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Stability of Alliances between Service Providers
Hélène Le Cadre

Abstract—Three service providers in competition, try to optimize
their quality of service / content level and their service access
price. But, they have to deal with uncertainty on the consumers’
preferences. To reduce their uncertainty, they have the opportunity
to buy information and to build alliances. We determine the Shapley
value which is a fair way to allocate the grand coalition’s revenue
between the service providers. Then, we identify the values of β
(consumers’ sensitivity coefficient to the quality of service / contents)
for which allocating the grand coalition’s revenue using the Shapley
value guarantees the system stability. For other values of β, we prove
that it is possible for the regulator to impose a per-period interest rate
maximizing the market coverage under equal allocation rules.

Keywords—Alliance, Shapley value, Stability, Repeated game,
Interest rate.

I. INTRODUCTION

Alliance definition We speak about alliances1 when firms
on a market agree with one another to realize profits which
are superior to the standard profits that they should receive
under competition. The standard profits are those obtained at
the non cooperative Nash equilibrium where each firm tries to
maximize selfishly his utility2.

Alliances can be explicit when firms agree explicitly with
one another on prices, quantities, production capacities, invest-
ments, etc., via contracts, for instance. Alliances are said tacit
provided this is not the case.

Under competition, firms maximize their profits. But, some-
times, firms realize that coordination might increase their joint
profit. Hence, firms on a market have natural incentives to
agree together in order to increase their market power and
their profit. Competition between firms can then be compared
with a prisonner dilemma:

• A firm chooses his strategy in order to maximize his profit
but, does not care about the effect of his decision on the
other firms.

• In an alliance, firms take into account how their own
decisions affect the others’ profits.

There exists of course various forms of alliances: joint price
determination, joint quantity setting, geographic allocation,
etc. [2].

Alliances do not emerge on every market since collusion
may be forbidden (competition policy) and since the firms in
the alliance might have incentives to cheat, deviating from
the cooperative equilibrium. Firms may for instance, deviate
unilaterally from the collusion agreement by proposing a
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1The term of collusion exists also in the literature; these two terms will be
used undistinctly in the article.

2As usual in game theory, firms and service providers will be associated
with male or female players.

price inferior to the expected one in the hope to capture the
larger part of the market demand. If each firm forecasts that
the others might cheat, cooperation is not imaginable any-
more. Punishment mechanisms should then be implemented
to prevent the firms in the alliance from cheating. Courts
punish explicit accords whose objectives are clearly to de-
crease the competition. Heavy sanctions have been applied to
international accords on the vitamin market (855 millions of
euros), on lysine and citric acid (200 millions of dollars and
imprisonment years) [2] and more recently, on the memory
chip market (331 millions of euros).

Alliance instability Cases of collusion (explicit or tacit)
have been reported in the telecommunications literature, both
in the long distance market [10] and in the mobile sector [7].
In practice, alliances are difficult to build since firms might
suspect that their partner would defect and then, adopt tit
for tat strategy which, in a short time-scale, does not give
incentives to firms for cooperation. Besides, it is difficult to
deal with the selfish tendency of the alliance partners. These
latter might for instance, enter a learning race where the firm
who learns the quickest wins and then, leaves the alliance.
Furthermore, alliances may be highly unstable due to changes
in customers’ demand, political relation and alliance manage-
ment. de Man et al. propose a robust framework based on a
win-win strategy to guarantee the long-term alliance stability
in the airline industry [3]. However, reputation phenomenon
and guarantee provisioning3 might give firms incentives to stay
in the alliance [5].

Cooperation in supply chains The different relations
between the economic actors can be modeled by a supply
chain i.e., a complex network containing a large number of
entities who sometimes compete and sometimes cooperate
to fulfill customers’ needs. Selfish behaviors generating a
loss of efficiency, decisions should be centralized in order to
maximize the global profit. Hence, building alliances appears
as a successful strategy in modern supply chain networks.
Cooperation implies then, a better exploitation, benefits from
large economies of scope, the decrease of total costs and the
increase of total savings. The problem is to identify properly
which coalitions can be expected to form and how the alliance
members should share the pie i.e., the total benefit to guarantee
the stability of the formed alliance [1].

How to share the pie? Indeed, one of the main difficulty
studied in cooperative game theory [11] is the pie sharing to
guarantee that none of the alliance member would have incen-

3Firms provide usually guarantees of their willingness to cooperate by
investing money in common technologies, data-bases, leboratories, etc., or
through the sharing of their high-level experts’ knowledge, or by making
available skilled labor force, etc.
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tives to leave it. Various allocations of the grand coalition’s
revenue rules exist such as the Shapley value which guarantees
a fair sharing, the nucleolus which provides an allocation that
minimizes the dissatisfaction of the players from the allocation
that they can receive, the proportional allocation which shares
the total revenue depending on the players’ intial investment
costs, the equal allocation which gives an equal proportion to
each player, etc. [1], [11], [15].

Article originality and organization The article aims at
studying the alliances that might emerge between three service
providers in competition, who have to cope with uncertainty
on the consumers’ preferences. The originality of our approach
is to incorporate uncertainty about the consumers’ preferences
in the game between the operators. Besides, to our knowledge,
this is the first article proposing solutions to deal with alliance
instability in the telecommunications framework and mod-
elling explicitly information exchange / investment between
the operators.

The article is organized as follows. We start by introducing
the two level game between the service providers in Section II.
Then, in Section III, we compute the Shapley value of the
cooperative game which enables us to allocate fairly the
grand coalition’s revenue between the three service providers.
Depending on the consumers’ sensitivity to the quality of
service / contents (β), we determine then, whether the Shapley
value belongs to the core of the game i.e., guarantees the
alliance stability. If the grand coalition is stable then, the
regulatory authority’s advices would be without effect on the
providers since these latter would have no incentives at all to
leave the alliance where the total revenue is shared according
to the Shapley value. Finally, in Section IV, we consider the
values of β for which the Shapley value is not in the core.
Having no guarantee on the system’s dynamic behavior, the
regulator should intervene to assure the consumers’ welfare.
We prove that it is possible for the regulator to impose a
per-period interest rate maximizing the market coverage under
equal allocation of the coalitions’ revenues. We conclude in
Section V.

Notations The main notations used throughout the article
are stored in the table below.

Ai firm or service provider i
pN

i access price chosen by firm Ai under
complete competition

p
AjAk

i access price chosen by firm Ai when Aj

and Ak form a coalition
p∗

i access price chosen by firm Ai when all
the firms cooperate

Ui firm Ai’s utility
αi firm Ai’s information level
qi firm Ai’s quality of service / content level
qmax

i firm Ai’s maximum quality of service / content
level due to the capacity constraint

I(.) investment cost function
ni number of consumers subscribing to Ai’s service
n0 number of consumers who choose to not subscribe

to any service
ci(.) consumers’ opportunity cost for firm Ai

β consumers’ sensitivity to the quality of
service / content level

Ui consumers’ intrinsic utility for firm Ai

ξk consumer k’s maximum admissible opportunity cost
ν grand coalition’s characteristic function
φi(ν) part of the grand coalition’s revenue allocated

to firm Ai

S set of all the possible coalitions
N total number of consumers on the market
δ discount factor
r interest rate

II. GAME MODEL AND INFORMATION SHARING

Description of the providers’ utilities We consider three
service providers: A1, A2 and A3. They can belong to var-
ious categories. It can be content providers, Internet access
providers, or TV channels, etc. We assume that these three
firms are interconnected via the Internet backbone. Besides,
they have the opportunity to exchange information4 (cf. Fig-
ure 1). The information can be either bought from other
providers or the providers can choose to invest together to
gather data through a common data-base.

Fig. 1. Description of the relations between the three service
providers.

Consider firm Ai, i = 1, 2, 3, his utility is of the form

Ui = pini − I(αi)

with pi the acess price to the firm i’s network / service for
the consumers5, ni the total number of clients for firm Ai. αi

represents the level of information collected / bought by firm
Ai while I(.) is the cost of information acquisition.

The quality of service (QoS) / content level qi can be seen as
a function of firm Ai’s information level i.e., αi = ϑ(qi) with
ϑ : R+ → R+ an invertible function on R+. Furthermore, we
assume that Ioϑ is convex on R+. In economics, Schlee [16],
Johnson and Myatt [6] use convex marginal cost functions, in
different contexts.

The quality of service / content level is tightly related to
the information level acquired by the firm. Indeed, if firm Ai

manages to extract the most pertinent information about the
network topologies or more generally, about the consumers’
preferences, he will be able to optimise qi more easily. Of
course the consumers’ perception of firm Ai will by turns
depend on the firm’s information level since, in this case,

4The exchanged information might concern the providers’ network topol-
ogy, data acquired about the consumers’ preferences, etc.

