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Abstract—This paper presents an adaptive nonlinear position 

controller with velocity constraint, capable of combining the 

input-output linearization technique and Lyapunov stability theory. 

Based on the Lyapunov stability theory, the adaptation law of the 

proposed controller is derived along with the verification of the overall 

system’s stability. Computer simulation results demonstrate that the 

proposed controller is robust and it can ensure transient stability of 

BLDCM, under the occurrence of a large sudden fault. 

 

Keywords—BLDC Motor Control, Backstepping Control, 

Adaptive nonlinear control 

I. INTRODUCTION 

HE transient stability control of separately excited DC 

motor (BLDCM) is a typical nonlinear control problem. 

Although many controller design approaches have been 

developed, most of the existing controllers are designed by 

using linear approximation models, which are valid only if the 

system exhibits small variations around the steady state or 

prefault operating point. Since the BLDCM is inherently 

nonlinear system, the linear approximation model at a certain 

equilibrium state is not adequate for large perturbations of state 

variable since it may cause intolerable errors or even take 

wrong actions. 

In recent years, a lot of interests have been drawn to the 

applications of nonlinear control theory, e.g., feedback 

linearization technique, for the control of power electronics to 

improve system stability and performance [1]-[2]. 

In addition to the nonlinearities of BLDCM, parameters are 

not constant and they cannot readily be inferred from available 

signals. The varying resistances are the result of temperature 

effects [7]. 

In this paper, we present a nonlinear feedback linearization 

and internal backstepping control design to stabilize the system 

and reduce position tracking error under velocity constraint due 

to physical limitations  

The rest of this paper is organized as follows. In section II a 

nonlinear model of BLDCM system is given. In the section III 

feedback linearization applied to BLDCM is obtained. In 

section Ⅳ  the adaptive backstepping controller with exact 
feedback linearization is described. For unknown load, the 

propped adaptive compensation and estimation are designed 

and the stability of the closed-loop system is demonstrated in 

the same section. In section Ⅴ, the simulation shows the good 
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performance and robustness with respect to uncertainty. 

Finally, conclusion are drawn in section Ⅶ 

II. BLCD MODEL 

In this paper, we will consider a simplified dynamic model of 

a BLDCM that has two winding circuits (armature and filed 

circuit) [3]. The stator voltage equations, position and speed 

dynamics of motor are described as follows [4] 
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dt g
ω=  (1) 

( )1
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( )1a
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= − +  (4) 

e f aT ki i=  (5) 

fE ki ω=  (6) 

where  D :position, ω : speed of motor, 
e f aT ki i= : electrical 

torque, 
ai : the armature current, fi : the field current, 

LT : 

unknown mechanical load torque, 
aR : resistance of the 

armature winding, 
fR : resistance of  the field winding, 

aL : 

armature inductance, fL : field inductance, J : inertia of motor, 

earg : gear ratio, 
a au V= :control input voltage to applied 

armature winding, 
f fu V= : control input voltage to applied 

field winging. 

It is clearly shown that the general dynamic model of the 

motor is highly nonlinear. It can be seen from (1) to (3) that the 

back EMF term and the electrical torque are the product of state 

variables. 

According to (1) ~ (6), the dynamic model of the BLDCM 

can be represented as follows: 

( ) ( ) ( )a a f fx f x g x u g x u= + +ɺ  (7) 

where 
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 (8) 

External load and parameter variation are represented as 

follows: 

0a a aR R R= + ∆ , 
0L L LT T T= + ∆ , 
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 0f f fR R R= + ∆  (9) 

where the subscript "o" is used to denote the nominal value and 

"∆ " means the variation w.r.t.(with respect to) nominal value. 

As a result, 

( ) ( ) ( ) ( )a a f fx f x f x g x u g x u= + ∆ + +ɺ  (10) 

( ) 0

T

faL
a f

a f

RRT
f x i i

J L L

 ∆∆∆
∆ = − − − 

  
 

( ) ( ) ( )0 0 0

1 1 1
( )

T

e L a a f f

a f

f x T T R i E R i
J L L

ω
 

= − − − − 
  

 

In this paper, we assume that thy physical parameters of the 

BLDCM have modelling error caused by unknown load 

disturbance, unknown parameter, and high temperature. That is, 

the parameter aR  and fR  in (10) are not exactly known. We 

consider a nonlinear backstepping controller with adaptive 

estimator for unknown load and parameters under velocity 

constraint for the form as follows: 

( )ˆ,T

a f i iu u u zα θ = =     &  ( )ˆ ˆ,i i izθ β θ=
ɺ

 (11) 

where 
iz  are new state variables of BLDCM model, 

ˆ
iθ  are 

estimation values of unknown uncertainty, i.e., unknown load 

and unknown parameters. 

Control objective is as follows: 

( )
lim

( )

ref

t
f f ref

D t D

i t i→∞

   
=   

   
 , constraint( )tω ω≤ and 

all signals are bounded w.r.t. parameter variation and unknown 

load. constraintω  is positive specification of user for  preventing 

increment of temperature or increasing system stability in high 

current operation with long time duration. 

