
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:1, 2009

116

Abstract—Although the STL (stereo lithography) file format is

widely used as a de facto industry standard in the rapid prototyping
industry due to its simplicity and ability to tessellation of almost all
surfaces, but there are always some defects and shortcoming in their
usage, which many of them are difficult to correct manually. In
processing the complex models, size of the file and its defects grow
extremely, therefore, correcting STL files become difficult. In this
paper through optimizing the exiting algorithms, size of the files and
memory usage of computers to process them will be reduced. In spite
of type and extent of the errors in STL files, the tail-to-head
searching method and analysis of the nearest distance between tails
and heads techniques were used. As a result STL models sliced
rapidly, and fully closed contours produced effectively and errorless.

Keywords—Layer manufacturing, STL files, slicing algorithm,
nearest distance analysis.

I. INTRODUCTION
APID layer-by-layer fabrication methods now play an
important role in time reduction and improving flexibility

of product development, and also facilitate product
visualization and functional testing, which effectively shorten
the product development cycle. One of the important areas of
research and development that contributes to the success of
rapid prototyping, is the interface standard, which is the vital
link between the computers aided graphic design (CAGD)
modeling and layer fabrication equipment [14].

Several existing interface standards have been used, such as
stereo lithography interface specification (STL), initial
graphics exchange Specification (IGES) [1], standard for the
exchange of product model data (STEP) [2], Hewlett-Packard
graphics language (HP/GL) [3], computerized tomography
(CT) [4], rapid prototyping interface (RPI) [5, 6], common
layer Interface (CLI) [7], layer exchange ASCII Format
(LEAF)[8], surface triangles hinted formats (STH) [9], etc.

STL file format because of its simple topology and

F. M. Vatani is Msc Student of Manufacturing (e-mail: vatani@aut.ac.ir).
S. A. Rahimi is Assistant Professor at manufacturing Department (e-mail:

rahimi@aut.ac.ir).
T. F. Brazandeh is Assistant Professor at manufacturing Department (e-

mail: f.brazandeh@aut.ac.ir).
S. A. Sanati Nezhad is Msc Student of Manufacturing (e-mail:

amirsanatinezhad@gmail.com).

powerful nature in tessellation of almost all surfaces is widely
accepted and supported by most commercial CAGD software
and layer fabrication equipment [14]. STL format is composed
of only one type of element, a triangular facet, which is
defined by its normal and three vertices [14]. All the
triangular facets described in a STL format file constitute a
triangular mesh to approximate Modeling surfaces. In fact,
STL file format is a polyhedral representation of a surface
model with triangular facets which facets must obey the vertex
to vertex rule and facet orientation rule [10, 11]. Since
calculations involved in the generation and slicing of STL
triangular facet are easy, fast and accurate enough to satisfy
the requirements of the rapid prototyping industry, STL is
reasonably suitable to be the interface between object
modeling and layer-by layer fabrication. Many CAD systems
would generate incorrect STL files that disobey the above two
rules when the CAD models are very complex [12, 13]. In this
case, flaws may appear in the process of creating triangular
facets. There are four types of flaws that may appear in STL
files. First type is inconsistency problem such as incorrect
normal vector and inconsistent normal vector [14, 15]. Second
type is malformation problem, for instance cracks and holes
that exist in the STL models are two types of malformation
flaws. Third type of flows in STL models is illegal over laps
and final type of flaws in STL models is non manifold facets.
[15].

Redundant depiction of geometric elements in STL format
is another disadvantage of its format, i.e., each vertex of a
triangular facet is recorded at least four times brings extra
computational memory occupation and time consumption.
Another shortcoming is that STL file size is incommensurate
with its approximation accuracy. Especially when the required
approximation accuracy of an object surfaces increases, or
when there is a complex surface, the size of the generated STL
file is dramatically enlarged [14]. Flaws whose appear in the
process of creating triangular facets can be checked and
corrected afterwards [14-12]. Most of current STL file
repairing programs can repair only simple defects
automatically [15] and flaws such as Complex cracks, and
non-manifold facets are difficult for current technology to
repair. In addition algorithms [16], which their aims are to
reduce the amount of computer memory required for
processing of STL file, can’t repair complex flows.

