorithm calculates the weight
changes of an artificial neural network, and a two-term algorithm
with a dynamically optimal learning rate and a momentum factor
is commonly used. Recently the addition of an extra term, called a
proportional factor (PF), to the two-term BP algorithm was proposed.
The third term increases the speed of the BP algorithm. However,
the PF term also reduces the convergence of the BP algorithm, and
optimization approaches for evaluating the learning parameters are
required to facilitate the application of the three terms BP algorithm.
This paper considers the optimization of the new back-propagation
algorithm by using derivative information. A family of approaches
exploiting the derivatives with respect to the learning rate, momentum
factor and proportional factor is presented. These autonomously
compute the derivatives in the weight space, by using information
gathered from the forward and backward procedures. The three-term
BP algorithm and the optimization approaches are evaluated using
the benchmark XOR problem.

Keywords— Neural Networks, Backpropagation, Optimization.

I. INTRODUCTION

BACKPROPAGATION(BP) algorithm is used for training
artificial neural networks [2]. Training is usually carried

out by iterative updating of weights based on the error signal.
The negative gradient of a mean-squared error function is
commonly used. In the output layer, the error signal is the
difference between the desired and actual output values, mul-
tiplied by the slope of a sigmoidal activation function. Then
the error signal is back-propagated to the lower layers. BP
is a descent algorithm, which attempts to minimize the error
at each iteration. The weights of the network are adjusted by
the algorithm such that the error is decreased along a descent
direction. Traditionally, two parameters, called learning rate
(LR) and momentum factor (MF), are used for controlling
the weight adjustment along the descent direction and for
dampening oscillations. The BP algorithm is used for many
applications. However, its convergence rate is relatively slow,
especially for networks with more than one hidden layer. The
reason for this is the saturation behaviour of the activation
function used for the hidden and output layers. Since the
output of a unit exists in the saturation area, the corresponding
descent gradient takes a very small value, even if the output
error is large, leading to very little progress in the weight
adjustment. The selection of the LR and MF is arbitrary,
because the error surface usually consists of many flat and
steep regions and behaves differently from application to
application. Large values of the LR and MF are helpful to
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accelerate learning. However, this increases the possibility of
the weight search jumping over steep regions and moving out
of the desired regions.

The problem of improving the efficiency and convergence
rate of the back-propagation algorithm has been investigated
by a number of researchers. For example, [3] does not use
higher-order derivatives but determines individual learning
rates for each component of the weights vector separately.
Three new parameters are required and like the conventional
BP, convergence rates are slow. In addition, a large number of
trial runs are required before arriving at the right parameter.
[4] has proposed a different cost function, whilst [5] proposed
variables are re-scaled dynamically. [6], [7] considered dy-
namic learning rate and momentum factor optimization using
derivative information. [8] used a genetic algorithm for self-
adaptation to accelerate the steepest descent rate, by slightly
modifying the learning rate of the previous step. [9] presented
a new incremental learning method for pattern recognition,
employing bounded weight modification and structural adap-
tation learning rules and applies initial knowledge to constrain
the learning process. [10] investigated the behaviour of the BP
algorithm with a small constant learning rate with stationary,
random input environments. The sequence of weight estimates
is approximated by ordinary differential equations, in the sense
of weak convergence of a random processes as a small number
(learning rate) tends to zero. [11] proved the companion
Rosenblatt’s perceptron convergence (PC) theorem for feed-
forward networks, stating that the BP algorithm converges
to an optimal solution for linearly separable patterns. [12]
presented a constraint to be satisfied in addition to the demand
for minimization of the cost function, and used Lagrangian
multipliers in order to improve convergence. [13] gives a
detailed analysis of the delta rule algorithm, indicating why
one implementation leads to a stable numerical process. In
[14], the necessary and sufficient conditions for the stability
behaviour of the three-term backpropagation algorithm are
established.

