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Equatorial Symmetry of Chaotic Solutions in
Boussinesq Convection in a Rotating Spherical Shell

Keiji Kimura, Shin-ichi Takehiro, and Michio Yamada

Abstract—We investigate properties of convective solutions of the
Boussinesq thermal convection in a moderately rotating spherical
shell allowing the inner and outer sphere rotation due to the viscous
torque of the fluid. The ratio of the inner and outer radii of the
spheres, the Prandtl number and the Taylor number are fixed to 0.4,
1 and 5002, respectively. The inertial moments of the inner and outer
spheres are fixed to about 0.22 and 100, respectively. The Rayleigh
number is varied from 2.6 × 104 to 3.4 × 104. In this parameter
range, convective solutions transit from equatorially symmetric quasi-
periodic ones to equatorially asymmetric chaotic ones as the Rayleigh
number is increased. The transition route in the system allowing
rotation of both the spheres is different from that in the co-rotating
system, which means the inner and outer spheres rotate with the
same constant angular velocity: the convective solutions transit as
equatorially symmetric quasi-periodic solution → equatorially sym-
metric chaotic solution → equatorially asymmetric chaotic solution
in the system allowing both the spheres rotation, while equatorially
symmetric quasi-periodic solution → equatorially asymmetric quasi-
periodic solution → equatorially asymmetric chaotic solution in the
co-rotating system.

Keywords—thermal convection, numerical simulation, equatorial
symmetry, quasi-periodic solution, chaotic solution

I. INTRODUCTION

THE problem of Boussinesq thermal convection in rotat-
ing spheres and spherical shells has been investigated

vigorously for over half a century, not only as a fundamental
model of the global thermal convection in stellar and planetary
atmospheres and fluid cores but also as a purely fluid dynamics
problem. There have been many researches to investigate
behaviour of the solutions in this system theoretically and
numerically since the pioneering work by Chandrasekhar [1].

Thanks to recent remarkable progress of computational
ability, routes from critical modes to turbulent solutions with
increasing the Rayleigh number are gradually revealed in some
parameter ranges [2], [3], [4], [5]. When the Prandtl number
is O(1), as the Rayleigh number is increased, convective solu-
tions transit as follows: a traveling wave solution, vacillating
solution, quasi-periodic solution and chaotic solution [2]. As
the Rayleigh number is further increased, localized turbulent
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convection pattern and the relaxation oscillation appear [4].
When the Prandtl number is relatively small (O(10−1)), the
spiralling columnar convection emerging as a critical mode in
rapidly rotating cases becomes unstable at a larger Rayleigh
number, and the amplitude vacillations, shape vacillations and
the chaotic behaviours occur, and the relaxation oscillation oc-
curs as the Rayleigh number is further increased [5]. When the
Prandtl number is small (O(10−2)), the equatorially attached
convection pattern, which emerges as a critical mode, becomes
modulate but is still concentrated near the outer sphere at a
larger Rayleigh number. As the Rayleigh number is further
increased, the equatorially attached eddies spread into interior
region and become detached in some cases [5].

However, there have been few detailed researches around
an emerging point of equatorially asymmetric convection
patterns. Especially the route from equatorially symmetric
pattern to equatorially asymmetric pattern, which is necessary
for understanding a mechanism for emerging equatorially
asymmetric pattern, is not well known. Then, in the present
paper, we focus on the route from equatorially symmetric
pattern to equatorially asymmetric one, and investigate the
effect of the inner and outer spheres rotation on this route.

Actually, almost previous studies of thermal convection
in rotating spherical shells so far have assumed that the
inner and outer spheres rotate with the same constant angular
velocity (co-rotation), possibly due to simplification of the
configuration of the problem, while there are some magneto-
hydrodynamic (MHD) dynamo models which permit the axial
differential rotation of the inner sphere [6], [7]. However, the
spheres do not necessary co-rotate in the actual astronomical
bodies, and it is a more natural set up that both the spheres
rotate freely. Actually, recent seismological researches suggest
that the Earth’s inner core differentially rotates with respect to
the mantle in this decade [8], [9].