As the purpose of RP systems is to produce parts layer by
layer from a CAD model, the useful information for

M. Vatani, A. R. Rahimi, F. Brazandeh, and A. Sanati nezhad

An Enhanced Slicing Algorithm Using Nearest
Distance Analysis for Layer Manufacturing

R

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:1, 2009

117

manufacturing is correct contours of the sliced layers of the
CAD model instead of the STL file itself. In this paper a
complete algorithm is proposed which slices the bad STL
model directly in spite of amount and type of the flows in it. It
can also repairs the slicing contours effectively at a 2D level
to obtain the fully closed and errorless contours.

II. OPTIMIZED SLICING ALGORITHM
In conventional slicing algorithms all the facets store into

the computer memory (Fig.1a), which limit the size and
complexity of design and thus lead to breakdown of the LM
process [16]. In addition in most slicing algorithms to reduce
memory usage, only one adjacent facet reference is stored for
each edge when building the topological structure. If an STL
file contains non-manifold facets, which contain any over-
adjacent edges, some adjacency information for non-manifold
facets will be lost [15]. To overcome the shortcomings of
these algorithms, as shown in Figure 1b, the proposed
optimized slicing algorithm store all facets that intersect with
cutting plane in computer memory. Then subsequent analysis
applies only to these facets, which cause alleviation of
memory and also prevent deletion of adjacency information
for Non-manifold facets.

Fig. 1 Proposed algorithm, reads facets which intersect with cutting

plane and then processes them instead of process all facets

III. CONTOURS LINE GENERATION
For Implementation of enhanced algorithms the ASCII

format of STL file is used because it is simple, readable and
has ability to show the advantage of enhanced algorithm. The
structure of text STL format is shown in Fig. 2a. In the first
step vertex coordinates of each facet, as shown in Figure 2b,
store to an n×3D array. In order to save memory and alleviate
the subsequent analysis processing, the data of unit normal
vectors were ignored while storing them in the Facet Vertex
Data Matrix as shown in Fig. 2b. Therefore the size of data to
be treated will be reduced.

To facilitate subsequent contours construction, the slicing
module calculates the intersection line segment, instead of
point coordinates of the facets with cutting plane, then as
shown in Fig. 2c, calculated segment lines store in an m×6D
array. This procedure eases sorting and finding the direction
of contours. Also correction of contours errors with
combining the tail to head search [16] and the nearest distance
analysis techniques will be more convenient.

The slicing steps can summarize to extract facets data,
comparing them with cutting plane, and if there is any
intersection, store the intersection lines to an m×6D array. The
flowchart of this module is shown in Fig. 3.

Fig. 2 Data structure for facets and Computed contours lines

Fig. 3 Slicing Algorithm

The possibilities of intersection of a facet with a cutting

plane can be categorized into the following four groups, as
shown in Figure 4. The first group is shown as case 1 in
Figure 4, which is the normal case where a facet intersects
with the cutting plane with all the vertices away from cutting
plane. The intersection results of cutting plan with facet edges

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:1, 2009

118

will be obtained from the equation 1.

In this equation (xa, ya, za), (xb, yb, zb) are end points of facet
edge that must satisfy the equation 2.

1 2v cutting plane vz z z≤ ≤(2)

In this equation Zv is z-height of facet vertex.

The second group will satisfy the conditions of equation 2,
but the intersection results are three points where two points
are equal and one of them store in the line matrix.

Third group occurs if one vertex lies in the cutting plane
and remaining vertices lie in same region as shown in Fig. 4
as case 3. Zhang has ignored this case and has obtained line
segment from neighboring facets [15]. Since there is no
acquaintance about validity of neighboring facets; the
intersection results, which is two equal points, must store in
line matrix. Therefore the efficiency of proposed algorithm to
create valid contours will be enhanced.

Fig. 4 Probability of intersection of a facet with a cutting plane

Fourth group occurs if two vertices lie in the cutting plane.

In this case equation 1 is not satisfied and the result of
intersection is the end point of the line that could be obtained
from two other edges.

IV. ERRORLESS CONTOUR CONSTRUCTION WITH NEAREST
DISTANCE SEARCHING

The scope of errorless contour is generating fully closed
contour that all contour line segments are in one direction (one
direction means head of one line lays on tail of previous line)
and store after each other consequently. Normally, there are
three types of error in generated line segment contours. First,
line segments are stored in line matrix randomly [15, 16].