III. APPLICATION OF THE INPUT/OUTPUT LINEARIZATION 

The main idea of the input/output feedback linearization 

approach is to design a nonlinear controller, which transforms 

the nonlinear system dynamics into a fully or partially 

decoupled linear one so that linear control technique can be 

easily applied [1], [2], [4]. 

Define a new state variable z  as follows by considering 
output equation: 

0

1

2

3

( )

( )

( )

( )f

D t
z

t
z

z d
tz

dt
z

i t

ω

ω

 
   
   
 = =  
   
   
    

 (12) 

where 
0 ( )z t  and 

3 ( )z t  are output variables, i.e., 

1 ( )h D t=  and 
2 ( )fh i t= . 

After the coordinate transformation, the dynamic model 

shown in (10) can be represented as follows: 
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where 
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in which ( )fL ⋅  , ( )gL ⋅  denote the Lie derivative w.r.t. f and 

g ,[1],[2]. b  and c  are also the nominal parameter vectors 

without parameter variation and external load disturbance. C∆  

denotes the uncertainty. 

Choose the control input as follows: 

1

0 0

1 0

0 1

a a

f f

u v
g C

u v

−

  
     = −     
       

 (14) 

where ,a fv v  are the newly designed decoupled control inputs, 

which is introduced in section Ⅳ. 
Remark 1 

From the analysis above we can see that the nonlinear 

compensation law (14) is simple and practically realizable and 

it is used to make the system (13) linear. Using (14) we can 

linearize the BLDCM system. The linearized model is 

independent of the operating point, which is of great 

importance in electronic power system. 

Remark 2 

By means of input/output linearization, the dynamics of a 

nonlinear system is decomposed into external and internal 

dynamic parts. In our application, it is interesting to note that 

both the relative degree of the linearized system(external 

dynamic part) and  the original nonlinear system have the 

fourth order. For this reason, internal dynamics dose not have to 

be analyzed [1,2]. 

Substituting (14) into (13), the dynamic model can be 

reorganized as 

a

c

f

a

c

f
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where 

cA A= , 

0 0

0 0

1 0

0 1

b

 
 
 =
 
 
 

, { }E b C+= ∆  

b+
 is the left-Penrose pseudo inverse of b , E  is lumped 

uncertainty. The lumped uncertainty is observed by an adaptive 

estimator and assumed to be a constant during estimation. The 

above assumption is valid in practical digital signal processing 

of the estimator because the sampling period of the estimator is 

short enough compared with the variation of E . 

IV. ADAPTIVE NONLINEAR BACKSTEPPING CONTROL 

The control problem is to find a control law so that the state 

z  can track any reference command under velocity constraint. 
Equation (15) can be rewritten as 

0
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where a

a

a

R
a i

L

∆
∆ = −  , 

f

f

f

R
f i

L

∆
∆ = −  are ease notation of 

uncertainty of resistance of armature and field . 

The armature control loop: 

For backstepping control [1], [6], 

Step 1)  

Since 
1z  is required to be bounded and the derivative of it is 

also bounded. Using the same procedure in [8], the Lyapunov 

candidate function is chosen as  
1

1 0 1 0 0( ) tan ( )V z k z z
−=   (17) 

where 1k  is positive constant. The position constant speed 

command is zero. The speed tracking error defines as follows 

1 1 1refe z z= −  (18) 

where ( )1

1 1 0tanrefz c z−= −  is the speed command, 
1c  is the 

positive constant parameter. 

It also shows that 
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Take the derivative of (17) and (18),  
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are positive definite value.  

Step2) 

Now the second step consists of redefinition of another error 

to be cancelled: 

2 2 2refe z z= −  (21) 

where 
2 2
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where ˆLT  is estimated value of unknown external load. 

It also shows that 
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For backstepping procedure, another Lyapunov candidate 

function is chosen as follows: 

( )
2

2
2 0 1 1 0 3 2 2

2 1

1
, ( ) log

2

k
V z e V z k

k e

 
= +  

− 
 (23) 

From (23) we know that if the speed tracking error goes to 
2k , 

the Lyapunov candidate function 
2V  goes to infinite value. 

That is, 

2V → ∞  as 1 2e k→ . 

2k , i.e., upper bound is designed for increasing system stability 

or preventing the increment of motor temperature. Since 
2refz  

is bounded (refer to (3)), from (18) we obtain that 

1 1 1 2 1
2

refz e z k c
π

≤ + < +  . (24) 

Thus we have control upper bound automatically by tuning 
1c  

and 
2k .  

 The derivative of (23) is  
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Arranging (25) using (19) and (21),   
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Step 3) 

Last step, define the Lyapunov candidate function as  

( ) 2 2 2

3 0 1 2 2 2
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L L LT T T= ∆ −ɶ , ˆa a a= ∆ −ɶ . 