This paper presents efficient BP learning using simultane-
ously optimized Learning Rate (LR), Momentum Factor (MF)
and Proportional Factor (PF) terms. A set of recursive formu-
lae is used for calculating the derivatives of the optimization
target with respect to LR, MF and PF. This behaves as a
feed-forward procedure in the BP algorithm and does not
increase the computational complexity. A group of approaches
exploiting the derivatives with respect to LR, MF and PF are
presented. The approaches are applied to an example problem
and shown that the convergence rate is significantly improved
compared to the plain three-term BP algorithms.
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The paper is organized as follows. First, the back-
propagation algorithm is given. Then, the proportional factor
term is proposed. Three approaches are presented to estimate
optimal values for the LR, MF and PF terms. Finally, conclu-
sions are drawn.

II. BACKGROUND

The back-propagation algorithm for multi-layer neural net-
works is a gradient descent procedure used to minimize a
least-square objective function (error function). Assume a
batch of training sample pairs: (I1, T1), · · · , (In, Tn), where
Is, 1 ≤ s ≤ n, represent the sth input in the batch, and
Ts, 1 ≤ s ≤ n, is the corresponding desired output (target).
For arbitrary hidden layers neurons, the least-square objective
function in the networks weight space is

E =
1

nZM

n∑
s=1

[Ts − OM
s ]T [Ts − OM

s ], (1)

where OM
s is the output vector of an M -layered network with

Is as input, and ZM is the number of output neurons.
Let W be a vector formed by all the network weights

and ∇E(W (k)) be the gradient of E at W = W (k), with
k = 1, 2, 3, · · · , N , being the iteration number of the weights
vector. The conventional back-propagation algorithm with a
momentum term can be simply described as

ΔW (k) = α(−∇E(W (k))) + βΔW (k − 1), (2)

where α and β are the learning rate (LR) and momentum factor
(MF) respectively, and ΔW (k) = W (k+1)−W (k). The feed-
forward computations of the network with Is presented to the
input layer are given by

om
s,i = f([Wm

i (k + 1)]T Om−1
s ), (3)

where om
s,i, 1 ≤ i ≤ Zm, denotes the ith output of layer

m, 1 ≤ m ≤ M ; f(·) is the activation function (usually
chosen as the logistic or tanh functions); W m

i (k + 1) is a
sub-vector of W (k + 1), which consists of all the weights
from the neurons of layer m−1 to om

s,i; and Om−1
s,i is a vector

formed by all the outputs of layer m − 1 (including a unity
output, which is used as a reference to bias the next layer)
and is given by

Om−1
s,i =

{
[ 1 Om−1

s,1 · · ·Om−1
s,Zm

]
T for m > 1,

[ 1 ITs ]
T for m = 1

(4)

III. PROPORTIONAL FACTOR TERM

The BP algorithm given by (2) is modified by adding an
extra term in order to increase the BP learning speed [1].
This term is proportional to e(W (k)) which represents the
difference between the output and the target at each iteration.
For batch learning 1, e(W (k)) = [ es es . . . es ]

T , where
the vector e is of appropriate dimension and es =

∑n
s=1[Ts −

OM
s ].

1For on-line learning, e(W (k)) = [Ts−OM
s ] for the output layer weights,

and es = (Ts − OM
s ) for the hidden layer weights. See [1] for further

details.

The modified BP algorithm is hence

ΔW (k) = α(−∇E(W (k))) + βΔW (k − 1) + γe(W (k)), (5)

where γ is the proportional factor(PF). It is noted that the BP
algorithm given by Equation (5) has three terms, one propor-
tional to the derivative of E(W (k)), another proportional to
the previous value of the incremental change of the weights
and a third term proportional to e(W (k)). These three terms
can be viewed as being analogous to the three terms in a PID
controller, commonly used in control applications.