Second, due to inconsistency problem in the STL file, line
segments may be generated in different directions. Last error
is caused by the malformation problem or rounding-off error
[15], where the head and tail of neighboring lines may not lie
on each other. The proposed algorithm tries to solve these
errors automatically.

V. IMPLEMENTATION OF CONTOUR CONSTRUCTION
ALGORITHM

In calculated line matrix there may exist equivalent lines in
opposite direction because of incorrect and inconsistent
normal vector, or equivalent lines in same direction, though
one of equivalent lines must be ignored as shown in Fig. 5.

A A A B B B

B B B A A A A A A B B B

A A A B B B A A A B B B

A A A B B B

x y z x y z
x y z x y z x y z x y z
x y z x y z x y z x y z
x y z x y z

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⇒ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥
⎣ ⎦

Fig. 5 Elimination of equivalent lines which are 1-in same direction
and 2- in opposite direction

VI. NEAREST DISTANCE ANALYSIS
In first stage, line matrix must be sorted, in order to sort line

matrix, proposed algorithm selects the tail of first line and
looks for nearest point (NP) of other lines, regardless of being
tail or head, which selects the related line (RL) to that line.
The proposed algorithm uses equation 3.

2 2() ()t tD x x y y= − + − (3)

Here xt, yt are coordinate of tail of line. If NP is related to

head of RL, then this line stores in new line matrix after
previous line. But if NP is related to tail of RL, then algorithm
changes the situation of tail with head, then new line stores in
new line matrix after previous line. This operation will be
done until all lines are sorted and stored in new line matrix.
The flowchart of sorting module is shown in Figure 6.

After sorting all lines, algorithm must looks for third groups
of line which are generated by intersection of cutting plane
with facets. In the third group of generated lines, heads and
tails are laying on each other. If they lay on head of
subsequent line and tail of previous line (state in which there
is no flaws in surrounding area), it will be ignored from line
matrix. If they lay either on head of subsequent line, or tail of
previous line (state in which there is flaws in surrounding
area) it will be ignored too, as shown in Figure 7. So with this
operation all topological and geometrical errors will be
corrected. Where there is no match between this line and tail
and head of previous and subsequent lines, and the contour is
open, it will be stored for further processing.

a a a

b a b a b a

x x y y z z
x x y y z z

− − −
= =

− − − (1)

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:1, 2009

119

Fig. 6 Arranging and sorting algorithm

Fig. 7 Elimination of topological and geometrical errors from line

matrix

Final stage of proposed algorithm is constructing fully closed
contours from line segments. In this stage algorithm looks for
a line where its end is open (OL), and then goes through the
following operation:

1-Measure distance between the tail of OL and heads of
subsequent line, then gets minimum distance (D1) and selects
related line (RL) to it.

2- Measure distance between the tail of OL and head of
starting line of contour (D2). Starting line of a contour is a

line which contour begins from and ends to it.
If D1 is less than D2 then algorithm creates a line between

tail of open line and head of related line. But if D2 is less than
D1 then algorithm creates a line between tail of open line and
head of starting line, then the next line after open line is
considered as the starting line for next contour. The flowchart
of this module is shown in Fig. 9.

In order to have a correct closed contour not overlaying on
itself, the algorithm checks the created line does not lie on
previous line, and also does not pass through previous lines.

VII. VERIFICATION OF PROPOSED SLICING ALGORITHM
The enhanced slicing algorithm is implemented with Matlab

7.4.0. The program has been tested extensively with STL files
with various defects reported in earlier researches and found
that output contour layer is the correct slices of the model.

In order to find maximum ability of proposed algorithm on
crack and non-manifold edge an STL, model of assembled
fans is chosen. It contain of 4 parts as shown in Fig. 8.

It contains many minute features for testing the stability of
the proposed slicing algorithm. There are 119746 facets in
ASCII format. There are 2 non-manifold edge and 1264 non
manifold vertices and a lot of free edge and cracks in STL file.
The other specifications of this model are list in Table I.

