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Sensitivity computations of Time Relaxation Model
with an application in Cavity Computation
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Abstract—We present a numerical study of the sensitivity of the so
called time relaxation family of models of fluid motion with respect
to the time relaxation parameter χ on the two dimensional cavity
problem. The goal of the study is to compute and compare the
sensitivity of the model using finite difference method (FFD) and
sensitivity equation method (SEM).
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I. INTRODUCTION

THE study of sensitivity has become an important tool
in the understanding of fluid behavior. To obtain a

meaningful solution for the Navier Stokes equations one needs
to work with a fine mesh, which becomes expensive as well
as time consuming. Fluid models are developed in order to
avoid these obstacles. Even when a fluid flow model has
performed well in practice, the reliability of the model is often
not addressed [2]. The reliability can be affected if the model
displays sensitivity to certain parameters. Sensitivity analysis
eliminates the arising uncertainties and provides a reliable
interval for the parameters to be chosen from. During the
years, there have been investigations on the sensitivity topics,
[1]–[3], [8], [13], [14], [16]. Two methods could be used in
order to calculate the sensitivities: Forward Finite Difference
method (FFD) or the Sensitivity Equation Method (SEM).
SEM can be classified into two methods: Continuous Sensitiv-
ity Equation Method (CSEM) and Automatic Differentiation
Method (ADM). The difference between ADM and CSEM is
in the order of operations of discretization and differentiation.
CSEM implements differentiation first and then implements
discretization, whereas ADM implements discretization first
and then uses differentiation, [10]. When using a flow solver
code, finite difference quotient is easy to use. Nevertheless,
it might not be a reliable way to compute sensitivites of the
model, see [6]. When solving sensitivity for the flow using
CSEM, when the flow is obtained, only a linear equation needs
to be solved in order to compute the sensitivity [1]. CSEM
has been extensively used to compute the sensitivities with
respect to different regularization parameters, see [5]–[7], [9],
[11]. This paper explores the sensitivity of a time relaxation
type model with respect to a regularization parameter defined
below.
The governing equations of fluid motion are the Navier Stokes
equations, which are defined as follows:

ut + u · ∇u +∇p− ν�u = f, in Ω× [0, T ]

∇ · u = 0, in Ω× [0, T ]

Here u and p represent velocity vector and pressure respec-
tively, ν represents the viscosity and f represents the body

force. Time Relaxation model (TRM) was introduced by
Stolz, Adams and Kleiser and was developed from regularized
Chapman-Enskog expansion of conservation laws [21]. The
model was computationally tested on compressible flows with
shocks and on turbulent flows [17], [18], [21], i.e. on the
aerodynamic noise [19]. A continous finite element analysis
for the model along with numerical results can be found in
[21]. TRM consists of the Navier-Stokes equations with an
addition of a stabilization term:

ut + u · ∇u +∇p− ν�u

+χ(u −GNu) = f, in Ω× [0, T ]

∇ · u = 0, on Ω× [0, T ] (1)

Here, ū represents an averaged function of u satisfying:

−δ2�ū+ ū = u, in Ω

ū = 0, on ∂Ω (2)

GN represents the continuous van Cittert deconvolution oper-
ator and is defined as follows:

GNu :=

N∑
n=0

(I −G)nu

For order of deconvolution N = 0 and N = 1, and u ∈ Xh

we have:

G0v = v,

G1v = 2v − v,

G2v = 3v − 3v+ v,

G3v = 4v − 6v+ 4v − v.

Higher order of deconvolution increases accuracy, however
it also requires significant computational time [15]. Herein,
computations are carried out for the fundamental case, i.e.
order of deconvolution N = 0. Here, χ represents the time
relaxation coefficient and has units 1/time. Since different
values of χ will cause different responses of the flow, it is
natural to explore how the change of the flow will be affected
by altering this parameter. In this paper we obtain sensitivity
computations using both FFD and SEM. The sensitivity using
FFD is obtained by the formula:

u(χ+�χ)− u(χ)
�χ

(3)

Sensitivity of the solution (u, p) with respect to χ for the SEM
is obtained by differentiating (1) (with N = 0) with respect



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:7, 2011

1081

to χ:

st + u · ∇s + s · ∇u +∇r − ν�s

+(u− ū) + χ(s −w) = f, in × [0, T ]

∇ · s = 0, in Ω× [0, T ]

s = 0, on ∂Ω× [0, T ] (4)

where s =
∂u

∂χ
, r =

∂p

∂χ
and w =

∂ū

∂χ
. Here w satisfies the

following filtering equation:

−δ2�w +w = s, in Ω

w = 0, on ∂Ω (5)

As we see in (4), u appears in the sensitivity equation. Hence,
in order to obtain the solution for (4) we need to couple (1)
with (4).