IV. ESTIMATION OF OPTIMAL LR, MF AND PF TERMS

The optimization of α, β, and γ, such that W (k + 1) mini-
mizes E is required. The objective function E can be treated as
a function with three independent variables E(α, β, γ). From
Equation (5)

W (k + 1) = W (k) + αP (k) + βΔW (k − 1) + γe(k), (6)

where P (k) = −∇E(k) is a descent directional vector.
Substituting Equation (6) into Equation (3) gives

om
s,i = f([Wm

i (k) + αPm
i (k) + βΔWm

i (k − 1)

+γem
i (k)]T Om−1

s ). (7)

Computation of the first and second derivatives of E with
respect to α, β and γ yields:

g(α, β, γ) =

⎡
⎢⎣

∂E(α,β,γ)
∂α

∂E(α,β,γ)
∂β

∂E(α,β,γ)
∂γ

⎤
⎥⎦ (8)

where

∂E(α, β, γ)

∂α
=

−2

nZM

n∑
s=1

[
Ts − OM

s

]T ∂OM
s

∂α
(9)

∂E(α, β, γ)

∂β
=

−2

nZM

n∑
s=1

[
Ts − OM

s

]T ∂OM
s

∂β
(10)

∂E(α, β, γ)

∂γ
=

−2

nZM

n∑
s=1

[
Ts − OM

s

]T ∂OM
s

∂γ
(11)

The Hessian matrix of E is given by

H(α, β, γ) =

⎡
⎢⎢⎣

∂2E(α,β,γ)
∂α2

∂2E(α,β,γ)
∂α∂β

∂2E(α,β,γ)
∂α∂γ

∂2E(α,β,γ)
∂β∂α

∂2E(α,β,γ)
∂β2

∂2E(α,β,γ)
∂β∂γ

∂2E(α,β,γ)
∂γ∂α

∂2E(α,β,γ)
∂γ∂β

∂2E(α,β,γ)
∂γ2

⎤
⎥⎥⎦
(12)

which can be similarly computed.
To complete the computation of the gradient vector Equation

(8) and the Hessian matrix Equation (12), the derivatives of
OM

s at (α0, β0, γ0) can be computed from Equation (7). Thus
the derivatives of the objective function E(X) can be found,
where

X = [α β γ ]
T

. (13)
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A. Error Quadratic Approximation Approach

A second order Taylor polynomial of degree 2 can be used
to approximate E(X) for X near (α0, β0, γ0). Since E(X)
has continuous second-order partial derivative, this gives

E(X) ≈ E(α0, β0, γ0) + (α − α0)
∂E

∂α
+ (β − β0)

∂E

∂β

+(γ − γ0)
∂E

∂γ
+

1

2
(α − α0)

2 ∂2E

∂α2

+
1

2
(β − β0)

2 ∂2E

∂β2
+

1

2
(γ − γ0)

2 ∂2E

∂γ2

+(α − α0)(β − β0)
∂2E

∂α∂β
+ (β − β0)(γ − γ0)

∂2E

∂β∂γ
+ (γ − γ0)(α − α0)

∂2E

∂γ∂α

=
1

2
ΓT HeΓ + ΓT ge + ae (14)

where Γ = [ α − α0 β − β0 γ − γ0 ]
T , ae =

E(α0, β0, γ0), and the gradient vector g is given by
Equation (8) and the Hessian matrix H by Equation (12) .

1) Cases: Four separate cases are considered for computing
optimal values for the learning parameters.
Case I: From [15], E(X) has continuous second partial
derivatives in a convex set C and let the Hessian matrix H(X)
at X be positive definite for all X in C. Also let y be a critical
point of E(X) in C. Then E(X) is strictly convex in C and so
y is strong global minimizer of E(X) over C. Suppose that E
is a function with E(0, 0, 0) = 0 and gradient E(0, 0, 0) = 0.
From Equation (14), the quadratic polynomial simplifies to

E(X) ≈ 1

2
α2Eαα +

1

2
β2Eββ +

1

2
γ2Eγγ + αβEαβ

+βγEβγ + γαEγα. (15)