5This access price is a flat rate i.e., a fixed price which do not depend on
the quantity of traffic really sent by the clients.
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the firm’s information level conditions his quality of service
/ content level. To give an illustration, in Figure 2, the firms’
information levels are expressed as linear and quadratic (with
stars) functions of the quality of service / content level; we
have set: αi = 4qi and αi = 1

2q2
i (with stars). Furthermore,

we assume that the firm is limited in the improvement of
his quality of service / content level by the access network
capacity; thus: qi ≤ qmax

i , i = 1, 2, 3.
The idea that the more information the provider acquires, the

easier it is for him to optimize his quality of service / content
level can be found again in the concept of entropy which has
been introduced by Shannon. The entropy is a mathematical
function which corresponds to the quantity of information
being contained or delievered by a source (the consumers,
for instance) [14]. The more information is received by the
receptor (provider Ai), the more the entropy (or uncertainty)
about the message (consumers’ preferences) decreases, due to
this information gain.

In practice, service providers reserve bandwidth on transit
providers’ networks who route their traffics. These transit
operators have approximately identical marginal costs. It is
then essential for the service providers to book the optimal
bandwidth volume on transit providers’ networks using the
acquired information to infer consumers’ preferences. Indeed,
service providers will have to pay for the quantity of data
transfered. Besides, it is essential for service providers to
reserve the exact quantity of bandwidth; otherwise transit
providers punish them either by evening out their traffic if
the reserved bandwidth is insufficient or by overbooking and
deprioritarizing if there is a waste. It might then altered the
quality of service / content level perceived by the consumers.

Fig. 2. Quality of service / content level as a function of firm Ai’s
information level.

Game description for firm Ai The three service providers
play simultaneously the two level game described below. Then,
depending on their choices, the consumers subscribe to a
service or report their decision. The two levels in the game
result from the difference of timing between the access price
determination and the contract of bandwidth reservation.

(1) Ai sets his quality of service / content level qi

(2) Ai chooses the access price to his service pi

Description of the consumers’ choice model We suppose
that the consumers have the opportunity to choose their service
provider or to not subscribe to any service. In order to

make their choice, they should compute the opportunity costs
[13] associated with each service provider. For firm Ai, the
opportunity cost is ci = pi+βqi with −1 ≤ β ≤ 06 coefficient
characterizing consumers’ sensitivity to the quality of service
/ content level.

Now, the consumer choice model description requires the
introduction of intrinsic utilities [4] for the consumers, associ-
ated with each provider, being independent of the opportunity
costs. Consumers’ intrinsic utility for firm Ai will be denoted
Ui. Furthermore, we assume that the consumers have an a
priori preference for the firms which is characterized by the
following order U1 ≤ U2 ≤ U3. The order is arbitrary and it
can be modified. We assume that 0 ≤ c1(.) < c2(.) < c3(.) <
1. This hypothesis guarantees the existence of positive market
shares for each of the three firms. An approching choice model
for the consumers has already been detailed in [9].

Then, we introduce the maximum admissible opportunity
cost for consumer k, k = 1, 2, ..., N : Ξk, whose realization ξk

is generated according to the uniform density on [0; 1]7. This
choice of a uniform density to model the consumers’ intrinsic
utility is motivated by the assumption that the firms have a
priori no information on the consumers’ preferences. Necessity
to introduce a maximum admissible opportunity cost results
from the following observation: a consumer will refuse to
subscribe to the provider’s service or will report his purchase
to a later date for the follwing reasons, either the access price
is too high, either the quality of service level is not sufficient,
or the contents are not enough diversified compared to what
he expects.

Consumer k’s utility for firm Ai, i = 1, 2, 3 is

uk,i =
{ Ui if ξk ≥ ci(.),

0 otherwise.

This means that if ξk ∈ [0; c1(.)[ consumer k does not
choose any offer, if ξk ∈ [c1(.); c2(.)[, consumer k selects
firm A1, if ξk ∈ [c2(.); c3(.)[, consumer k chooses firm A2,
finally, if ξk ∈ [c3(.); 1], the consumer selects firm A3.

The main assumptions related to the providers’ game and
to the consumer choice model are listed below.

Hypotheses
• ϑ : R+ → R+ is an invertible application on R+,
• Ioϑ : R+ → R+ is a convex application on R+,
• U1 ≤ U2 ≤ U3,
• Ξk ∼ U[0;1],
• 0 ≤ c1(.) < c2(.) < c3(.) < 1,
• firms are limited in their investment in the quality of

service / contents by the capacity of their access networks
i.e., qi ≤ qmax

i , i = 1, 2, 3.

Then, we can compute the number of clients for each firm.
Let n0 be the total number of consumers who choose to not
subscribe to any service, ni, the total number of clients for
firm Ai and N , the total number of consumers on the market.

6To simplfy the numerical analysis, β is supposed to be normalized.
7To simplify the analytical game resolution, we have chosen the unit

interval. However, the model can be extended without additional difficulties
if we assume that the consumers’ maximum admissible opportunity costs are
distributed according to a uniform density on the interval [0; f ], f > 0.
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Lemma 1. Consumers are distributed between the three
service providers according to the following rule

• n0 = N
[
p1 + βq1

]
do not subscribe to any service,

• n1 = N
[
(p2 − p1) + β(q2 − q1)

]
choose firm A1,

• n2 = N
[
(p3 − p2) + β(q3 − q2)

]
prefer firm A2,

• n3 = N
[
1 − p3 − βq3

]
select firm A3.

Proof of Lemma 1 We have n0 = c1N , n1 = (c2 − c1)N ,
n2 = (c3 − c2)N and n3 = (1 − c3)N.

III. SHARING MECHANISM OF THE GRAND COALITION’S
REVENUE AND STABILITY

The game contains 23−1 = 7 distinct coalitions. We assume
that the game is with transferable utility i.e., the total revenue
associated with each coalition can be freely shared between
the coalition members. It implicitly means that the coalition
members can freely give, receive or even, burn money [11].
Games with transferable utility require the introduction of a
characteristic function ν : 23 − 1 → R which associates a
global revenue with each coalition. Function ν valuates on a
coalition, measures its worth [8].

To valuate the characteristic function on each coalition, we
have chosen a representation by defensive equilibria [11].

Let S be the set of the 7 possible coalitions and s ∈
S a given coalition. We note σopt

s = (popt
i , qopt

i )i∈s with
popt

i , qopt
i ∈ R

2
+, ∀i ∈ s, the strategy on prices, quality of

service / content level chosen by the coalition s members and
σopt
S−s = (popt

j , qopt
j )j∈S−s with popt

j , qopt
j ∈ R

2
+, ∀j ∈ S−s, the

strategy selected by the firms who do not belong to coalition
s. For each coalition s ∈ S, we have to solve the following
system to determine the providers’ optimal strategies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σopt
s ∈ arg max

σs=

{
(pi,qi)∈R

2
+|i∈s

} ∑
i∈s

Ui(σs, σ
opt
S−s)

σopt
S−s ∈ arg max

σS−s=

{
(pj ,qj)∈R

2
+|j∈S−s

} ∑
j∈S−s

Uj(σ
opt
s , σS−s)

Using coalition s optimal strategy expression, we obtain
the value of the characteristic function ν on coalition s:
ν(s) =

∑
i∈s Ui(σ

opt
s , σopt

S−s) and on S − s: ν(S − s) =∑
j∈S−s Uj(σ

opt
s , σopt

S−s).

Theorem 2. For each possible coalition, the two level game
between the three providers admits a unique pure Nash
equilibrium on prices and quality of service / content level.
The characterisitc function is then defined uniquely on each
possible coalition.

Proof of Theorem 2 In order to fix the ideas, we assume in
the rest of the article that I(.) is the identity application and
suppose that the information level is either quadratic in the
QoS / content level i.e., αi = ϑ(qi) = q2

i

2 (example 1), or that
it is linear in the QoS / content level i.e., αi = ϑ(qi) = qi

(example 2). However, the proof can be generalized to far more
complex functions satisfying the hypotheses of Section II.

For each possible coalition, we have to solve for every
provider in the coalition, a two level game in price and quality
of service / content. Going backward, we start by determining

the optimal prices for each provider in the coalition by differ-
entiating the coalition’s utility with respect to the prices. Then,
we substitute the optimal prices in the coalition’s utility and
differentiate it once more, with respect to the quality of service
/ content level. Finally, we obtain the optimal quality of service
/ content level and the optimal prices for each provider in the
coalition. The resulting strategies form a Nash equilibrium for
the players since none of them has incentives to deviate from it
unilaterally. Details about the analytical determination of the
Nash equilibrium and its unicity are provided in Appendix
A. The characteristic function ν is also evaluated on each
coalition.

