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Minimum Energy of a Prismatic Joint without: 
Actuator: Application on RRP Robot

Tawiwat V., Tosapolporn P., and Kedit J.

Abstract—This research proposes the state of art on how to 
control or find the trajectory paths of the RRP robot when the 
prismatic joint is malfunction.  According to this situation, the 
minimum energy of the dynamic optimization is applied.  The RRP 
robot or similar systems have been used in many areas such as fire 
fighter truck, laboratory equipment and military truck for example a 
rocket launcher. In order to keep on task that assigned, the trajectory 
paths must be computed.  Here, the open loop control is applied and 
the result of an example show the reasonable solution which can be 
applied to the controllable system.   

Keywords— RRP robot, Optimal Control, Minimum Energy and 
Under Actuator.

I. INTRODUCTION

TODAY, a robot is designed to be versatile so that it can carry 
out efficiently a large number of motions within its workspace 
envelop. The robot may perform quite well, in average sense, 
over the work envelop but may do quite poorly when 
executing a specific path. A large number of robots end up 
assembly lines where they perform repetitive motion 
sequences. These robots must be able to quickly adapt to 
change in assembly lines where new motion sequences must 
be executed periodically. A poor performance in one cycle 
multiples as the cycle repeats. In summary, the current 
philosophy of design of a robot could be modified to meet the 
need of flexible manufacturing where a sequence of motion 
must be performed optimally and the system must be able to 
quickly adapt to changes in the motion sequence. 

The idea proposed in this paper is to design a robot such 
that some of its control input is malfunction; however, the 
system could be changed on-line to perform the task without 
stopping to repair the control actuator. The system could be 
adapted in an optimal manner consistent with the task. In this 
paper, the prismatic joint of an RRP robot is supposed to be 
malfunction such that  
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the one performance index of dynamic optimization called 
minimum energy could be assigned and solved for the 
solution of the actuator left in the system. The paper presents 
how to achieve such a goal and can be applied to a similar 
system. The paper provides the mathematical formalism, the 
numerical implementation, and illustration of the method with 
one example.  

II. OPTIMIZATION PROBLEM

The equation of motion of an  degree of freedom 
mechanical system are  second-order differential equations 
of the form 
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where n  are generalized coordinates, qq ,...,1 is a set of 
geometric and inertial parameters characterizing the system, 

is are inertial matrix terms, are        spips     Coriolis and 
centripetal terms, i

A qqh
qV / are gravity terms, and  i  actuator 

inputs. It is assumed that the system has an open-chain 
structure and is properly actuated, i.e. it has as many 
controlled inputs as the number of degree-of-freedom. 

u

The optimization problem can be stated as finding the 
optimal parameter , the trajectories of state variables and 
control inputs that take the dynamic system from an inertial 
position 0tq and joint rate     to a desired final position 0tq

ftq  and joint rate ftq while minimizing the cost functional 
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Where ,,, uqq are column vectors with individual elements 
respectively as iii   and iuqq ,, . The dynamic equations (1) 
can be thought of as constraints on the trajectory tq  while 
minimizing the cost functional of (2) 

The classical solution of this problem with Largrange multi-
pliers is well described in ([3], [4]). These procedures result in 
the optimality conditions which are    first-order 
differential equation referred to as the state and costate 
equations, n control optimality equations, and  integral 
equations. The variables appearing in these conditions are 
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),(),(),( ttutq  and . The solution requires  boundary 
equation which are the given and  are the two end 
points. This two-end point boundary value problem can be 
solved with multiple shooting techniques which are well-
known to be highly computation intensive and sensitive to 
initial guess of the solution [1]. 

n4
tq tq

In order to provide at feel for the computations, the multiple 
shooting method is briefly described. In time domain of 
interest, N nodes are created. At each node, the unknowns are 
the states, Largrange variables, and control inputs. This results 
in unknowns. Using the notion of continuity of 
variables across the nodes, the problem is changed to solution 
of a set of   5   nonlinear equation in the same number 
of variables. It is well known that solution of such nonlinear 
equations require repeated inversion of 
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matrics and the solution is quite sensitive to initial guess. For 
example, if   n =6, =20, =2, the computations are over 
(602 x 602) matrices.               
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In a previous work [2], They  have proposed a new method 
for solving the dynamic optimization problem for classes of 
linear system without Largrange multipliers. In their work, 
they have demonstrated that the dynamics equations can be 
embedded into the cost functional by suitable state 
transformations that change constrained dynamic optimization 
problems into unconstrained dynamic optimization problems. 
As the result, the need for Largrange multipliers is eliminated. 
The new optimality equations are no longer first-order 
differential equations but are high-order differential equations. 
They have shown that the resulting high-order differential 
equations. They have shown that the resulting high-order 
differential equations can be solved in a very computationally 
efficient way using weighted-residual methods. This paper 
extends these results to design the robot systems. 

The organization of this paper is as follows: Section III 
describes how a constrained optimization problem for a 
properly actuated mechanical system can be converted to an 
unconstrained optimization problem, therefore, eliminating the 
need for Largrange multipliers. The application of this method 
is discussed in Section IV.