The discriminants are

D1 = 4(
1

4
Eαα)(

1

4
Eββ) − (Eαβ)2

D2 = 4(
1

4
Eαα)(

1

4
Eγγ) − (Eαγ)2

D3 = 4(
1

4
Eββ)(

1

4
Eγγ) − (Eβγ)2

When H is a positive definite (i.e. Eαα > 0, D1 > 0),
symmetric, square matrix and (D2 > 0, D3 > 0), the optimal
LR, MF and PF terms can be calculated as

dE

dΓ
= HΓ + g = 0 ⇒ Γ = −H−1g (16)

It is noted that this procedure minimizes Equation (14).
Case II: When H is a positive definite matrix and at least

one of D2 or D3 is negative, then E(α, β, γ) cannot be
characterized as convex. However, E(α, β, 0) is convex and
optimal LR and MF can be calculated as in Case I by setting
γ = 0.

Case III: When H is a non-positive definite matrix and
Eαα > 0, the second order expansion of E(α, 0, 0) is convex
along the descent direction of P (k). Then the optimal LR can
be calculated as in Case I by setting β = γ = 0.

Case IV: When H is a non-positive definite matrix and
Eαα < 0, the optimization target behaves in an accelerated
decreased manner along the descent direction P (k) because
both Eα and Eαα take negative values. Then the optimal LR
can be estimated by the line search method proposed by Yu
et al. [7], which has been shown to be capable of providing
an effective descent to the optimization target.

B. Approximation of the Sigmoidal nonlinearity function

Let

([WM
i (k)+αPM

i (k)+βΔWM
i (k − 1)+γeM

i (k)]T OM−1
s ) = x

Then the sigmoidal nonlinear function of the output layer can
be approximated by a set of linear functions:

f(x) =

⎧⎨
⎩

m1x + b1 for x1 ≤ x ≤ x2,
m2x + b2 for x1 ≥ x,
m2x + (2b1 − b2) for x2 ≤ x

(17)

OM
s = f([WM

i (k) + αPM
i (k) + βΔWM

i (k − 1)

+γeM
i (k)]T OM−1

s ) (18)

By substituting Equation (18) into Equations (9)-(11) and
equating eα, eβ , and eγ to zero yields:

αmjP
M
i

n∑
s=1

[
∂OM

s

∂α

]T
OM−1

s + βmjΔWM
i (k − 1)

×
n∑

s=1

[
∂OM

s

∂α

]T
OM−1

s + γmje
M
i

n∑
s=1

[
∂OM

s

∂α

]T
OM−1

s

=
n∑

s=1

[
∂OM

s

∂α

]T
(Ts − mjW

M
i (k)OM−1

s − bj) (19)

αmjP
M
i

n∑
s=1

[
∂OM

s

∂β

]T
OM−1

s + βmjΔWM
i (k − 1)

×
n∑

s=1

[
∂OM

s

∂β

]T
OM−1

s + γmje
M
i

n∑
s=1

[
∂OM

s

∂β

]T
OM−1

s

=
n∑

s=1

[
∂OM

s

∂β

]T
(Ts − mjW

M
i (k)OM−1

s − bj) (20)

αmjP
M
i

n∑
s=1

[
∂OM

s

∂γ

]T
OM−1

s + βmjΔWM
i (k − 1)

×
n∑

s=1

[
∂OM

s

∂γ

]T
OM−1

s + γmje
M
i

n∑
s=1

[
∂OM

s

∂γ

]T
OM−1

s

=
n∑

s=1

[
∂OM

s

∂γ

]T
(Ts − mjW

M
i (k)OM−1

s − bj) (21)

Since the matrix A2 (Equation (23)) is a nonsingular, the
optimal α, β and γ can be calculated by solving Equations
(19)-(21) simultaneously:

Γ = A−1
2 R2 (22)
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A2 =

⎡
⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎦ (23)

where

A11 = mjP
M
i

n∑
s=1

[
∂OM

s

∂α

]T
OM−1

s ,

A12 = mjΔWM
i (k − 1)

n∑
s=1

[
∂OM

s

∂α

]T
OM−1

s

A13 = mje
M
i

n∑
s=1

[
∂OM

s

∂α

]T
OM−1

s ,

A21 = mjP
M
i

n∑
s=1

[
∂OM

s

∂β

]T
OM−1

s

A22 = mjΔWM
i (k − 1)

n∑
s=1

[
∂OM

s

∂β

]T
OM−1

s ,

A23 = mje
M
i

n∑
s=1

[
∂OM

s

∂β

]T
OM−1

s

A31 = mjP
M
i

n∑
s=1

[
∂OM

s

∂γ

]T
OM−1

s ,

A32 = mjΔWM
i (k − 1)

n∑
s=1

[
∂OM

s

∂γ

]T
OM−1

s

A33 = mje
M
i

n∑
s=1

[
∂OM

s

∂γ

]T
OM−1

s

and

R2 =

⎡
⎢⎢⎢⎢⎣

∑n
s=1

[
∂OM

s

∂α

]T
(Ts − mjW

M
i (k)OM−1

s − bj)∑n
s=1

[
∂OM

s

∂β

]T
(Ts − mjW

M
i (k)OM−1

s − bj)∑n
s=1

[
∂OM

s

∂γ

]T
(Ts − mjW

M
i (k)OM−1

s − bj)

⎤
⎥⎥⎥⎥⎦

(24)

C. First-order Approximation Approach

In this approach, the convexity of E(α, β, γ) is obtained
by substituting the first-order Taylor expansion of the output
with respect to α, β, and γ in the objective function E. The
first-order Taylor series approximation of the output is given
by

OM
s (X) ≈ OM

s (α0, β0, γ0) + (α − α0)
∂OM

s

∂α

+(β − β0)
∂OM

s

∂β
+ (γ − γ0)

∂OM
s

∂γ
. (25)

Substituting Equation (25) into Equation (1), the objective
function becomes

E ≈ 1

nZM

n∑
s=1

(
Ts − OM

s (α0, β0, γ0) − (α − α0)
∂OM

s

∂α

−(β − β0)
∂OM

s

∂β
− (γ − γ0)

∂OM
s

∂γ

)2

. (26)

From Equation (26), setting the partial derivatives of E with
respect to α, β and γ equal to zero, yields three equations in
three unknowns:

(α − α0)
n∑

s=1

∥∥∥∥∂OM
s

∂α

∥∥∥∥
2

+ (β − β0)
n∑

s=1

[
∂OM

s

∂α

]T
∂OM

s

∂β

+(γ − γ0)
n∑

s=1

[
∂OM

s

∂α

]T
∂OM

s

∂γ
=

n∑
s=1

[
∂OM

s

∂α

]T

×(Ts − OM
s (α0, β0, γ0)) (27)

(α − α0)
n∑

s=1

[
∂OM

s

∂β

]T
∂OM

s

∂α
+ (β − β0)

n∑
s=1

∥∥∥∥∂OM
s

∂β

∥∥∥∥
2

+(γ − γ0)
n∑

s=1

[
∂OM

s

∂β

]T
∂OM

s

∂γ
=

n∑
s=1

[
∂OM

s

∂β

]T

×(Ts − OM
s (α0, β0, γ0)) (28)

(α − α0)
n∑

s=1

[
∂OM

s

∂γ

]T
∂OM

s

∂α
+ (β − β0)

n∑
s=1

[
∂OM

s

∂γ

]T

×∂OM
s

∂β
+ (γ − γ0)

n∑
s=1

∥∥∥∥∂OM
s

∂γ

∥∥∥∥
2

=
n∑

s=1

[
∂OM

s

∂γ

]T
(Ts − OM

s (α0, β0, γ0)) (29)

The optimal α, β and γ values can be calculated by solving
Equations (27)–(29) simultaneously.