The model, governing equations and numerical methods are
described in Sec. II. In Sec. III, we investigate the transition
routes from equatorially symmetric convective solutions to
equatorially asymmetric ones both in the system allowing
rotation of both the spheres and in the co-rotating system, and
also show some typical convection patterns. The conclusions
and discussions are described in Sec. IV.

II. MODEL AND NUMERICAL METHOD

Let us consider a Boussinesq fluid in a spherical shell
whose radii of the inner and outer spheres are rin and rout,
respectively. The inner and outer spheres rotate with Ω̃in

and Ω̃out, respectively, in the rotating frame of reference
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with constant angular velocity Ωk. These mean that the inner
and outer spheres rotate with Ω̃in + Ωk and Ω̃out + Ωk,
respectively, in the inertial frame of reference. Since the
uniform heat source H per unit mass is distributed in the
whole spherical shell region, the temperature distribution of
the basic conductive state Ts(r) is Ts(r) = −βr2/2 + T0,
where β ≡ H/(3κCp), κ is the thermal diffusivity, Cp the
specific heat capacity, T0 a constant. We consider the self-
gravitational field of homogeneous media whose density is ρ,
that is, g = −γr, where γ ≡ 4πGρ/3 is a constant (G is
the universal gravitational constant) and r the position vector
with respect to the center of the shell.

We choose the thickness of the shell d ≡ rout − rin as the
length scale, the viscous dissipation time d2/ν as the time
scale, and ν2/(γαd4) as the temperature scale, where ν is the
kinematic viscosity and α the thermal expansion coefficient.
The pressure is normalized with ρν2/d2, and the inertial
moments of the inner and outer spheres are done with ρd5. The
non-dimensional governing equations for the deviations from
the conductive rest state in the rotating frame of reference with
the angular velocity Ωk are as follows:

∇ ·U = 0, (1)
∂U

∂t
+ (U · ∇)U + τk ×U = −∇π +Θr +ΔU , (2)

P

(
∂Θ

∂t
+ (U · ∇)Θ

)
= R U · r +∇2Θ, (3)

where U is the non-dimensional velocity, π is the non-
dimensional pressure, and Θ is the temperature deviation from
the basic conductive state Ts(r). The equations of motion of
the inner and outer spheres are as follows:

Iin
dΩ̃in

dt
= N in(U), (4)

Iout
dΩ̃out

dt
= Nout(U), (5)

where Iin and Iout are the non-dimensional inertial moments
of the inner and outer spheres, respectively, and N in and
Nout are the non-dimensional torques on the inner and outer
spheres. Here we assume that the centers of the spheres
always keep the same position. The non-dimensional control
parameters in the equations are

η =
rin
rout

, τ =
√
T =

2Ωd2

ν
, P =

ν

κ
,

R =
αβγd6

νκ
, Iin =

I∗in
ρd5

, Iout =
I∗out
ρd5

,

where η is the ratio of the radii of the inner and outer spheres,
T the Taylor number, P the Prandtl number, and R the
Rayleigh number. I∗in and I∗out mean the dimensional inertial
moments of the inner and outer spheres, respectively.

We choose the boundary condition of the velocity as no-
slip and impermeable on both spheres, and the temperature

disturbance is fixed to zero at the inner and outer spheres:

U(r = rin, θ, φ, t) = Ω̃in × (riner), (6)

U(r = rout, θ, φ, t) = Ω̃out × (router), (7)
Θ(r = rin, θ, φ, t) = 0, (8)
Θ(r = rout, θ, φ, t) = 0, (9)

where r is the radial distance from the origin, θ and φ are the
zenith (colatitude) and the azimuth (longitude) with respect to
the rotation axis, respectively, and er is the unit vector in the
radial direction, and hereafter we use the spherical coordinate
system.