Its derivative is 
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Substituting (22) into (28), it is obtain that 
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The control law is proposed as in the following equation: 
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Substituting (30) into (29), it is obtain that 
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If the adaptive law for the external disturbance load and 

parameter is chosen as: 

( )
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1 2 2

2 1

ˆ
L

k e
T

J k e
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ɺ
, (32) 

2 2â eγ=ɺ . (33) 

Using (32) and (33), (31) is simplified as follows: 

( ) ( )
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, , 0
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W z e e
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ɺ
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The filed current control loop: 

For the regulation of field current, we use the PI type internal 

linear controller, which is,  

4 3 5 3
ˆ

fv k e k e dt f= − − −∫ , (35) 

3 3f̂ eγ=
ɺ

, (36) 

where *

3 f fe i i= − , *

fi  is field current command, 4k  and 
5k  

are positive constants. Constants 
4k  and 

5k  are adjusted in 

order to achieve a good compromise between performances in 

terms of regulation speed and overshoot. 

In the following, 
5k  is assumed to be zero for simple analysis. 

 

For the stability of field current, define the Lyapunov 

candidate function as 

2 2

4 3

3

1 1

2 2
V e f

γ
= + ɶ , (37) 

where ˆf f f= ∆ −ɶ . 

Its derivative is as: 

4 3 3

3

1 ˆV e e ff
γ

= +
ɺɶɺ ɺ . (38) 

Using (35) and (36), (38) result in: 
2

4 4 3 0V k e= − ≤ɺ . (39) 

Theorem  

Consider the nonlinear dynamic system expressed by (10) 

with a velocity constraint, which is defined by 

{ }1 1z z Uω ωΩ = <  

where Uω  is positive upper bound. 

The nonlinear backstepping control law is designed as (30) and 

(35) with adaptation controller such as (32), (33), (36). Let 

1 2
2

c k Uω

π
+ ≤ , 

1 2
2

c k
π

≤ , 0ic >  where 1 ~ 3i = , 

1k and 3k  are strictly positive constants. If any initial condition 

such that 
1(0)z ω∈ Ω  is given, the closed-loop system stability 

is guaranteed, that is, all states are asymptotically stable. 

Proof: 

Define the total Lyapunov function as 

3 4V V V= +  (40) 

Differentiating (40) w.r.t. time and using (34) and (39), we 

get 
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where 2

4 3 4 3W W k e= + . From (41), V  is a Lyapunov function 

of overall system and thus the equilibrium state, 0e = , of the 

system is globally asymptotically stable. 

Since Vɺ  is a negative definite function, that is, 

( ) ( ), , (0), (0),0i i i iV z e t V z e≤ , ( )iz t  and ( )ie t  are bounded 

functions.  

Define a function  
4( )W t W V= ≤ − ɺ  and integrate function 

( )W t  w.r.t. time, 
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Because ( )(0), (0)i iV z e  is a bounded function, and 

( )( ), ( )i iV z t e t  is a non-increasing and bounded function, the 

following result is obtained: 

0
( )

t

W dτ τ < ∞∫ . (43) 

Also, ( )W tɺ  is bounded, so by  Barbalats Lemma[6], it can be 

shown that lim ( ) 0
t

W t
→∞

= . This implies, ( ) 0e t →  as t → ∞ . 
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V. SIMULATION RESULT 

The system under study is shown in Fig. 1 and the data of the 

system are introduced in Table Ⅰ. In order to investigate the 
effectiveness and performance, simulation has been carried out 

using Matlab to evaluate the proposed adaptive nonlinear 

backstepping control. 
TABLE I  

BLDCM PARAMETERS 

Inertia 0.3 kgm2 

Armature resistance 1.2 Ω 
Field resistance 60 Ω 

Armature inductance 0.01 mH 

Field inductance 60 mH 

Gear ratio 1 

 

Now the simulation is implemented. Setting 
1 50c = , 

2 100c = , 

1 1k = , 
2 50k = , 

3 10k = , 
4 10k =  in the position and field 

current controller, 0.1iγ = , 1 ~ 3i =  in the adaptive law. 

Fig. 2 demonstrates that the adaptive nonlinear backstepping 

controller tracks accurately position well under the velocity 

constraint. 

From the simulation, it can be seen that the proposed 

adaptive nonlinear backstepping control with feedback 

linearization can improve performance and the transient 

stability. 

 In this example,
ik , 1 ~ 5i = , influences the convergence  time 

to all errors, respectively; however, they also influence the 

control gain of 
au  and 

fu . The parameter γ  is the estimated 

rate of external load. If γ  is chosen to be small, the load 
convergence can be achieved; however, this results in slow 

speed. On the other hand, if  γ  is chosen to be large, the 
convergence speed is fast; however, the estimated algorithm 

may become unstable. 

 
Fig. 1 Distance and Speed of BLDCM with initial condition

1(0) 200z m= , 
2 3 4(0) (0) (0) 0z z z= = =  

 
Fig. 2 Field current of BLDCM 

VI. CONCLUSION 

An adaptive nonlinear backstepping controller is proposed to 

reduce the tracking error and to improve the transient 

performance and stability of BLDCM position control system. 

Dynamic motion tracking problem of BLDCM with velocity 

constraint is solved by the proposed controller. The design 

procedure of the controller proposed in this paper is 

independent of the operating point. Simulation on this model 

has shown that the proposed controller can greatly enhance the 

transient stability of the system regardless of the operating 

point, parameter variation and load disturbance. 
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