A cooperative game is an interactive decision model based
on the behavior of groups of players or coalitions. In a
cooperative game, one of the most difficult problem to solve
is the sharing of the coalition’s total revenue between its
members. Shapley has proposed a fair sharing rule for a n
player cooperative game. Another solution concept should
require that the coalition members had no incentives to deviate
to increase their revenue. Such a solution concept should
guarantee the system stability. The set of the allocations of the
grand coalition’s revenue which should guarantee the system
stability is the core of the cooperative game; formally, it is the
set of the global revenue allocations x = (xi)i=1,2,...,n such
that

∑
i=1,2,...,n xi = ν(1, 2, ..., n) (feasible) and

∑
i∈s xi ≥

ν(s), ∀s ⊆ S.

Computation of the Shapley value The core of a coop-
erative game can be empty or very large. It explains partly,
why this notion is so difficult to apply to predict the players’
behavior. An alternative approach might be to identify a unique
mapping φ : S → R

3 such that for the cooperative game
defined by the characterisitc function ν, the expected revenue
of each provider i is φi(ν).

Shapley has approched this problem axiomatically by defin-
ing a solution that prescribes a single payoff for each player
which is the average of all marginal contributions of that player
to each coalition he is member of. It satisfies four main ax-
ioms: efficiency i.e., the payoffs must add up to ν({1, 2, ..., n})
which means that all the grand coalition’s surplus is allocated;
symmetry i.e., if two players are substitutable because they
contribute the same to each coalition the solution should treat
them equally; additivity i.e., the solution to the sum of two
games with transferable utility must be the sum of what it
awards to each of the two games; dummy player i.e., if a
player contributes to nothing to every coalition the solution
should pay him nothing.

Theorem 3. (Shapley [11]) There exists exactly one applica-
tion φ : S → R satisfying the four axioms cited above. In a
cooperative game with n players and transferable utility, this
function satisfies the following equation for each player i and
for any characteristic function ν

φi(ν) =
∑

{s⊆S|i/∈s}

|s|!(n − |s| − 1)!
n!

(
ν(s ∪ {i}) − ν(s)

)

Formula in Theorem 3 can be interpreted the following way.
Suppose that we plan to assemble the grand coalition in a room
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but, the door to the room is only large enough for one player
to enter at a time, so the players randomly line up in a queue
at the door. The are n! different ways that the players might
be ordered in the queue. For any set s that does not contain
player i, there are |s|!(n−|s|−1)! different ways to order the
players so that s is the set of players who are ahead of player i
in the queue. Thus, if the various orderings are equally likely,
|s|!(n−|s|−1)!

n! is the probability that, when player i enters the
room, he will find the coalition s there ahead of him. If i finds
s ahead of him when he enters then, his marginal contribution
to the worth of the coalition in the room when he enters is(
ν(s∪{i})−ν(s)

)
. Thus, under this story of randomly ordered

entry, the Shapley value of any player is his expected marginal
contribution when he enters.

For each of the firms, we can compute the Shapley value
which corresponds to a fair sharing of the grand coalition’s
total benefit between the firms.

• For firm A1, we have φ1(ν) = 1
3

(
ν(A1, A2, A3) −

ν(A2, A3)
)

+ 1
6

(
ν(A1, A2)− ν(A2)

)
+ 1

6

(
ν(A1, A3)−

ν(A3)
)
.

• For firm A2, we set φ2(ν) = 1
3

(
ν(A1, A2, A3) −

ν(A1, A3)
)

+ 1
6

(
ν(A1, A2)− ν(A1)

)
+ 1

6

(
ν(A2, A3)−

ν(A3)
)
.

• For firm A3, we obtain φ3(ν) = 1
3

(
ν(A1, A2, A3) −

ν(A1, A2)
)

+ 1
6

(
ν(A1, A3)− ν(A1)

)
+ 1

6

(
ν(A2, A3)−

ν(A2)
)
.

Analytical expressions of Shapley value allocations for each
provider when the information level is quadratic (respectively
linear) in the quality of service / content level are detailed in
Appendix B.

Influence of β on the system stability with Shapley
value as sharing rule Presently, we want to characterize
the influence of the consumers’ sensitivity coefficient to the
quality of service / content level (β) on the mechanism of fair
revenue sharing for the grand coalition.

We have represented the allocations given by the Shapley
value for providers A1, A2, A3, for different number of con-
sumers on the market (N = 5, N = 10, N = 50, N = 120)
as functions of β ∈ [−1; 0]. Each provider’s allocation issued
from the Shapley value are plotted on Figures 3 and 4 with
information cost function being quadratic and linear in the
quality of service / content level, respectively.

We observe that for small sensitivity coefficients8, firms
do not invest very much in quality of service / content and
prefer proposing small access prices. In this case, we observe
in Figure 3, that A3 dominates the market. Indeed, access
prices being small, providers’ revenues are small and hardly
compensate the information cost which is quadratic in the
quality of service / content level. Thus, it is the favorite firm
(A3) which starts with a certain advantage and dominates the

8Note that in the economic interpretation, we consider the absolute value
of β.

market. For an information cost linear in the quality of service /
content, we note in Figure 4, that compensation is less difficult
and that A1 and A3 alternately dominate the market. Indeed,
A1 is a priori the firm who differentiates himself the most
from the others by proposing the smallest prices while A3 is
the favorite provider for the consumers.

For intermediate sensitivity coefficients, we observe on
Figures 3 and 4, oscillations on the providers’ revenues.
Indeed, these latter are involved in a price war.

Finally, when the sensitivity coefficient is high, providers
invest massively in the quality of service / content. The
problem is then that the providers’ access networks are limited
in capacity. Thus, they cannot invest more than a fixed quantity
qmax
i , i = 1, 2, 3. For a large number of consumers, each

provider invests at the maximum of his capacity and tries
to differentiate with the access prices. At the end, the game
converges when β decreases towards a perfect competition
situation where the access prices are fixed such that the firms’
profits are near 1 or even null9.

Fig. 3. Shapley value allocations for A1, A2, A3 as functions of β
with information quadratic in the quality of service / content level.

Fig. 4. Shapley value allocations for A1, A2, A3 as functions of β
with information linear in the quality of service / content level.

Sufficient conditions guaranteeing the core existence To
determine the core of the game, we have to solve the following

9We have considered in the numerical illustrations, the logarithm of the
providers’ revenues; but log(1) = 0 and limx→0+ log(x) = −∞.
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system of equations

(C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + x2 + x3 = ν(A1, A2, A3)
x1 ≥ ν(A1)
x2 ≥ ν(A2)
x3 ≥ ν(A3)
x1 + x2 ≥ ν(A1, A2)
x1 + x3 ≥ ν(A1, A3)
x2 + x3 ≥ ν(A2, A3)

Proposition 4. For N = 450.103 if I(αi) = q2
i

2 (resp.
I(αi) = qi) and β ∈ [−1;−0.78] (resp. β ∈ [−1;−0.49])
then, if the grand coalition’s total revenue is shared according
to the Shapley value, the grand coalition is stable i.e., no
provider has incentives to leave it.

Proof of Propositon 4 To start, we want to determine if there
exists β values for which the Shapley value is in the core. To
perform this point, we draw the 7 functions of β, each one
of them describing System (C) equality / inequalities. These
functions are

f0(β) = φ1(ν) + φ2(ν) + φ3(ν) − ν(A1, A2, A3)
f1(β) = φ1(ν) − ν(A1)
f2(β) = φ2(ν) − ν(A2)
f3(ν) = φ3(ν) − ν(A3)

f12(ν) = φ1(ν) + φ2(ν) − ν(A1, A2)
f13(ν) = φ1(ν) + φ3(ν) − ν(A1, A3)
f23(ν) = φ2(ν) + φ3(ν) − ν(A2, A3)

Suppose that the information level is quadratic in the QoS
/ content level. In Figure 5, we have plotted these 7 functions
of β. We observe that the constraints defining the core of the
game are satisfied if, and only if, β ∈ [−1;−0.78] with an
information level quadratic in the quality of service / content
investment level.

Fig. 5. Graphics of f0(β), fi(β), fij(β), i, j = 1, 2, 3, i �= j as
functions of β with information level being quadratic in the quality
of service / content level.

In Figure 6, we have plotted these 7 functions of β assuming
that the information level is this time, linear in the QoS /
content level. We observe that if β ∈ [−1;−0.49] then, the
Shapley value satisfies the constraints characterizing the core
of the game.

Fig. 6. Graphics of f0(β), fi(β), fij(β), i, j = 1, 2, 3, i �= j as
functions of β with information level being linear in the quality of
service / content level.

If the grand coalition is stable then, the regulatory author-
ity’s advices would not be followed by the providers. Indeed,
the Shapley value being in the core of the game, the providers
would rather follow this fair way to share the grand coalition’s
profit than deviating from it by following the regualtor’s
advices and risking to lose money. However, if the Shapley
value is not in the core of the game, the providers’ behaviors
might be unpredictable and the regulator should intervene to
control the system.