Since the velocity field is solenoidal, it can be represented
with the toroidal and poloidal potentials w and v as follows:

U ≡ ∇× (r(w + wS)) +∇× {∇× (rv)}, (10)

where wS is defined as

wS(r, Ω̃in(t), Ω̃out(t))

≡ − r3in
r3out − r3in

(
r − r3out

r2

)(
er · Ω̃in(t)

)

+
r3out

r3out − r3in

(
r − r3in

r2

)(
er · Ω̃out(t)

)
, (11)

which satisfies the above velocity boundary conditions (6) and
(7) [11]. Then the boundary conditions of v and w are

v =
∂v

∂r
= w = 0 at r = rin, rout. (12)

The governing equations of these potentials and Θ become

∂

∂t

(
L̂2w

)
=

[
∇2L̂2 + τ

∂

∂φ

]
w − τQ̂v

+

[(
∇2 − ∂

∂t

)
L̂2 + τ

∂

∂φ

]
wS

− r · [∇× ((U · ∇)U)] , (13)
∂

∂t

(
L̂2∇2v

)
=

[
∇2L̂2 + τ

∂

∂φ

]
∇2v + τQ̂w − L̂2Θ

+ τQ̂wS

− r · [∇×∇× ((U · ∇)U)] , (14)

P
∂Θ

∂t
= RL̂2v +∇2Θ− P (U · ∇)Θ, (15)

where L̂2 and Q̂ are the operators defined as

L̂2 ≡ − 1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂φ2

]
, (16)

Q̂ ≡ k · ∇ − 1

2

[
L̂2(k · ∇) + (k · ∇)L̂2

]
. (17)

We will fix the values of η and P as the standard values
η = 0.4 and P = 1, and also fix τ as 500, which means the
moderately rotating region, and vary the Rayleigh number in
the range of 2.6×104 ≤ R ≤ 3.4×104. The inertial moment of
the inner sphere is set to be Iin = 8πr5in/15 � 0.22, assuming
that the density of the inner sphere is the same as that of fluid.
This assumption is consistent with the self-gravitational field.
The inertial moment of the outer sphere is set to be Iout = 100,
which is the simulated non-dimensional value of the inertial
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moment of the Earth’s mantle when the inner sphere and the
shell are considered to be the inner core and the outer core of
the Earth, respectively.

The Galerkin-spectral method is applied to the toroidal
and poloidal potentials and the temperature disturbance. They
are expanded with the spherical harmonics in the horizontal
(azimuthal and zenith) directions, and with the combinations of
Chebyshev polynomials which satisfy the boundary conditions
in the radial direction (8), (9) and (12) [12]. We also use the
Crank-Nicolson scheme to the diffusion terms and use the
second order Adams-Bashforth scheme for all other terms,
with the time step 10−4. The truncation wavenumber of spher-
ical harmonics and the maximum degree of the Chebyshev
polynomials are set to both fixed to 42. The nonlinear terms
in the governing equations are evaluated in the physical space
and are converted back into the spectral space (the spectral
transform method). The numbers of the grid points on the
physical space are chosen as (Nr, Nθ, Nφ) = (65, 64, 128) in
order to eliminate the aliasing errors, where Nr, Nθ and Nφ

the number of grid points in the radial, zenith (colatitudinal)
and azimuthal (longitudinal) directions, respectively. At the
initial state, both the spheres do not rotate in the rotating
frame of reference with constant angular velocity Ωk, and the
random temperature disturbance is added to the conductive
state.

III. RESULTS

A. Transition diagram

In our parameter range, as the Rayleigh number is increased,
the convective solutions with equatorial symmetry transit to
those with equatorial asymmetry. We should remark the def-
inition of the equatorial symmetry, antisymmetry and asym-
metry of the convective solutions. The equatorially symmetric
(antisymmetric) part of convective solution (U ,Θ) satisfied
the following relations with the upper (lower) signature:

Ur(r, θ, φ) = ±Ur(r, π − θ, φ),

Uθ(r, θ, φ) = ∓Uθ(r, π − θ, φ),

Uφ(r, θ, φ) = ±Uφ(r, π − θ, φ),

Θ(r, θ, φ) = ±Θ(r, π − θ, φ).