II. NUMERICAL SCHEME

This section presents the algorithm in order to numerically
solve (1) and (4). The finite element spaces (Xh, Qh) are
defined respectively below:

Xh
⊂ X = H1

0 (Ω) := {v ∈ H1(Ω) : v|∂Ω = 0},

Qh
⊂ Q = L2

0(Ω) := {q ∈ L2(Ω)|

∫
Ω

q = 0}.

Also, bilinear a(·, ·) : X ×X → IR and trilinear b∗(·, ·, ·) :
X ×X ×X → IR forms are defined respectively as follows:

a(u,v) := ν(∇u,∇v),

b∗(u,v,w) :=
1

2
(u · ∇v,w) −

1

2
(u · ∇w,v)

The Crank-Nicolson method, which is second order approx-
imation in time, is used for the discretization of the time
derivative.

Given (Xh, Qh), end-time T > 0, the time step is chosen
�t < T = M�t, find the TRM solution
(un+1

h , pn+1
h ) ∈ (Xh, Qh), for n=0,1,2....M-1 satisfying:

1

�t
(un+1

h − un
h ,vh) + νa(u

n+1/2
h ,vh)

+ b∗(u
n+1/2
h ,u

n+1/2
h ,vh)− (pn+1

h ,∇ · vh)

+χ(u
n+1/2
h − ū

n+1/2
h ,vh) = (fn+1/2,vh),

(∇ · un+1
h , qh) = 0, ∀qh ∈ Qh

δ2(∇uh
h

n+1
,∇vh) + (uh

h

n+1
,vh) = (un+1

h ,vh),

∀vh ∈ Xh

and the sensitivity solution
(sn+1

h , vn+1
h ) ∈ (Xh, Qh), for n=0,1,2....M-1

satisfying:
1

�t
(sn+1

h − snh,vh) + νa(sn+1/2
h ,vh)

+b∗(sn+1/2
h ,u

n+1/2
h ,vh) + b∗(u

n+1/2
h , sn+1/2

h ,vh)

−(rn+1
h ,∇ · vh) + (u

n+1/2
h − ū

n+1/2
h ,vh)

+χ(sn+1/2
h −w

n+1/2
h ,vh) = (fn+1/2,vh),

(∇ · sn+1
h , qh) = 0, ∀qh ∈ Qh

δ2(∇wh
h

n+1
,∇vh) + (wh

h

n+1
,vh) = (sn+1

h ,vh),

∀vh ∈ Xh

III. SENSITIVITY COMPUTATIONS

χ Method T=0.1 T=1
χ = 0.005 FFD 0.0174288 3.71334

SEM 0.0173 0.146137
χ = 0.05 FFD 0.01738 4.69683

SEM 0.0172 0.144227
χ = 0.5 FFD 0.0169013 5.06646

SEM 0.0169 0.127838
χ = 1 FFD 0.016389 5.42801

SEM 0.01.658 0.112962
χ = 10 FFD 0.00987 0.0232246

SEM 0.019 0.0384867

TABLE I
SENSITIVITY OF TRM ON THE FINE MESH h = 1/36 AND Re = 104

χ Method T=0.1 T=1
χ = 0.005 FFD 1.73219 · 10−5 1.1232 · 10−5

SEM 2.11071 · 10−5 1.12607 · 10−5

χ = 0.05 FFD 1.73213 · 10−5 1.12315 · 10−5

SEM 2.11134 · 10−5 1.12542 · 10−5

χ = 0.5 FFD 1.73151 · 10−5 1.12257 · 10−5

SEM 2.12031 · 10−5 1.1247 · 10−5

χ = 1 FFD 1.73082 · 10−5 1.12194 · 10−5

SEM 2.13586 · 10−5 1.13585 · 10−5

χ = 10 FFD 1.71862 · 10−5 1.1106 · 10−5

SEM 3.07014 · 10−5 2.41182 · 10−5

TABLE II
SENSITIVITY OF TRM ON THE FINE MESH h = 1/36 AND RE=1

The experiment is done on the two-dimensional cavity
problem with the flow domain Ω = [0, 1] × [0, 1]. The
boundary and initial conditions for the problem are
u(t, x, y) = (16x2(1− x2), 0)t and u(0, x, y) = (3y2 − y, 0)t