IV. INTERVENTION OF THE REGULATORY AUTHORITY TO
MAXIMIZE THE CONSUMERS’ WELFARE

In order to fix the ideas, we assume in the rest of the article
that I(αi) = q2

i

2 . We have seen in Section III that in this case,
if β ∈ [−1;−0.78], the Shapley value is in the core of the
game. Thus, if the three firms agree to implement this sharing
mechanism, the grand coalition should be stable and none of
the firms would deviate.

But, if β > −0.78, the System of equations (C) being
impossible to solve analytically, we cannot conclude on the
existence of a core for the game. The considered ecosystem
might then be highly unstable, penalizing heavily the firms
and the consumers. Then, the regulatory authority should
intervene. His aim is to increase the consumers’ welfare while
guaranteeing a maximal coverage of the market. In practice,
it means that the regulatory authority will try to determine the
system organization minimizing n0 = N

(
p1 + βq1

)
i.e., the

total number of consumers who choose to not subscribe to any
service, as a function of β and N .

Contrary to Section III, for each coalition, the regulatory
authority being unbiased, divides equally its total revenue
between its members. This is the simplest allocation rule [1].
It means that the regulatory authority does not want to take
into account the providers’ worth in the coalition to allocate
the total revenue. Besides, since β > −0.78, the Shapley
value is not in the core anymore; hence the providers would
most certainly deviate from this sharing rule if the regulator
imposed it. Consequentely, it is not a solution for the regulator
to impose the Shapley value as sharing rule in this section.

Determination of the domain of definition for (β,N)
depending on the proposed services In Figure 7, we have
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������A2

A3
cooperation no cooperation

cooperation {A2, A3} no cooperation
no cooperation no cooperation no cooperation

TABLE I
POSSIBLE INTERACTIONS BETWEEN THE PROVIDERS WHILE A1

REFUSES TO COOPERATE.

depicted which system organization should maximize the mar-
ket coverage i.e., minimize the number of consumers without
subscription (n0 = N

(
p1 + βq1

)
) as a function of β and

N . The different possible system organizations are: complete
competition (M0), cooperation between A1 and A2 solely
(M1), cooperation between A1 and A3 (M2), cooperation
between A2 and A3 solely (M3) and cooperation between the
three operators (M4).

The applications that we consider in this article, are highly
sensitive to the quality of service like for instance, video
over demand, music downloadings, interactive multiplayer
games, etc.; hence we assume that β < −0.7. Besides, the
total number of consumers on the market being rather large,
Figure 7 tells that the regulatory authority should break all
the emerging alliances (M0) to guarantee perfect competition
between the providers and maximize the market converage.

The relation between N and β < −0.7 delimiting the area
where no alliance should emerge can be interpolated by a
second order polynomial equation in β and N : N = 1 100 +
20 833(0.8+β)2. Now and in the rest of the article, we assume
to be in the domain of definition D, characterized by the rela-
tions D =

{
{β > −0.78}∩{N ≥ 1 100+20 833(0.8+β)2}

}
.

The regulatory authority should then intervene to guarantee
perfect competition between the providers.

Fig. 7. System organization minimizing the total number of con-
sumers without subscription as function of β and N .

Conditions on (β,N) guaranteeing that (pN
1 , pN

2 , pN
3 ) is

a Nash equilibrium We want to determine conditions on β
and N guaranteeing that (pN

1 , pN
2 , pN

3 ) is a Nash equilibrium
for the three service providers. It means that none of them has
an incentive to deviate from it.

Suppose that the providers cannot communicate (to avoid
cheating or reputation phenomenon for instance) and that
they play simultaneously the two-level game described in
Section II. Initially, they are all members of a common
alliance. The no-communication assumption means that a

������A2

A3
cooperation no cooperation

cooperation {A1, A2, A3} {A1, A2}
no cooperation {A1, A3} no cooperation

TABLE II
POSSIBLE INTERACTIONS BETWEEN THE PROVIDERS WHILE A1

AGREES TO COOPERATE.

two-player coalition might be formed only if both players
decide at the same instant to form a sub-coalition without
prior arrangement. Furthermore, border situations might ap-
pear where one provider continues to play as if he were in
an alliance although the other players have already defected.
But of course, the observation of the resulting payoffs gives
indications to the providers about their allies’ past choices10.
In Tables I and II, we have listed all the joint possible actions
for the providers. In fact, each provider is confronted to a
prisonner dilemma: either he tries to cooperate or, he defects.
Contrary to the classical version of the dilemma [18], we have
to cope here with three players in competition. To be more
precise, we describe the game setting. If the three providers
choose to cooperate, they form a grand coalition and their
access prices are p∗i , i = 1, 2, 3 as defined in Appendix
A. If only two of the providers accept to cooperate (for
instance Ai and Aj), they form (secretly) a coalition against
Ak, i, j, k = 1, 2, 3, i �= j, i �= k, j �= k who, being
not informed of this alliance, continues to play as under total
competition. The access prices are denoted p

AiAj

i and p
AiAj

j

(resp. pN
k ) for Ai and Aj (resp. Ak) as defined in Appendix

A.
In Tables I and II, (pN

1 , pN
2 , pN

3 ) is a Nash equilibrium if,
and only if, the providers have no incentives to leave this
equilibrium to form coalitions. Formally, the three following
inequalities should be satisfied

(1) min
{

U1(pN
1 , pN

2 , pN
3 ) −

U1(pA1A2
1 , pA1A2

2 , pN
3 ); U1(pN

1 , pN
2 , pN

3 ) −
U1(pA1A3

1 , pN
2 , pA1A3

3 ); U1(pN
1 , pN

2 , pN
3 )−U1(p∗1, p

∗
2, p

∗
3)

}
≥ 0

(2) min
{

U2(pN
1 , pN

2 , pN
3 ) −

U2(pA1A2
1 , pA1A2

2 , pN
3 ); U2(pN

1 , pN
2 , pN

3 ) −
U2(pN

1 , pA2A3
2 , pA2A3

3 ); U2(pN
1 , pN

2 , pN
3 )−U2(p∗1, p

∗
2, p

∗
3)

}
≥ 0

(3) min
{

U3(pN
1 , pN

2 , pN
3 ) −

U3(pA1A3
1 , pN

2 , pA1A3
3 ); U3(pN

1 , pN
2 , pN

3 ) −
U3(pN

1 , pA2A3
2 , pA2A3

3 ); U3(pN
1 , pN

2 , pN
3 )−U2(p∗1, p

∗
2, p

∗
3)

}
≥ 0

Proposition 5. (pN
1 , pN

2 , pN
3 ) is a Nash equilibrium for the

three providers on the domain of definition D if,and only if,
N ≥ 14 100 + 500.103β2.

Proof of Proposition 5 In Figure 8, we have depicted

10We assume here that the providers detect that one of their allies has
defected in at most two steps. Generalizations where the detection time is
random might be considered as future research avenues.
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Fig. 8. Conditions for each provider on β and N guaranteeing the
existence of a Nash equilibrium in (pN

1 , pN
2 , pN

3 ).

Fig. 9. Conditions on β and N guaranteeing the existence of a Nash
equilibrium in (pN

1 , pN
2 , pN

3 ) on the domain of definition.

the areas in β and N where the Nash equilibrium condi-
tions for (pN

1 , pN
2 , pN

3 ) are satisfied for each provider. We
observe that these areas can be delimited by second order
polynomial equations. For firm A1, the area guaranteed that
(pN

1 , pN
2 , pN

3 ) is a Nash equilibrium is delimited by the equa-
tion N = 15 600 + 93 750β2. Identically, for firm A2, we
get: N = 15 400 + 156 250β2 and for firm A3, we obtain:
N = 14 100 + 500.103β2. In Figure 9, we have pictured
the three resulting curves as functions of β and N as well
as the domain of definition D. We then get numerically that
(pN

1 , pN
2 , pN

3 ) is a Nash equilibrium for the three providers if,
and only if (β,N) lie in the area delimited by the polynomial
equation in β: N = 14 100 + 500.103β2.