When the convective solution consists of only equatorially
symmetric part we call this as equatorially symmetric solution
and when that consists of both equatorially symmetric and
antisymmetric parts we call this as equatorially asymmetric
solution.

Figure 1 shows the transition diagram of these convective
solutions in the range 2.7×104 ≤ R ≤ 3.2×104. QPS means a
quasi-periodic (or periodic) solution with equatorial symmetry,
QPA a quasi-periodic (or periodic) solution with equatorial
asymmetry, CS a chaotic solution with equatorial symmetry,
and CS a chaotic solution with equatorial asymmetry. In the
system allowing rotation of both the spheres, the convective
solutions transit as QPS → CS → CA, as the Rayleigh
number is increased. However, in the co-rotating system,
the convective solutions transit as QPS → QPA → CA,
as the Rayleigh number is increased. Moreover, the chaotic

solutions appear at lower Rayleigh number in the system
allowing rotation of both the spheres comparing with that in
the co-rotating system. In the system allowing rotation of only
the inner sphere (Ω̃out = 0), the transition diagram from
equatorially symmetric convective solutions to equatorially
asymmetric ones is exactly same as that in the system allowing
rotation of both the spheres. Therefore we conclude that the
inner sphere free rotation causes the change of transition
route from equatorially symmetric convective solutions to
equatorially asymmetric ones and also does the appearance
of chaotic solutions at lower Rayleigh number.

B. Typical behaviors of QPS, CS and CA

In this section we show some typical behaviours of the
convective solutions. In the system allowing rotation of both
the spheres, QPS solution appears at R = 2.6 × 104, CS at
R = 3.0×104, and CA at R = 3.4×104, while QPS solution
appears at R = 2.6× 104, QPA at R = 3.0× 104, and CA at
R = 3.4× 104 in the co-rotating system

Figure 2 shows the time series of the angular velocities of
the inner and outer spheres of QPS solution at R = 2.6×104

and CS at R = 3.0 × 104. Because QPS and CS solutions
have equatorial symmetry, the perpendicular components of
the angular velocities of both the inner and outer spheres
against the axis of rotation of reference are exactly zero, and
the axial component of that of the inner sphere Ω̃in,z and that
of the outer sphere Ω̃out,z are shown in Fig. 2.

When R = 2.6 × 104 in the system allowing rotation of
the spheres (left panel in Fig. 2), the inner sphere rotates in
the retrograde direction with fluctuations: Ω̃in,z = −7.0±1.5.
On the other hand the outer sphere rotates in the prograde
direction with fluctuations: Ω̃out,z = +0.42 ± 0.017. The
magnitude of the inner sphere rotation is Ω̃in,z/Ω � 3%,
where Ω = τ/2 = 250, while that of the outer sphere is
Ω̃out,z/Ω � 0.2%, relatively smaller than that of the inner
sphere because the inertial moment of the inner sphere is
much smaller than that of the outer sphere in our parameter
range (Iin � 0.22 	 Iout = 100). It is found that the
dominant azimuthal wavenumber of this QPS solution is 2:
Em=2

k /Ek � 63%. Here kinetic energy density for each
azimuthal wavenumber m Em

k is defined by

Em
k ≡ 1

Vshell

∫
Vshell

1

2
|Um|2dV,

and Um is the velocity for azimuthal wavenumber m. The
total kinetic energy density Ek is defined by

Ek ≡ 1

Vshell

∫
Vshell

1

2
|U |2dV,

=
∑
m

Em
k ,

because
∫
Vshell

Um ·Um′
dV = 0 for m 
= m′. The overline ·

means the time averaged value. This QPS solution propagates
in the retrograde direction: vp � −2.0.

