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MMC and AA6063 alloy. They found that all the dissimilar 
welds produced under the welding conditions investigated 
were stronger than the Al-B4C MMC base materials and 
demonstrated 100% joint efficiencies (UTS).The material side 
of the welds or the use of a 0.8 mm offset did not have a 
significant impact on the tensile properties of the joined 
assembly even by varying the welding speed. Guo et al [11]
analyzed the Mg concentration and B4C particle distribution 
and it indicated a good material mixing and seamless bonding 
around the interface between the Al-B4C MMC and the 
AA6063 alloy during FSW.  

Koilraj et al [12] optimized FSW process with respect to 
tensile strength of the welds and the optimum settings.  
Furthermore, the optimum values of the rotational speed, 
transverse speed, and D/d ratio are 700 rpm, 15 mm/min and 3 
respectively. In addition, they concluded that the cylindrical 
threaded pin tool profile was the best among the other tool 
profiles considered. Palanivelet al [13] examined the influence 
of tool rotational speed and pin profile on the microstructure 
and tensile strength of the dissimilar friction stir welded 
aluminum alloys AA5083-H111 and AA6351-T6. The welds 
fabricated using straight tool profiles had no defects while the 
tapered tool profiles caused a tunnel defect at the bottom of 
the joints under the experimental considered conditions. 
Furthermore, three different regions namely unmixed region, 
mechanically mixed region and mixed flow region were 
observed in the weld zone [13]. 

Furthermore, Palanivel et al [14] joined AA5083-H111 and 
AA6351-T6 using tool rotational speed of 950 rpm and 
straight square pin profile which resulted into obtaining the 
highest tensile strength of 273 MPa. Moreover, the variation in 
the tensile strength of the dissimilar joints was attributed to 
material flow behaviour, loss of cold work in the HAZ of 
AA5083, dissolution and over aging of precipitates of 
AA6351 and formation of macroscopic defects in the weld 
zone. Da Silva et al [15] investigated the mechanical 
properties and microstructural features as well as the material 
flow characteristics in dissimilar 2024-T3 and 7075-T6 FSW 
joints. The welds were produced at fixed feed rate (254 
mm/min) varying the rotation speed in three levels (400, 1000 
and 2000 rpm).Da Silva et al [15] clearly stated that, typical 
microstructural features of FSW welds such as SZ, TMAZ and 
HAZ regions were seen. A sharp transition from the 
HAZ/TMAZ to the SZ has been observed in the advancing 
side; while in the retreating side, such transition is more 
gradual. They found that the minimum hardness value of 
naturally aged samples in the HAZ at the retreating side was 
about 88% of 2024-T3 base material. Furthermore, 96% of 
efficiency in terms of tensile strength was achieved using 1000 
rpm rotational speed. Fracture of the weld specimens occurred 
in the HAZ at the retreating side (2024-T3). 

Aval et al [16] investigated the microstructures and 
mechanical propertiesin similar and dissimilar friction stir 
welding of AA5086-O andAA6061-T6 using thermo-
mechanical modeland experimental observations. They 
concluded that the hardness in AA5086 side mainly depends 
on recrystallization and generation of fine grains in the weld 

nugget whereas hardness in the AA6061 side varies with the 
size, volume fraction and distribution of precipitates in the 
weld line and adjacent heat affected zone as well as the aging 
period after welding. Aval et al [16] further observed grain 
refinement in the stirred zone for all their samples; however, 
the finer grain size distribution is achieved within the AA6061 
side where higher strain rates are produced. Shen et al [17] in 
their investigation on microstructures and electrochemical 
behaviors of the friction stir welding dissimilar welds 
observed that the microstructure of the FSW weld consist of 
finer grains in comparison to that of the parent material.  
Furthermore, intense plastic deformation and frictional heating 
during welding resulted in the generation of a dynamically 
recrystallized fine grained microstructure within the stirred 
zone. Tran et al [18] investigated the behavior of friction spot 
welding between AA 5754-O and AA 7075-T6.They showed 
that, under cyclic loading conditions, the micrographs show 
that the 5754/7075 and 7075/5754 welds in cross-tension 
specimens mainly failed from the fatigue crack along the 
interfacial surface and from the fracture surface through the 
upper sheet material[18].Jun et al [19] investigated residual 
strains in dissimilar friction welds. The research was 
conducted using the Eigen strain Reconstruction Method in 
FSW between AA5083 and AA6082-T3.They further 
observed that full-field residual stress–strain distributions can 
be reconstructed relatively easily based on limited 
experimental data sets using transparent and straight forward 
FE modeling framework. Another study was conducted by 
Ghosh et al [20], they joined A356 and 6061 aluminum alloys 
using FSW under different tool rotation and traversing speeds. 
They found that the interface microstructure within the weld 
nugget is dominated by the retreating side alloy as the 
signature of Si rich particle distribution and it was evident for 
all the samples produced. They further observed that welds 
fabricated at the lowest tool rotational and traversing speed 
exhibited superior mechanical properties when compared to 
the remaining welds produced. Sundaram et al [21] friction 
stir welded AA2024-T6 and AA5083-H321 using five 
different pin profiles developed successfully and suitable for 
the dissimilar FS welding of aluminum alloys. They further 
observed that increasing the tool rotational speed or welding 
speed led to the increase in the tensile strength; and it reaches 
a maximum value and then decreases. Additionally, the 
increase in the tool axial force led to the increase in the tensile 
strength of the dissimilar FS welded joints. The tensile 
strength decreases after it attains a maximum value. 