TABLE I
STL MODEL SPECIFICATION

Name Fan assembly
Nb. cells 2
Nb. points 89202
Nb. activated points 89202
Nb. Triangles 119746
Nb. boundaries 293
Min extremity -80.398 mm

166.869 mm
-19 mm

Max extremity 53.916 mm
78.964 mm
19 mm

Dimensions 134.314 mm *
245.832 mm *
38 mm
(0.001 m3)

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:1, 2009

120

Fig. 8 Bad STL model

Fig. 10 shows the output slice of the model. It was hatched
to show the features more obvious.

Fig. 10 The slice Layer which have created with proposed algorithm

from bad STL model

Fig. 9 Closing contours algorithm

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:1, 2009

121

VIII. CONCLUSION
Layer Manufacturing (LM) processes produce models layer

by layer. Hence, the models must be first sliced into layers.
Therefore, the slicing algorithm plays a very important role in
LM system.

The proposed slicing algorithm has very good ability for
processing and slicing almost every STL file, regardless of the
complexity of models and type of defects. Therefore, no
further efforts would be required to correct the bad STL files,
which are usually very time consuming, if conventional
slicing algorithm is used. In addition, due to ignoring the
normal vectors, the size of STL file for processing are reduced
and the constraints of computer memory and computational
instability are overcome. As a result, the proposed algorithm is
able to produce quick accurate closed contour.

REFERENCES
[1] Reed K, Harvd D, Conroy W "Initial graphics exchange specification

(IGES) version 5.0". CAD-CAM Data Exchange Technical Center,
Fairfax, VA,1990

[2] Owen J "STEP: an introduction. Information Geometers", Winchester,
UK,1990

[3] Hewlett-Packard Company Staff " The HP-GL/2 reference guide: a
handbook for program developers", Addison- Wesley, Reading,
MA,1990

[4] Swaelens B, Kruth JP "Medical application of rapid prototyping
techniques". The 4th international conference on rapid prototyping,
Dayton, Ohio, pp 107–120, 14–17 June 1993

[5] Rock SJ, Wozny MJ "A flexible file format for solid freeform
fabrication". In: Marcus HL et al (eds) Proceedings of solid freeform
fabrication symposium, The University of Texas at Austin , pp 1–12,
12–14 August 1991

[6] Wozny MJ "Systems issues in solid freeform fabrication". In: Marcus
HL et al (eds) Proceedings of solid freeform fabrication symposium,
The University of Texas at Austin, pp 1–15, 12–14 August 1992

[7] BRITE/Euram "Common layer interface CLI version 1.31". Brite Euram
project BE2578 RPT—development and integration of rapid prototyping
techniques for the automotive industry, Brite/Euram Industrial and
Materials Technologies. 1994

[8] Dolenc A, Malela I "Leaf: a data exchange format for LMT processes".
The 3rd international conference on rapid prototyping, Dayton, Ohio, pp
4–12, 1992

[9] Burns M Automated fabrication. Prentice-Hall, Englewood Cliffs, NJ,
1992

[10] 3D Systems Inc, Stereolithography Interface Specification, 1988.
[11] Y. H. Chen, C. T. Ng and Y. Z. Wang, “Data reduction in integrated

reverse engineering and rapid prototyping”, International Journal
Computer Integrated Manufacturing, 12(2), pp. 97–103, February 1999.

[12] K. F. Leong. C. K. Chua and Y. M. Ng, “A study of stereolithography
files errors and repair. Part 1: Generic solution”, International Journal of
Advanced Manufacturing Technology, 12, pp. 407– 414, 1996.

[13] K. F. Leong. C. K. Chua and Y. M. Ng, “A study of stereolithography
files errors and repair. Part 2: Special cases”, International Journal of
Advanced Manufacturing Technology, 12, pp. 415–422, 1996.

[14] Tong 7Wu. Edmund H. M. Cheung,’’ Enhanced STL’’, International
Journal of Advanced Manufacturing Technology,29,pp 1143-1150,2006

[15] L.-C. Zhang, M. Han and S.-H. Huang,” An Effective Error-Tolerance
Slicing Algorithm for STL Files”, International Journal of Advanced
Manufacturing Technology , 20,pp 363–367,2002

[16] S.H. Choi and K.T. Kwok ,” A tolerant slicing algorithm for layered
manufacturing”, Rapid Prototyping Journal, Volume 8 • Number 3 • pp.
161–179,2002