The behaviour of QPS solution at R = 2.6 × 104 in the
co-rotating system are qualitatively similar to that of QPS

solution in the system allowing rotation of both the spheres.
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2.7 2.8 2.9 3.0 3.1 3.2 R×10-4

QPS

QPS QPS QPS QPA QPA CA

CACS CS CS

4.2 4.4 4.6 4.8 5.0 R/Rc

Fig. 1. Property of convective solution at each Rayleigh number. QPS: quasi-periodic (or periodic) solution with equatorial symmetry, QPA: quasi-periodic
(or periodic) solution with equatorial asymmetry, CS: chaotic solution with equatorial symmetry, CS: chaotic solution with equatorial asymmetry. Rc = 6387
is the critical Rayleigh number. The upper row shows properties of convective solutions in the system allowing rotation of both the spheres, while the lower
one shows those in the co-rotating system.
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Fig. 2. Time series of the angular velocities of the inner and outer spheres of QPS solution at R = 2.6 × 104 (left) and those of CS at R = 3.0 × 104

(right) in the system allowing rotation of both the spheres. Blue solid line shows the axial component of the angular velocity of the inner sphere Ω̃in,z , and
red solid line shows that of the outer sphere Ω̃out,z).

The dominant azimuthal wavenumber of QPS solution in the
co-rotating system is 2 and this propagates in the retrograde
direction (vp � −1.5).

The behaviour of QPA solution at R = 3.0 × 104 in the
co-rotating system are also qualitatively similar to that of
QPS solution at R = 2.6 × 104 in the co-rotating system.
The dominant azimuthal wavenumber of QPS solution in the
co-rotating system is 2 and this propagates in the retrograde
direction (vp � −2.1). This is consistent with the fact that
the antisymmetric part of kinetic energy density of QPA

solution is less than 1% of total kinetic energy density:
EAnti

k /ES
k � 0.75%, where ES

k and EAnti
k are defined by

ES
k ≡ 1

Vshell

∫
Vshell

1

2
|US|2dV,

EAnti
k ≡ 1

Vshell

∫
Vshell

1

2
|UAnti|2dV,

where US and UAnti are the symmetric and antisymmetric
part of the velocity, respectively.

As the Rayleigh number is increased up to R = 3.0× 104

in the system allowing rotation of the spheres, CS con-
vective solution appears, shown at right panel in Fig. 2.
When R = 3.0 × 104, the inner sphere averagely rotates

in the retrograde direction (Ω̃in,z = −5.2), but sometimes is
accelerated to rotate in the prograde direction (Ω̃in,z = +11.6
at t = 0.2, for instance). The magnitude of the inner sphere
rotation is at most 5.3%, larger than that of QPS solution at
R = 2.6×104. On the other hand, the outer sphere keeps rotate
in the prograde direction (Ω̃out,z = +0.40), but sometimes
is decelerated to be about +0.2 at t = 0.2, for instance.
When Ω̃in,z < 0 the dominant azimuthal wavenumber is 2:
Em=2

k /Ek � 58% at t = 2.0, and this tendency is similar to
that of QPS solution at R = 2.6×104. However, when Ω̃in,z is
accelerated to become positive at t = 0.2, for instance, Ω̃out,z

is simultaneously decelerated, and at that time the dominant
azimuthal wavenumber is not m = 2 but m = 4 and 5. These
behaviours of CS solution are very different from those of
QPS solution.