Muruganandam et al [22] in FS Welding of dissimilar 2024 
and 7075 aluminum alloys, investigated the microstructures, 
the results revealed that the process led to recrystallized grain 
structure and precipitates distribution. Moreira et al [23] 
produced friction stir butt welds of AA6082-T6 with AA6061-
T6. The welds exhibited intermediate properties and the 
tensile tests failures occurred near the weld edge line where a 
minimum value of hardness was observed. Furthermore, 
microstructural changes induced by the friction stir welding 
process were clearly identified. Leitao et al [24] used 
AA5182- H111 and AA6016-T4 sheet samples and joined 
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them using FSW. Welds between both alloys exhibited a 
hardness variation consistent with the microstructure evolution 
across the TMAZ and no significant decrease in the hardness 
was observed for the welds and its strength efficiency is about 
90%. Still, its ductility seriously decreases relative to the base 
materials due to the heterogeneous characteristics of these 
welds. Cavaliere et al [25] studied the mechanical and 
microstructural behaviour of FSW between AA6082 and 
AA2024. They noticed that the vertical force increased as the 
travel speed for all the produced joints increases.  They also 
achieved the best tensile and fatigue properties for the joints 
with the AA6082 on the advancing side and welded with an 
advancing speed of 115 mm/min. Leitão et al [26] joined AA 
5182-H111 and AA 6016-T4 using friction stir welding 
process. They found in the dissimilar welds the presence of 
small defects at the weld root of the dissimilar welds induced 
rupture of some of the blanks during the formability tests. 

Hatamleh and DeWald [27] joined AA 2195 and AA 7075 
and investigated the peening effect on the residual stresses of 
the produced welds.   Results showed that the surface residual 
stresses resulting from shot peening on both AA 2195 and AA 
7075 were higher compared to the laser peening due to the 
high amount of cold work exhibited on the surface from shot 
peening. Furthermore, high values of tensile stresses were 
noticed in the mid-thickness on the laser peened samples. 

Recent studies on friction stir welding of dissimilar 
aluminum and its alloys have been reviewed and a 
comprehensive summary of the results have been presented.   

B. FSW between Aluminum and Magnesium Alloys 
Mofid et al [28] studied the effect of water cooling during 

friction stir welding of AA 5083 and AZ31C. They observed 
that the formation of intermetallic compounds in the stir zone 
of dissimilar welds significantly affects the mechanical 
properties of the welds. They suggested the use of submerged 
friction stir welding under water which resulted in lower peak 
temperature and because of lower heat input; the intermetallic 
compounds formation was limited. This was motivated 
compared to the air welded specimen which had a relatively 
larger volume fraction of intermetallic compound, higher peak 
temperature in stir zone and significantly higher hardness in 
the weld centre [28].Malarvizhi and Balasubramanian [29] 
also investigated the influences of tool shoulder diameter to 
pale thickness ration on stir zone formation and tensile 
properties of FS welded AA6061 and AZ31B. It was found 
that the joints produced  using a shoulder diameter of 21 mm 
(3.5 times the plate thickness) exhibited superior tensile 
properties compared to its counterparts. Furthermore the 
complex intercalated microstructures in the weld zone, with 
swirls and vortices were indicative of the flow pattern of the 
dissimilar metals. Simoncini and Forcellese [30] investigated 
the effect of friction stir welding parameters and tool 
configuration on micro and macro mechanical properties of 
similar and dissimilar welds using AA5754 and AZ31 thin 
sheets. They used two different tool configurations with and 
without pin. Results showed that the pinless tool leads to the 
obtaining of higher values of the ultimate tensile strength and 