III. PROCEDURE OF DYNAMIC OPTIMIZATION

A. Unconstrained Optimization  Problem 
Mechanical  systems  often  have  the  property  that  

control  inputs appear  linearly in  the dynamic  equations,  as 
evident from  the  structure  of   (1).  One  can  exploit  this  
property  by  substituting the  expression  of  iu   from (1) in 
(2) in  terms  of higher  derivatives  of  the  joint  variables. 
With  this substitution,  the expression of  the new cost  
functional  become 

                   (3) qqq ,,,uqq ,,,J

qqq ,,where .R
   This new expression of the cost functional has the 

following features. 
1) The dynamic equations of (1) have been embedded 

in the cost  functional. The constrained optimization 

problem, as a  result,  is  reduced  to  an  unconstrained 
optimization problem  and  the  need  for  Lagrange 
multipliers is eliminated. 

2) The  cost  functional  of  (3)  involves  second 
derivatives of  the  generalized  coordinates  in 
contrast to  the  cost functional  of (2)  which  only  

       involves up  to  the first derivative  of .q

B. Variational  Statement 
The cost functional of (3) is used here to derive the 

optimality conditions. The following result from calculus of 
variations is useful. For a cost functional   of the form J
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Where nRX  and F is a scalar function. The variation of 
this definite integral is 

                          

dtF

h
X
F

(5)

X
Fd

X
Fh

dt
X
F

dt
d

X
F

dt
d

X
FhJ

t

ff

t

t

t

T

t

t

T
t

t

T

t

t

T

0

00

0
2

2

Where  Xh   and   are respectively variations of 
X and 

Xh
X .  If  the  boundary  values  of  X and X  are  

specified  at 0t   and ft ,  and      are  zero  at  the  two  
end points. Hence, the necessary conditions for optimality 
become 

h h

.                              (6) ni ,....,1

On  applying  this  result to  (3), it  can  be   shown  that the 
optimal  trajectory  of  a  properly  actuated  open-chain  
mechanical  system must  satisfy 
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  In  summary, for  an   degree-of-freedom  proper-actuated  
system, the  optimality  equations  are   fourth-order  
nonlinear  differential  equations of  (15)  and   integral  
equations (17).  These  equations  can  be  explicitly  written  
in  terms  of  partial  derivatives  of  the elements  of  inertia  
matrix  and  expression  of  the  potential  energy  of  the  
system  and  do  not  have  any  Lagrange  multipliers  in  
them.

n
n

n

IV. EXAMPLE

To illustrate the theory above with minimum energy, The 
RRP mechanism is shown in Fig. 1 along with its dimension 
in MKS unit.   

Fig. 1 RRP Robot

From robotic theory [5], the Denevit-Hartenberg parameters 
are shown in Table I  

TABLE I
DENEVIT-HARTENBERG PARAMETERS

i ia i id i

1
1a 90 0 )(1 tq

2
2a 90 0 )(90 2 tq

3 0 0 )(3 tq 0

where

ia  is link length of link i

i  is link twist of link i

id  is link offset of link i

i  is link angle of link i.

From the mechanism, assigning 21a , 6.02a ,

4.23ca , 11m , 22m , , 5.03m 2
111 2

1 amI ,

2
322 3

1 amI  and 03I .   Then the dynamic equations of 

motion can be computed [5].  The symbolic form of these 
equations are not shown in this paper since they are quite long 
expression.  However, one can follow step in [5] in order to 
have them.  The boundary conditions are set as initial 
conditions, T0t 0)( 0x

)( ftx

0000  and final conditions, 
T0200090 , where  and 00t 0.1ft

The cost function of minimum energy is defined as 

dtuJ
1

0

2
1 .                                (18) 

In order for the cost function in (18) to be minimized, the 
Calculus of Variations as stated in previous section has been 
used.

By using software developed by Tawiwat Veeraklaew, [6], 
the problems of minimum energy can be solved to obtain the 
optimal solutions.  The idea behind this software is to 
transform the necessary conditions of the dynamic 
optimization to static optimization.  Then one kind of the well 
known methods called nonlinear programming or linear 
programming has been used to solve for all parameters that 
are parameterized through collocation technique.  The 
comparison for each variable such as state and control 
variables of the dynamic systems in this example are shown in 
figure below as Fig. 2 to Fig. 6. 

V. CONCLUSION

 The above results can be concluded that applying minimum 
energy to the under actuator system like RRP robot when the 
prismatic joint is malfunction, the trajectory paths can be 
obtained easily.  This result makes more flexible in order to 
design some dynamic system that has similar situation as under 
actuator dynamic system.   

 The results in this paper show that the minimum energy 
can be used; however, the other objective function called 
minimum jerk is also quite challenge to be used for 
comparison for the future work.  
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Fig. 5 Solutions of the first control variable from minimum energy
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Fig. 6 Solutions of the second control variable from minimum energy
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Fig. 3 Solutions of the second state variable from minimum energy
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