V. SIMULATION RESULTS

Computer simulations for the learning parameters of the
three-term backpropagation algorithm using three optimization
approaches have been carried out. XOR problem, which is a
popular benchmark for neural network training is employed
[16]. The network architecture used for this problem consisted
of four input units, two hidden units and one output unit.
The same initial weights as well as the same learning rate,
momentum factor and proportional factor are used for the
algorithm in each optimization approach. The convergence of
the learning process is measured by taking the half-sum-of-
squared error as the objective function. The initial values of
the weights are drawn randomly between [−10, 10]. For the
example, the learning parameters of the plain three-term BP
algorithm is carefully chosen so as to make the convergence
of the learning process as fast as possible. To make sense,
the convergence performances versus running time were com-
pared. The learning process terminates when the iterations are
over a fixed number or the total squared error is less than
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TABLE I
XOR EXPERIMENT DETAILS

Methods Terminated Iteration Number Squared Error Running time (sec.)
Error Quadratic
Approximation
with proportional
factor

50 5 × 10−8 35

Error Quadratic
Approximation
without proportional
factor

250 3 × 10−3 132

Approximation of the
Sigmoidal Function
with proportional
factor

132 5 × 10−6 43

Approximation of the
Sigmoidal Function
without proportional
factor

322 3 × 10−3 144

First Order
Approximation with
proportional
factor

750 2 × 10−4 211

First Order
Approximation
without proportional
factor

978 3 × 10−3 276

The plain
Three-term BP

1432 3 × 10−3 243

0 50 100 150 200 250 300 350 400 450 500
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Epoch

E
rr

or

Fig. 1. Convergence performance comparison for XOR problem: Error
Quadratic Approximation with Proportional Factor Approach (- - -) and
Error Quadratic Approximation without Proportional Factor Approach (—):
Evolution of error as a function of epoch number.

a small threshold. All the programs for the simulation were
written in MATLAB and performed on a Dell PC-2.8GHz.

Theoretically speaking, all the present approaches can be
explored to find the estimate of optimal learning parameters
for the three-term BP algorithm. The Error Quadratic Approx-
imation approach is preferred to the others, however, because
in most cases it succeeds in getting a good estimate without
requiring successive iterations. The others can be chosen
as a substitution when the Error Quadratic Approximation
approach fails to work.

The tests were performed to evaluate the convergence
behaviour for the proposed optimization approaches. The
terminated iteration number, averaged running time and error
residuals for all the six methods are included in Table I.
As can be seen, the learning rate optimization approaches
own remarkable advantages in both fast convergence and
time saving. The Error Quadratic Approximation approach
with proportional factor behaves the best, as compared to the
others. This is because it can provide with both much more
effective descent direction and relatively accurate estimate of
the optimal learning rate at the cost of a moderate increase
in computational complexity. As to the First Order Approx-
imation approach, though it exhibits better performance than
the plain three-term BP. It behaves much inferior to the other
optimization approaches. This degradation is due to the convex
approximation of E that is often too crude in the extremely
steep regions where the second derivative usually takes a
negative value.

Figure 1 presents sample simulation results of the XOR
example and the corresponding optimal learning rates versus
different iteration number for the Error Quadratic Approxima-
tion with Proportional Factor Approach and Error Quadratic
Approximation without Proportional Factor Approach. Note
that the optimal learning rate sometimes varies from iteration
to iteration. This give a sound support in necessity of using
dynamic optimization for the learning parameters.

VI. CONCLUSIONS

In this paper a set of optimization approaches are developed
and introduced to find the optimal learning parameters to
improve the learning rate for the three-term PB algorithm. The
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optimization approaches presented in this paper are based on
simple manipulations of the first two derivative information,
only a limited increase in computational complexity that is
comparable to that of the plain three-term BP algorithm is
required. Nevertheless, the benefit resultant from the learning
parameters optimization is rather considerable. The conver-
gence of the learning process is significantly accelerated
and the overall running time for the learning procedure is
consequently reduced to a great extent (by a factor up to 7).
Quadratic Approximation with Proportional Factor approach
is recommended for practical uses since it can provide signifi-
cantly accelerated convergence at the cost of moderate increase
in computational complexity, as compared to the plain thee-
term BP algorithm.
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