ductility as compared to the welds made with tool pin. The 
microstructure of the cross-section showed that the bonded 
interface is clearly evident. Venkateswaran and Reynolds [31] 
performed FSW on AA 6063-T5 and AZ31B-H24 and 
analyzed the factors affecting the resulting weld properties. 
The nugget grain size on both the Al and Mg sides 
monotonically increased as the tool rotational speed increases. 
Furthermore, the transverse tensile test results are correlated 
with several interface features including actual interface 
length, extent of interpenetration between the aluminum and 
magnesium base metals, maximum intermetallic layer 
thickness, and area fraction of micro-void coalescence on the 
tensile fracture surfaces [31].Chowdhuryet al [32] investigated 
the lap shear strength and the fatigue life of friction stir spot 
welded AZ31 and AA 5754 alloys. Results showed that the 
Al/Mg dissimilar welds were characterized by the formation 
of a distinctive interfacial layer consisting of Al12Mg17 and 
Al3Mg2 intermetallic compounds. In the Al/Mg dissimilar 
weld, a characteristic interfacial layer consisting of 
intermetallic compounds Al12Mg17 and Al3Mg2 was observed. 
Furthermore both Mg/Mg and Al/Al similar welds had 
significantly higher lap shear strength, failure energy and 
fatigue life than the Al/Mg dissimilar weld. Sharifitabarand 
Nami [33] investigated the microstructures and hardness 
profiles across the interface of friction stir welded joints 
between monolithic AA 2024-T4 and Al/Mg2Si metal matrix 
cast composite (MMC). The results showed that there was a 
complicated pattern of materials flow in the stir zone 
especially in sample welded in two passes. Furthermore, in the 
sample welded using one pass, it was found that the hardness 
increased from the base metal to the stir zone on the MMC 
side. Nevertheless, hardness variation in the sample welded in 
two passes was complicated and there was alternative decrease 
and increase in hardness value at the joint interface.Yong et al
[34] investigated FSW between AA 5052 and AZ31 Mg alloy; 
they produced sound welds at rotational speed of 600 rpm and 
welding speed of 40 mm/min. The microstructure of the base 
metal was replaced by equiaxed and fine grains in the stir 
zone. Furthermore, at the top of the stir zone, 5052 and AZ31 
alloys were simply bonded, while onion ring structure which 
consisted of aluminum bands and magnesium bands was 
formed at the bottom of the stir zone. In addition, they found 
that microhardness profiles presented uneven distributions and 
the maximum value of microhardness in the stir zone was 
twice higher than that of the base materials [34].Liu et al [35] 
characterized the galvanic corrosion of a dissimilar friction stir 
welded 2024-T3 Al/AZ31B-H24 Mg joint prepared using a 
water-based and a non-water-based polishing solution. It was 
shown that the water-based polishing solution induced more 
easily the galvanic corrosion attack than the non-water-based 
polishing solution during the polishing process. Furthermore, 
they attributed the low microhardness value in the corroded 
region to the formation of the porous magnesium hydroxide 
layer with microcracks. Kostka et al [36] characterized the 
microstructure of the interface between AA6040 and AZ31 
joined by friction stir welding. Results showed that the 
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intermetallic compound layer has a thickness of about 1 μm 
and consists mainly of fine-grained Al12Mg17 phase. 

Review on FSW between aluminum and magnesium alloys 
has been presented, however all authors reported the formation 
of intermetallic compounds which are detrimental to the joint 
integrities. There is therefore a need for more research to 
reduce the formed intermetallics in the welds as this will offer 
this dissimilar joints opportunities for industrial applications. 