respectively. Since initial and boundary conditions have no
dependence on χ, they are set to zero for the sensitivity s. In
the computations for the cavity problem we use ν = 0.0001
and ν = 1, implying Re = 104 and Re = 1 respectively. The
time step is chosen to be �t = 0.01 and we use Taylor-Hood
finite elements. To carry out the computations we use
finite element method software Freefem++ [20]. The FFD
computations are done with (3) and �χ = 0.01. We let sFFD

and sSEM represent the sensitivity using FEM and SEM
respectively. The following tables represent ‖sFFD(t)‖L2(Ω)

and ‖sSEM (t)‖L2(Ω) for different parameter settings.

According to the results obtained from tables I-II and
tables III-IV, the sensitivity is greatly decreased when a lower
Reynolds number is used. Also, at the final time, the difference
between FFD and SEM becomes more noticable.

Tables V and VI computed the maximum sensitivity via
SEM. It shows that this model is not strongly sensitive to the
parameter χ for this benchmark problem. Table VII shows the
execution time for FFD and SEM for different values of χ. The
table suggests that SEM is computed significantly faster that
the FFD and we believe that it is more accurate [6]. Figures
1 and 2 below show the similarity/difference of computations
via SEM and FFD.
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χ Method T=0.1 T=1
χ = 0.005 FFD 0.023147 5.43861

SEM 0.0231474 0.255481
χ = 0.5 FFD 0.0223875 2.54603

SEM 0.0223875 0.214977
χ = 1 FFD 0.220898 0.81

SEM 0.216504 0.1804
χ = 10 FFD 0.0213324 0.01951

SEM 0.0156569 0.043

TABLE III
SENSITIVITY OF TRM ON A COARSE MESH h = 1/16

χ Method T=0.1 T=1
χ = 0.005 FFD 1.04284 · 10−4 9.80413 · 10−5

SEM 1.01806 · 10−4 9.77097 · 10−5

χ = 0.5 FFD 1.01786 · 10−4 9.80238 · 10−5

SEM 1.04208 · 10−4 9.75814 · 10−5

χ = 1 FFD 1.01584 · 10−4 9.78493 · 10−5

SEM 1.0354 · 10−4 9.64125 · 10−5

χ = 10 FFD 1.01362 · 10−4 9.7656 · 10−5

SEM 1.03001 · 10−4 9.53558 · 10−5

TABLE IV
SENSITIVITY OF TRM ON A COARSE MESH h = 1/16

χ T=0.1 T=1
0.005 0.000116971 0.000116971
0.05 0.000116965 0.000116965
0.5 0.000116906 0.000116906
1 0.000116841 0.000116841
10 0.000115714 0.000115714

TABLE V
MAX. SENSITIVITY VIA SEM WITH h = 1/36 AND Re = 104

χ T=0.1 T=1
0.005 0.0173037 0.146137
0.05 0.0172701 0.144227
0.5 0.0169409 0.127838
1 0.0165878 0.0940275

10 0.0119636 0.0384867

TABLE VI
MAX. SENSITIVITY VIA SEM WITH h = 1/36 AND Re = 1

χ 0.005 0.05 0.5 1 10
FFD 353.94 354.92 431.89 357.02 366.72
SEM 177.84 205.61 187.05 179.41 179.23

TABLE VII
COMPUTATIONAL TIME USING FFD AND SEM FOR WITH T = 0.1,

Re = 104 AND h = 1/36

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Sensitivity of the time relaxation model to the time re-
laxation coefficient χ on a two dimensional cavity problem
was computed via SEM and FFD methods. The numerical
comparison between the methods shows that the sensitivity is
the highest about χ = 1. Also, on a coarser mesh we can
see that the sensitivity becomes larger than on the finer mesh,
which agrees with the assumption that we need finer mesh
for sensitivity computations [2]. Also, sensitivity is higher for
larger Re based on our obtained results. Overall, based on

Fig. 1. Similarity of SEM (top) and FFD (bottom)at T = 0.1 with χ = 0.5,
h = 1/36

Fig. 2. Difference of SEM (top) and FFD (bottom) at T = 1 with χ = 0.5,
h = 1/36

the maximum sensitivity results, the TRM does not seem to
have strong sensitivity to the parameter χ for this benchmark
problem. The further studies will include stochastic finite
element discretization, which should give more insights into
the parameter sensitivity. Other benchmark problems will be
investigated as well.
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