Controled dynamic evolution from cooperation to total
competition As already stated, initially, the three providers
form a common alliance. We assume that the conditions
obtained in Proposition 5 are satisfied and that two providers
cannot simultaneously leave the alliance; besides, the total
number of consumers on the market is fixed and known by all
the providers. The cooperative game introduced in Section III
is now repeated under an infinite horizon and discrete time
steps. In a dynamic framework, we need to introduce a
discount factor δ ∈]0; 1[ which enables us to valuate a future
profit, today [2], [8], [18]. Three evolution scenarios may raise
at time instant T > 011

• Scenario 1 {A1, A2, A3} � {A1, A2} i.e., A3 deviates at

11T , is fixed arbitrarily.

time instant T . Then at time instant T + 112, three cases
might appear: either A1 and A2 continue to cooperate in
the rest of the game; either A1 deviates; or A2 breaks
the alliances he had with A1. If A1 or A2 breaks the
alliance with the other provider, cooperation cannot be
envisaged anymore in the rest of the game since the
providers’ prices stabilize forever in the Nash equilibrium
(pN

1 , pN
2 , pN

3 ).
• Scenario 2 {A1, A2, A3} � {A1, A3} i.e., A2 leaves the

grand coaltion at time instant T . Then at time instant
T +1, three cases are possible: either A1 and A3 continue
to cooperate in the rest of the game; either A1 breaks the
alliance he had with A3; or A3 breaks the alliance he had
with A1. In these two latter cases, no more cooperation
can emerge in the rest of the game.

• Scenario 3 {A1, A2, A3} � {A2, A3} i.e., A1 leaves the
grand coalition at time instant T . Then at time instant
T + 1, three cases can be envisaged: either A2 and A3

continue to cooperate in the rest of the game; either
A2 breaks the alliance he had with A3; or A3 breaks
the alliance he had with A2. In these two latter cases,
competition becomes total forever.

The main hypotheses of these section are recalled below.

Hypotheses

• I(αi) = q2
i

2 ,
• two providers cannot simultaneously leave the alliance,
• contrary to Section III, for each coalition, the regulatory

authority divides equally its total revenue between its
members,

• δ ∈]0; 1[ is the discount factor of the repeated game.

Study of Scenario 1 We let U∗
ij be the coalition {Ai, Aj}

maximum revenue when both Ai and Aj cooperate; it is
simply defined as the maximized sum of Ai and Aj’s utilities.
Similarly, U∗ denote the grand coalition maximum revenue
when the three providers cooperate; it coincide with the
maximized sum of the three providers utilities. If

1
2
U∗

12 ≥ max
{

(1 − δ)U1(pN
1 , p∗2, p

N
3 ) + δU1(pN

1 , pN
2 , pN

3 );

(1 − δ)U2(p∗1, p
N
2 , pN

3 ) + δU2(pN
1 , pN

2 , pN
3 )

}
and

U3(p∗1, p
∗
2, p

N
3 ) − 1

3
U∗ > 0 (1)

then, A3 deviates at time instant T and then, A1 and A2

cooperate for the rest of the game.
If

1
2
U∗

12 < (1 − δ)U1(pN
1 , p∗2, p

N
3 ) + δU1(pN

1 , pN
2 , pN

3 )

and
(1 − δ)U3(p∗1, p

∗
2, p

N
3 ) + (1 − δ)δU3(pN

1 , p∗2, p
N
3 )

+ δ2U3(pN
1 , pN

2 , pN
3 ) − 1

3
U∗ > 0 (2)

12We assume that the discrete time steps are large enough so that providers
have time to realize that one of them has left the alliance.
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Fig. 10. Conditions on β and δ under which A3 leaves the grand
coalition and no cooperation between the providers can emerge, N =
450.103.

then, A3 deviates at time instant T and then, A1 deviates at
time instant T + 1 and no cooperation cannot be envisaged
anymore for the rest of the game.

If

1
2
U∗

12 < (1 − δ)U2(p∗1, p
N
2 , pN

3 ) + δU2(pN
1 , pN

2 , pN
3 )

and
(1 − δ)U3(p∗1, p

∗
2, p

N
3 ) + δ(1 − δ)U3(p∗1, p

N
2 , pN

3 )

+ δ2U3(pN
1 , pN

2 , pN
3 ) − 1

3
U∗ > 0 (3)

then, A3 leaves the grand coalition at time instant T and then,
A2 deviates at time instant T + 1 and the providers do not
cooperate anymore in the rest of the game.

Proposition 6. If provider A3 leaves the grand coalition then,
there does not exist any value of β ∈ [−0.78; 0] and δ ∈]0; 1[
guaranteeing that providers A1 and A2 would cooperate.

Provider A1 refuses to cooperate with provider A2 after
provider A3 has left the grand coalition if, and only if, δ ∈
]0; 0.5[ and β ∈ [−0.78;−0.58].

Provider A2 refuses to cooperate with provider A1 after
provider A3 has left the grand coalition if, and only if, δ ∈
[0.5; 1[ and β ∈ [−0.78;−0.58].

Proof of Proposition 6 A3 leaves the grand coalition at time
instant T if the profit he expects to receive from this deviation
is superior to the profit that he would receive if he continues
to cooperate with A1 and A2. In order to valuate A3’s worth
of deviation, this latter should distinguish between three cases

• At time instant T + 1, A1 and A2 understanding that A3

has deviated punish him by forming a coalition. In this
case, A3 deviates in spite of his rival’s threats if, and only
if 1

3

∑+∞
t=0 δtU∗ < 1

3

∑T−1
t=0 δtU∗ + δT U3(p∗1, p

∗
2, p

N
3 ) +

+∞∑
t=T+1

δtU3(p∗1, p
∗
2, p

N
3 )

︸ ︷︷ ︸
punishment

.

• At time instant T+1, A1 understands that A3 has deviated
and to punish him refuses to cooperate once more with
A2. A3 deviates in spite of A1’s threat if, and only if
1
3

∑+∞
t=0 δtU∗ < 1

3

∑T−1
t=0 δtU∗ + δT U3(p∗1, p

∗
2, p

N
3 ) +

δT+1U3(pN
1 , p∗2, p

N
3 ) +

+∞∑
t=T+2

δtU3(pN
1 , pN

2 , pN
3 )

︸ ︷︷ ︸
punishment

.

• At time instant T+1, A2 understands that A3 has deviated
and to punish him refuses to cooperate once more with
A1. A3 deviates in spite of A2’s threat if, and only if
1
3

∑+∞
t=0 δtU∗ < 1

3

∑T−1
t=0 δtU∗ + δT U3(p∗1, p

∗
2, p

N
3 ) +

δT+1U3(p∗1, p
N
2 , pN

3 ) +
+∞∑

t=T+2

δtU3(pN
1 , pN

2 , pN
3 )

︸ ︷︷ ︸
punishment

.

A few simplifications later, we obtain Inequalities (1), (2),
(3).

We let F0 = 1
2U∗

12, F1 = (1 − δ)U1(pN
1 , p∗2, p

N
3 ) +

δU1(pN
1 , pN

2 , pN
3 ), F2 = (1 − δ)U2(p∗1, p

N
2 , pN

3 ) +
δU2(pN

1 , pN
2 , pN

3 ). F0 − F1 > 0 if, and only if A1 has
no incentives to leave {A1, A2}. F0 − F2 > 0 if, and only
if A2 has no incentives to leave {A1, A2}. At the top of
Figure 10, we have depicted F0 − F1 (left) and F0 − F2

(right). Since {F0 − F1} ∩ {F0 − F2} = ∅, A1 and A2 would
not cooperate if A3 deviates. At the bottom of Figure 10,
we have depicted F4 = (1 − δ)U3(p∗1, p

∗
2, p

N
3 ) + δ(1 −

δ)U3(pN
1 , p∗2, p

N
3 ) + δ2U3(pN

1 , pN
2 , pN

3 ) − 1
3U∗ (left) and

F5 = (1 − δ)U3(p∗1, p
∗
2, p

N
3 ) + δ(1 − δ)U3(p∗1, p

N
2 , pN

3 ) +
δ2U3(pN

1 , pN
2 , pN

3 ) − 1
3U∗ (right). F4 > 0 if, and only if A3

deviates eventhough he thinks that A1 will quickly realize it
and to punish him, will refuse to cooperate with A2 anymore.
Identically, F5 > 0 if, and only if A3 deviates eventhough he
thinks that A2 will quickly relaize it and to punish him, will
refuse to cooperate once more with A1. Depending on δ and
β values, we identify the system evolution during the course
of the repeated game and obtain Proposition 6.

Study of Scenario 2 If

1
2
U∗

13 ≥ max
{

(1 − δ)U1(pN
1 , pN

2 , p∗3) + δU1(pN
1 , pN

2 , pN
3 );

(1 − δ)U3(p∗1, p
N
2 , pN

3 ) + δU3(pN
1 , pN

2 , pN
3 )

}
and

U2(p∗1, p
N
2 , p∗3) −

1
3
U∗ > 0 (4)

then, A2 deviates and then, A1 and A3 cooperate during the
rest of the game.