As the Rayleigh number is further increased up to R =
3.4× 104 in the system allowing rotation of the spheres, CA

convective solution appears, shown in Fig. 3. When R =
3.4× 104, the inner sphere averagely rotate in the retrograde
direction (Ω̃in,z = −4.1) but sometimes is accelerated to
rotate in the prograde direction (Ω̃in,z = +14.9 at t = 3.9,
for instance), similar to the behaviour of CS solution at
R = 3.0×104. The magnitude of the inner sphere rotation is at
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Fig. 3. Time series of the angular velocities of the inner (left) and outer (right) spheres, Ω̃in and Ω̃out, of CA solution at R = 3.4 × 104 in the system
allowing rotation of both the spheres.

most 5.9%, larger than that of CS solution at R = 3.0× 104.
The perpendicular components of Ω̃in fluctuate around zero
(the standard deviations of Ω̃in,x and Ω̃in,y are both about
0.5), and their magnitudes against Ω̃in,z are relatively small:
|Ω̃in,x|/|Ω̃in,z| � 11% at t = 3.0. On the other hand, the outer
sphere keeps rotate in the prograde direction (Ω̃in,z = +0.36),
but sometimes decelerated to be about +0.01 at t = 3.9,
for example. The perpendicular components of Ω̃out fluctuate
around zero, and |Ω̃out,x|/|Ω̃out,z| � 20% at t = 3.0, rela-
tively larger than the ratio of the magnitude of |Ω̃in,x|/|Ω̃in,z|.
When Ω̃in,z < 0 the dominant azimuthal wavenumber is 2,
same as that of QPS at R = 2.6 × 104. On the other hand,
when Ω̃in,z > 0 at t = 3.9, for instance, the dominant
azimuthal wavenumber is not 2 but 4. The antisymmetric part
of the kinetic energy density is smaller than the symmetric
one: max(EAnti

k )/ES
k � 12%.

The behaviours of CA in the co-rotating system are quali-
tatively similar to those of CA in the system allowing rotation
of the spheres.

IV. CONCLUSION AND DISCUSSION

We investigated the route from the equatorial symmetric
pattern to the equatorial asymmetric pattern in the system
allowing the rotation of both spheres and in the co-rotating
system, under the impermeable, no-slip and fixed-temperature
boundary conditions for the ratio of inner and outer radii
of the shell η = 0.4, the Prandtl number P = 1, the
rotation rate τ = 500, the inertial moments of the inner and
outer spheres Iin � 0.22 and Iout = 100, respectively. We
found that, as the Rayleigh number is increased in the range
2.6 × 104 ≤ R ≤ 3.4 × 104, the convective solutions transit
as QPS → CS → CA in the system allowing rotation of both
the spheres while those transit as QPS → QPA → CA in the
co-rotating system (Fig. 1). In the system allowing rotation
of only the inner sphere (Ω̃out = 0), the transition diagram
shown in Fig 1 is exactly same as that in the system allowing
rotation of both the spheres. Therefore we conclude that the
inner sphere free rotation causes the change of transition
route from equatorially symmetric convective solutions to
equatorially asymmetric ones.

When R = 2.6×104 in the system allowing rotation of both
the spheres, QPS solution appears (shown at right panel in Fig.
2) and the inner sphere rotates in the retrograde direction while
the outer sphere does in the prograde direction. The dominant
azimuthal wavenumber is 2, which is smaller than the critical
azimuthal wavenumber of the conductive state mc = 4 [10].
As the Rayleigh number is increased up to R = 3.0 × 104

CS solution appears (left panel in Fig. 2): the inner sphere
averagely rotates in the retrograde direction but sometimes
is accelerated to be positive while the outer sphere keeps
prograde rotation. When Ω̃in,z < 0 the behaviour of CS is
qualitatively similar to that of QPS at R = 2.6 × 104, but
when Ω̃in,z > 0 the behaviour is totally different from that
of QPS. The behaviour of CA at R = 3.4 × 104 (Fig. 3) is
qualitatively similar to that of CS, because the amplitude of
the antisymmetric part of CA is small compared with that of
the symmetric one.

We consider that CS at R = 3.0× 104 wanders around the
unstable QPS but sometimes goes away from QPS. Further
quantitative researches should be done. Also the reason for
sudden acceleration of the inner sphere as well as the changes
of the convective motion and the zonal flow structure should
be investigated as a future work.
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