C. FSW between Aluminum Alloys and Steel  
AA 6111-T4 and DC04 low carbon steel sheets has been 

friction stir welded by Chen et al [37]. They successfully 
produced high quality friction spot welds between thin Al and 
steel automotive sheet within a weld time of one second which 
is the target time desired by industry. Ogura et al [38] used 
AA3003/SUS304 and friction stir welded them in lap joints. 
The results showed that the strength in the centre region and 
on the advancing side was larger than that at the retreating 
side. Coelho et al [39] investigated the mechanical properties 
and their relation to microstructure of AA6181-T4 and DP600 
and HC260LA HSS plates by FSW. Results showed that 
across all the weld regions in the Al alloy side (BM-HAZ-
TMAZ-SZ), strong differences in the grain size distribution 
and shape occurred. Bang et al [40] used Hybrid FSW 
(HFSW) welding to join Al6061-T6 aluminum alloy and 
STS304 stainless steel. Their results showed that the 
maximum tensile strengths obtained at the weld were 93% of 
the aluminum alloy base metal for HFSW and 78% for FSW. 
Furthermore, fracture patterns of the crack propagation of HFS 
welds exhibits entirely ductile fracture mode showing dimples 
at the fracture surface and locally brittle fracture mode with 
cleavage facet which are hardly accompanied by plastic 
deformation [40]. Mashiko et al [41] investigated joint 
interface of friction stir welding between SUS304 and A6063 
using HTS-SQUID gradiometer. Large voids were observed 
on the joint interface by the conditions with excess heating. 
Furthermore, the hardness test on the SUS boards near the 
interfaces, the SUS jointed with 200 mm/min, which caused 
excess heating, was about half softer than the matrix 
[41].Tanaka et al [42] FS welded mild steel to A7075-T6 and 
investigated the joint strength. They found that the joint 
strength increased with reduction in the thickness of the 
intermetallic compound at the weld interface. Uematsu et al
[43] welded A6061 and low carbon steel sheets, SPCC by a 
friction stir spot welding (FSSW). Results showed that high 
tensile-shear strength of the dissimilar welds was achieved by 
a newly designed scroll grooved tool without probe.  It is 
challenging to weld Aluminum and its alloys to steel using 
conventional welding techniques due to the differences in their 
properties but the studies reviewed above showed that Al and 
steel can be successfully joined using the FSW process.  

D. FSW between Aluminum and Titanium Alloys 
Yu-hua et al [44] friction stir welded TC1 Ti alloy and LF6 

Al alloy plates. They obtained an excellent surface 
appearance; furthermore the interface macrograph of the lap 
joint cross sections at different parameters significantly 

changed. They further noticed that at the welding speed of 60 
mm/min and the tool rotation rate of 1500 rpm, the interfacial 
zone of the lap joint can be divided into three kinds of 
layers.When the welding speed increases to 150 mm/min, 
groove-like crack occurs on the interface. Yu-hua et al [44]
showed that the microhardness of the lap joint presents an 
uneven distribution; the maximum value of hardness reaches 
HV 502 in the middle of the stir zone. Wei et al [45] welded 
AA 1060 sheets and Ti–6Al–4V sheets using FSW lap process 
by employing a cutting pin of rotary burr tool. They showed 
that there are many titanium scrapings distributed in the 
aluminum near the interface. In addition, a swirl-like structure 
with lighter and darker parts was observed in the SEM 
micrograph of the interface region. Aonuma and Nakata [46] 
studied the effect of calcium on intermetallic compound layer 
between Mg–Al alloy and titanium. They found that calcium 
added in Mg–Al alloy reacted with aluminum to make Al2Ca
compound and decreased the solid-solution aluminum in the 
matrix of Mg–Al–Ca alloy. Furthermore, this suppressed the 
formation of Ti–Al intermetallic compound layer at the joint 
interface.Aonuma and Nakata [46] showed that the 
suppression of the Ti–Al intermetallic compound layer at the 
joint interface resulted in the higher tensile strength of the 
dissimilar joint with titanium plate in comparison with Mg–Al 
alloy containing same aluminum contained. Chen and Nakata 
[47] friction stir welded ADC12 cast aluminum alloy to pure 
titanium sheet. They observed the formation of a transient 
phase (TiAl3) at the joining interface by Al–Ti diffusion 
reaction. Furthermore, Chen and Nakata [47] observed that the 
formation of TiAl3 is strongly dependant on welding speeds 
(heat inputs) during FSW and therefore affects the mechanical 
properties of joints. Dressler et al [48] investigated the 
feasibility of friction stir welding between TiAl6V4 and 
AA2024-T3 and the properties of produced joints. 
Furthermore, Dressler et al [48] shifted the tool pin centre 
towards the aluminum plates and observed that the resulting 
microstructure is characteristic of a conventional friction stir 
weld. Friction Stir Welding Titanium to aluminum alloys 
might have many applications in aerospace and industries; 
therefore the development of this technique is of major 
importance.  

III. CONCLUSION

In conclusion, an overview of friction stir welding of 
dissimilar materials focusing on aluminum to other materials 
has been conducted. The latter focuses on dissimilar aluminum 
alloys, aluminum to magnesium, aluminum to steel and 
titanium. Furthermore, this paper review showed that there is a 
significant progress in FSW of dissimilar materials.  Most of 
the cited research studies are more focused on understanding 
the microstructure and physical properties of various welds. 
FSW technology need to be more developed to enable the 
technique to be employed industrially. The full understanding 
of the dissimilar FSW process is needed to accommodate the 
huge demand in the industries including manufacturing and 
the aerospace industry. Furthermore, the improvement of 
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current weld quality and properties using the FSW process 
needs to be looked into. 
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