If

1
2
U∗

13 < (1 − δ)U1(pN
1 , pN

2 , p∗3) + δU1(pN
1 , pN

2 , pN
3 )

and
(1 − δ)U2(p∗1, p

N
2 , p∗3) + δ(1 − δ)U2(pN

1 , pN
2 , p∗3)

+δ2U2(pN
1 , pN

2 , pN
3 ) − 1

3
U∗ > 0 (5)

then, A2 deviates and then, A1 refuses to cooperate with A3

solely and the providers are in competition during the rest of
the game.
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Fig. 11. Conditions on β and N guaranteeing that A2 leaves the
grand coalition and no cooperation occurs between A1 and A3, N =
450.103.

Fig. 12. Conditions on β and δ giving incentives for A1 or A3 to
not cooperate when A2 has already left, N = 450.103.

If

1
2
U∗

13 < (1 − δ)U3(p∗1, p
N
2 , pN

3 ) + δU3(pN
1 , pN

2 , pN
3 )

and
(1 − δ)U2(p∗1, p

N
2 , p∗3) + δ(1 − δ)U2(p∗1, p

N
2 , pN

3 )

+δ2U2(pN
1 , pN

2 , pN
3 ) − 1

3
U∗ > 0 (6)

then, A2 leaves the grand coalition and then, A3 deviates and
no more cooperation can emerge during the rest of the game.

Proposition 7. If β ∈ [−0.78;−0.57[ then, provider A2 does
not deviate provided he thinks that providers A1 and A3 are
going to cooperate. In this case, the three providers stay in
the grand coalition.

On the contrary, if provider A2 thinks that the other firms
have incentives to deviate then, his strategy is different.

If β ∈ [−0.78;−0.57] and δ ∈ [0.65; 0.8[ then, provider A2

and then, provider A3 deviate. But, if β ∈ [−0.78;−0.57] and
δ ∈ [0.8; 1[ or β ∈ [−0.57; 0] and δ ∈]0; 1[ then, provider A2

and then, provider A3 or provider A1 deviates.

Proof of Proposition 7 A2 deviates at time instant T from
the grand coalition if the profit he receives from this deviation
is superior to the profit that he should have received if he had
continued to cooperate with A1 and A3. In the same spirit as
in the proof of Proposition 6, we need to distinguish between
three cases.

• A2 leaves the grand coalition at time instant T then at
time instant T + 1, A1 and A3 realize it and decide to
cooperate. A2 chooses to deviate in spite of {A1, A2}’s
threat if, and only if 1

3

∑+∞
t=0 δtU∗ < 1

3

∑T−1
t=0 δtU∗ +

+∞∑
t=T

δtU2(p∗1, p
N
2 , p∗3)

︸ ︷︷ ︸
punishment

.

• A2 leaves the grand coalition at time instant T and then
at time instant T +1, A1 realizing it, refuses to cooperate
once more with A3. The three providers are then in com-
petition for the rest of the game. A2 deviates in spite of
A1’s threat if and only if 1

3U∗ < (1−δ)U2(p∗1, p
N
2 , p∗3)+

δ(1 − δ)U2(pN
1 , pN

2 , p∗3) + δ2U2(pN
1 , pN

2 , pN
3 ).

• A2 leaves the grand coalition at time instant T and then
at time instant T +1, A3 realizing it, refuses to cooperate
once more with A1. The three providers are then in com-
petition for the rest of the game. A2 deviates in spite of
A3’s threat if, and only if 1

3U∗ < (1−δ)U2(p∗1, p
N
2 , p∗3)+

δ(1 − δ)U2(p∗1, p
N
2 , pN

3 ) + δ2U2(pN
1 , pN

2 , pN
3 ).

We let F0 = 1
2U∗

13, F1 = (1 − δ)U1(pN
1 , pN

2 , p∗3) +
δU1(pN

1 , pN
2 , pN

3 ), F2 = (1 − δ)U3(p∗1, p
N
2 , pN

3 ) +
δU3(pN

1 , pN
2 , pN

3 ). At the bottom of Figure 11, we have
pictured F3. F3 > 0 for β ∈ [−0.66;−0.56[ i.e., A2 has
no incentives to leave the grand coalition for these values
of β. At the top of Figure 11, we observe F0 − F1 (left)
and F0 − F2 (right). We infer that if A2 leaves the grand
coaltion, A1 and A3 will never cooperate. Figure 12, we
have depicted F4 (left) and F5 (right). We infer the system
evolution towards complete competition as function of β and
of δ.

Study of Scenario 3 If

1
2
U∗

23 ≥ max{(1 − δ)U2(pN
1 , pN

2 , p∗3) + δU2(pN
1 , pN

2 , pN
3 );

(1 − δ)U3(pN
1 , p∗2, p

N
3 ) + δU3(pN

1 , pN
2 , pN

3 )}
U1(pN

1 , p∗2, p
∗
3) −

1
3
U∗ > 0 (7)

then, A1 deviates and then, A2 and A3 continue to cooperate
during the rest of the game.

If

1
2
U∗

23 < (1 − δ)U2(pN
1 , pN

2 , p∗3) + δU2(pN
1 , pN

2 , pN
3 )

(1 − δ)U1(pN
1 , p∗2, p

∗
3) + δ(1 − δ)U1(pN

1 , pN
2 , p∗3)

+δ2U1(pN
1 , pN

2 , pN
3 ) − 1

3
U∗ > 0 (8)

then, A1 deviates and then, A2 refuses to cooperate with
A3 only and leaves the coalition. The three providers are in
competition for the rest of the game.

If

1
2
U∗

23 < (1 − δ)U3(pN
1 , p∗2, p

N
3 ) + δU3(pN

1 , pN
2 , pN

3 )

(1 − δ)U1(pN
1 , p∗2, p

N
3 ) + δ(1 − δ)U1(pN

1 , p∗2, p
N
3 )

+δ2U1(pN
1 , pN

2 , pN
3 ) − 1

3
U∗ > 0 (9)

then, A1 deviates and then, A3 breaks the alliance with A2.
The three providers are in competition during the rest of the
game.
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Fig. 13. Conditions on β and δ guaranteeing that A1 will leave
the grand coalition and then, A2 and A3 will refuse to cooperate,
N = 450.103.

Fig. 14. Conditions on β and δ giving incentives for A2 or A3 to
not cooperate when A1 has already left, N = 450.103.

Proposition 8. If provider A1 thinks that providers A2 and
A3 will cooperate, he deviates from the grand coalition if, and
only if, β ∈ [−0.56; 0].

Provider A1 leaves the grand coalition and then, provider
A2 deviates if, and only if, β ∈ [−0.78;−0.56] and δ ∈
[0.67; 0.8[.

Provider A1 leaves the grand coalition and then, provider
A2 or provider A3 deviates if, and only if β ∈ [−0.78;−0.56]
and δ ∈ [0.8; 1[.

Proof of Proposition 8 In the same spirit as in the proofs of
Propositions 6 and 7, A1 deviates from the grand coalition
if the profit he receives from this deviation is superior to
the profit he would have received if he had continued to
cooperate with A2 and A3. Three cases should be distinguised.
The arguments are the same as thos detailed in the previous
propositions; hence it will not be detailed.

Let F0 = 1
2U∗

23, F1 = (1 − δ)U2(pN
1 , pN

2 , p∗3) +
δU2(pN

1 , pN
2 , pN

3 ), F2 = (1 − δ)U3(pN
1 , p∗2, p

N
3 ) +

δU3(pN
1 , pN

2 , pN
3 ) and F3 = U1(pN

1 , p∗2, p
∗
3) − 1

3U∗.
At the botton of Figure 13, we have pictured F3.
F3 > 0 for β ∈ [−0.56;−0.43] if, and only if A1

leaves the grand coalition eventhough he thinks that A2

and A3 will punish him by forming a coalition. Let
F4 = (1 − δ)U1(pN

1 , p∗2, p
∗
3) + δ(1 − δ)U1(pN

1 , pN
2 , p∗3) +

δ2U1(pN
1 , pN

2 , pN
3 ) and F5 = (1 − δ)U1(pN

1 , p∗2, p
∗
3) + δ(1 −

δ)U1(pN
1 , p∗2, p

N
3 ) + δ2U1(pN

1 , pN
2 , pN

3 ). On figure 14, we
observe F4 (left) and F5 (right). Depending on β and δ
values, we determine the system dynamic evolution.

Proposition 9. For the regulatory authority, it is sufficient
to choose an interest rate smaller than 53% to maximize the

market coverage and a fortiori, the consumer welfare.

Proof of Proposition 9 Using Proposition 6, 7 and 8, we
could infer the system’s behavior as function of β and δ values.

Using Proposition 6
• If δ ∈]0; 0.5[ and β ∈ [−0.78;−0.58[ then, A3 leaves the

grand coalition and then, A1 refuses to cooperate once
more with A2. No cooperation cannot be envisaged in
the rest of the game.

• If δ ∈ [0.5; 1[ and β ∈ [−0.78;−0.58[ then, A3 leaves
the grand coalition and then, A2 refuses to cooperate once
more with A1. No cooperation cannot be envisaged in the
rest of the game.

• If δ ∈]0; 1[ and β ∈ [−0.58; 0] then, {A1, A2, A3}
cooperate.

Then, using Proposition 7
• If δ ∈]0; 0.65[ and β ∈ [−0.78;−0.57[ the three providers

cooperate.
• If δ ∈ [0.65; 0.8[ and β ∈ [−0.578−0.57] then, A2 leaves

the grand coalition and then, A3 breaks the alliance he
had with A1. No cooperation is possible in the rest of the
game.

• If δ ∈ [0.8; 1[ and β ∈ [−0.78;−0.57] then, A2 leaves the
grand coalition and then, A3 or A1 refuses to cooperate.
No cooperation can emerge in the rest of the game.

Finally, using Proposition 8
• If δ ∈]0; 0.67[ and β ∈ [−0.78;−0.56[ or δ ∈ [0.1] and

β ∈ [−0.56; 0] then, the three providers cooperate.
• If δ ∈ [0.67; 0.8[ and β ∈ [−0.78;−0.56] then, A1 leaves

the grand coalition and then, A2 refuses to cooperate. No
cooperation can emerge in the rest of the game.

• If δ ∈ [0.8; 1[ and β ∈ [−0.78;−0.56] then, A1 leaves the
grand coaliton and then, A2 or A3 refuses to cooperate.
Cooperation cannot be envisaged in the rest of the game.

The discount factor can be expressed as a function of the
interest rate: δ = 1

1+r with r > 0 the per-period interest rate
imposed by the regulatory authority [2]. It is equivalent with
r = 1

δ − 1.

TABLE III
AREA OF β AND δ WHERE SCENARIOS HOLD.

Comparing Propositions 6, 7 and 8 results (cf. Table III),
we observe that cooperation might emerge if, and only if,
β ∈ [−0.58;−0.57] and δ ∈ [0; 0.65]. Hence, to prevent
cooperation from occuring, the regulatory authority should
impose that 0.65 < δ < 1 ⇔ 0 < r < 0.53. Hence, the interest
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rate r, should be smaller than 53% to insure that competition
is total between the three service providers.

V. CONCLUSIONS

In this article, we have studied the game that arises be-
tween three service providers in competition, who have the
opportunity to cooperate in order to increase their profits.
We prove that if the consumers’ sensitivity to the quality
of service / content coefficient (β) is inferior to −0.78 then,
the Shapley value is a fair way to share the grand coalition
revenue between the service providers and belongs to the
core of the game i.e., provided the three service providers
agree on this sharing rule the game remains stable. But if
β > −0.78, the regulatory authority should intervene since
the system behavior might be highly unstable penalizing the
consumers and the weakest providers. We show that under
equal allocations of the coalitions’ revenues, if the regulatory
authority imposes a per-period interest rate smaller than 53%,
the consumer welfare is guaranteed and the market coverage
is maximized.

Extensions of the article might consider other sharing rules
such as the nucleolus or the proportional fairness criteria [15].
The game resolution can also be extended to deal with far
many service providers in interaction and / or various sources
of uncertainty. To perform this point, simulation and stochastic
processes should be introduced [17].

APPENDIX

A Proofs

We just recall some basic notations that could be useful to
understand the following proofs. Under complete competition,
provider i’s optimal decision will be denoted pN

i for the access
price and qN

i for the optimal QoS / content level. Provider i’s
maximized utility is UN

i . When firms Ai and Aj form a coali-
tion against Ak, the firms optimal decisions will be denoted
p

AiAj

i , p
AiAj

j , p
AiAj

k for the prices and q
AiAj

i , q
AiAj

j , q
AiAj

k for
the QoS / content levels. Then, the coalition maximized utility
is denoted U∗

ij while Ak maximized utility is U∗
k . Finally, when

all the providers enter a grand coalition, its optimal utility is
denoted U∗.

Computation of ν(A1), ν(A2), ν(A3) In this case, the three
providers are in competition and no cooperation can emerge.
By differentiation of each provider’s utility, we obtain that the
optimal access prices for A1, A2 et A3 are of the form

p1 =
1
8

[
β(q3 + 2q2 − 4q1) + 1

]

p2 = −1
4

[
β(−q3 + 2q2) − 1

]

p3 = −1
2

[
βq3 − 1

]

By substitution of the price in the providers’ utilities, we

obtain

U1 =
1
8
((βq3 + 2βq2 − 4βq1 + 1)(

1
4
(βq3 − 2βq2 + 1)

+
1
8
(−βq3 − 2βq2 + 4βq1 − 1)

+ βq2 − βq1)N) − Ioϑ(q1)

U2 =
1
4
((βq3 − 2βq2 + 1)(

1
4
(−βq3 + 2βq2 − 1)

+
1
2
(1 − βq3) + βq3 − βq2)N) − Ioϑ(q2)

U3 =
1
2
((1 − βq3)((βq3 − 1)/2 − βq3 + 1)N) − Ioϑ(q3)

Then, to get the optimal quality of service / content q∗i , it
is sufficient to differentiate Ui with respect to qi and to solve
the associated linear system.

As previously mentioned, in order to fix the ideas, we
consider two examples. In the first example, the information
level is quadratic in the quality of service / content level i.e.,
αi = q2

i

2 ⇔ qi =
√

2αi and the information cost function I(.)
is the identity. In the second example, the information level
is linear in the quality of service / content level i.e., αi = qi

while the information cost function I(.) is still the identity.

Example 1. Information level quadratic in the quality of
service / content level In this case, the maximized utilities for
each firm Ai, i = 1, 2, 3 can be written as

UN
1 = {−β8N5 + 4β6N4 − 6β4N3 + 4β2N2 − N}

... {2β10N5 − 20β8N4 + 80β6N3

− 160β4N2 + 160β2N − 64}−1

UN
2 =

−β4N3 + 2β2N2 − N

2β6N3 − 12β4N2 + 24β2N − 16

UN
3 =

1
2
(N(

1 − (β2N)
β2N − 2

)
1
2
(

β2N

β2N − 2
− 1) − β2N

β2N − 2

+ 1) − β2N2

2(β2N − 2)2

The optimal quality of service / content levels for each firm
are

qN
1 =

β5N3 − 2β3N2 + βN

β6N3 − 6β4N2 + 12β2N − 8

qN
2 =

β3N2 − βN

β4N2 − 4β2N + 4

qN
3 =

βN

β2N − 2

Finally, by substitution of the optimal prices in the previous
QoS / content level, we obtain the access price final expres-
sions

pN
1 =

1
8
(− 4β(β5N3 − 2β3N2 + βN)

β6N3 − 6β4N2 + 12β2N − 8

+
2β(β3N2 − βN)

β4N2 − 4β2N + 4
+

β2N

β2N − 2
+ 1)

pN
2 =

1
4
(− 2β(β3N2 − βN)

β4N2 − 4β2N + 4
+

β2N

β2N − 2
+ 1)

pN
3 =

1
2
(1 − β2N

β2N − 2
)
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Example 2. Information level quadratic in the quality of
service / content level The maximized utilities for each of the
three providers are identical

UN
1 = UN

2 = UN
3 =

−βN − 3
β2N

The quality of service / content levels are obtained

qN
1 =

βN + 4
β2N

qN
2 =

βN + 3
β2N

qN
3 =

βN + 2
β2N

Finally, the optimal access prices for each firm are

pN
1 =

1
8
(−4(βN + 4)

βN
+ (2

βN + 3)
βN

+
βN + 2

βN
+ 1)

pN
2 =

1
4
(−2(βN + 3)

βN
+

βN + 2
βN

+ 1)

pN
3 =

1
2
(1 − βN + 2

βN
)

Computation of ν(A1, A2) In this case, firms A1 and A2

form an alliance against firm A3 who remains alone. The
optimal prices p1 and p2, are obtained by differentiation of
the alliance’s utility U1 +U2. A3’s optimal access price p3, is
obtained by differentiation of U3. We get

p1 =
1
6

[
β(q3 + 2q2 − 4q1) + 1

]

p2 = −1
3

[
β(−q3 + q2 + q1) − 1

]

p3 = −1
2

[
βq3 − 1

]
By substitution of the access prices, the provider A3 and

the alliance utilities become

U3 =
1
4

(
(β2q2

3 − 2βq3 + 1)N − 4Ioϑ(q3)
)

U1 + U2 =
1
12

(
(β2q2

3 + (−2β2q2 − 2β2q1 + 2β)q3

+ 4β2q2
2 + (−4β2q1 − 2β)q2 + 4β2q2

1 − 2βq1

+ 1)N − 12Ioϑ(q2) − 12Ioϑ(q1)
)

Example 1. Information level quadratic in the quality of
service / content level The maximized utilities for alliance
{A1, A2} and its rival A3 are

U∗
12 = − β4N3 − 2β2N2 + N

β6N3 − 7β4N2 + 16β2N − 12

U∗
3 = − N

2β2N − 4
The optimal quality of service / content levels are of the form

qA1A2
1 = qA1A2

2 =
β3N2 − 2βN

β4N2 − 10β2N + 12

qA1A2
3 =

βN

β2N − 4

Finally, the optimal access prices for the partners in the
alliance {A1, A2} and for A3 are

pA1A2
1 =

1
6
(− 2β(β3N2 − 2βN)

β4N2 − 10β2N + 12
+

β2N

β2N − 4
+ 1)

pA1A2
2 =

1
3
(− 2β(β3N2 − 2βN)

β4N2 − 10β2N + 12
+

β2N

β2N − 4
+ 1)

pA1A2
3 =

1
2
(1 − β2N

β2N − 2
)

Example 2. Information level linear in the quality of service
/ content level The maximized utilities for coalition {A1, A2}
against A3 are

U∗
12 = −(2β7N4 + (−12β5 − 3β4)N3 + (22β3 + 6β2)N2

+ (−12β − 3)N)(β8N4 − 10β6N3 + 37β4N2

− 60β2N + 36)−1

U∗
3 =

−β3N2 − (−2β − 1)N
β4N2 − 4β2N + 4

The optimal quality of service / content levels are obtained

qA1A2
1 =

β5N3 − 2β3N2 + βN

β6N3 − 6β4N2 + 11β2N − 6

qA1A2
2 =

β5N3 − 2β3N2 + βN

β6N3 − 6β4N2 + 11β2N − 6

qA1A2
3 =

βN

β2N − 2

Finally, the optimal prices become

pA1A2
1 =

1
6
(− 2β(β5N3 − 2β3N2 + βN)

β6N3 − 6β4N2 + 11β2N − 6
+

β2N

β2N − 2
+ 1)

pA1A2
2 =

1
3
(− 2β(β5N3 − 2β3N2 + βN)

β6N3 − 6β4N2 + 11β2N − 6
+

β2N

β2N − 2
+ 1)

pA1A2
3 =

1
2
(1 − β2N

β2N − 2
)

Computation of ν(A1, A3)
Firms A1 and A3 form a coalition against firm A2 who

is alone. By differentitation of {A1, A3}’s utilities and of
firm A2’s utility, we obtain the optimal prices for the three
providers

p1 =
1
8

[
β(q3 + 2q2 − 4q1) + 1

]

p2 = −1
4

[
β(−q3 + 2q2) − 1

]

p3 = −1
2

[
βq3 − 1

]

Then, substituting these optimal prices, coalition {A1, A3}’s
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utility and A2’s utility become

U1 + U3 =
1
64

((17β2q2
3 + (4β2q2 − 8β2q1 − 30β)q3

+ 4β2q2
2 + (4β − 16β2q1)q2 + 16β2q2

1

− 8βq1 + 17)N − 64Ioϑ(q3) − 64Ioϑ(q1))

U2 =
1
16

((β2q2
3 + (2β − 4β2q2)q3 + 4β2q2

2 − 4βq2

+ 1)N − 16Ioϑ(q2))

Example 1. Information level quadratic in the quality of
service / content level The maximized utilities for coalition
{A1, A3} and firm A2 are

U∗
2 = (−16β10N6 + 128β8N5 − 400β6N4 + 608β4N3

−4 48β2N2 + 128N)(32β12N6 − 400β10N5

+ 2034β8N4 − 5412β6N3 + 8002β4N2 − 6272β2N

+ 2048)−1

U∗
13 = −(32β10N6 − 266β8N5 + 909β6N4 − 1604β4N3

+ 1457β2N2 − 544N)(32β12N6 − 400β10N5

+ 2034β8N4 − 5412β6N3 + 8002β4N2 − 6272β2N

+ 2048)−1

The optimal quality of service / content levels are

qA1A3
1 =

4β5N3 − 8β3N2 + 4βN

4β6N3 − 25β4N2 + 49β2N − 32

qA1A3
3 =

4β5N3 − 15β3N2 + 15βN

4β6N3 − 25β4N2 + 49β2N − 32

qA1A3
2 =

4β5N3 − 12β3N2 + 8βN

4β6N3 − 25β4N2 + 49β2N − 32

Finally, the optimal prices for the providers take the following
expression

pA1A3
1 =

1
6
(− 2β(β5N3 − 2β3N2 + βN)

β6N3 − 6β4N2 + 11β2N − 6

+
β2N

β2N − 2
+ 1)

pA1A3
2 =

1
3
(− 2β(β5N3 − 2β3N2 + βN)

β6N3 − 6β4N2 + 11β2N − 6

+
β2N

β2N − 2
+ 1)

pA1A3
3 =

1
2
(1 − β2N

β2N
− 2)

Example 2. Information level linear in the quality of service
/ content level The maximized utilities for coalition {A1, A3}
and provider A2 are

U∗
2 =

−4βN − 9
4β2N

U∗
13 =

−16βN − 15
16β2N

The optimal quality of service / content levels are

qA1A3
1 =

4βN + 17
4β2N

qA1A3
3 =

2βN + 5
2β2N

qA1A3
2 =

4βN + 13
4β2N

Finally, the optimal prices are

pA1A3
1 =

1
8
(−4βN + 17

βN
+

4βN + 13
2βN

+
2βN + 5

2βN
+ 1)

pA1A3
2 =

1
4
(−4βN + 13

2βN
+

2βN + 5
2βN

+ 1)

pA1A3
3 =

1
2
(1 − 2βN + 5

2βN
)

Computation of ν(A2, A3) In this case, firms A2 and
A3 form a coalition against firm A1. The optimal prices are
obatined by differentiation of coalition {A2, A3}’s utility and
of firm A1’s utility

p1 =
1
6

[
β(q3 + q2 − 3q1) + 1

]

p2 =
1
3

[
β(q3 − 2q2) + 1

]

p3 = −1
3

[
β(q3 + q2) − 2

]
By substitution of the optimal prices, coalition {A2, A3}’s

utility and A1’s utility can be expressed as functions of quality
of service / content levels qi, i = 1, 2, 3 exclusively; which
gives

U1 =
1
36

((β2q2
3 + (2β2q2 − 6β2q1 + 2β)q3 + β2q2

2

+ (2β − 6β2q1)q2 + 9β2q2
1 − 6βq1 + 1)N

− 36Ioϑ(q1))

U2 + U3 =
1
3
((β2q2

3 + (−β2q2 − β)q3 + β2q2
2 − βq2 + 1)N

− 3Ioϑ(q3) − 3Ioϑ(q2))

Example 1. Information level quadratic in the quality of
service / content level

The maximized utility for coalition {A2, A3} and for firm
A1 are

U∗
23 =

2N − 2β2N2

2β4N2 − 8β2N + 6

U∗
1 =

−β4N3 + 2β2N2 − N

2β6N3 − 16β4N2 + 42β2N − 36
The optimal quality of service / content levels are

qA2A3
2 =

β3N2 − βN

β4N2 − 4β2N + 3

qA2A3
3 =

β3N2 − βN

β4N2 − 4β2N + 3

qA2A3
1 =

β3N2 − βN

β4N2 − 4β2N + 3
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Finally, the optimal access prices are obtained as follows

pA2A3
1 =

1
6
(

2β(β3N2 − βN)
β4N2 − 4β2N + 3

− 3β(β3N2 − βN)
β4N2 − 5β2N + 6

+ 1)

pA2A3
2 =

1
3
(1 − β(β3N2 − βN)

β4N2 − 4β2N + 3
)

pA2A3
3 =

1
3
(2 − 2β(β3N2 − βN)

β4N2 − 4β2N + 3
)

Example 2. Information level linear in the quality of service
/ content level The maximized utilities for coalition {A2, A3}
and firm A1 are

U∗
23 =

−βN − 3
β2N

U∗
1 =

−βN − 3
β2N

The optimal quality of service / content levels are

qA2A3
2 =

βN + 3
β2N

qA2A3
3 =

βN + 3
β2N

qA2A3
1 =

βN + 4
β2N

Finally, the optimal access prices are

pA2A3
1 =

1
6
(− 3β(β3N2 − βN)

β4N2 − 5β2N + 6
+

2(βN + 3)
βN + 1

)

pA2A3
2 =

1
3
(1 − β(β3N2 − βN)

β4N2 − 4β2N + 3
)

pA2A3
3 =

1
3
(2 − 2(βN + 3)

βN
)

Computation of ν(A1, A2, A3) In this case, the three firms
are in the grand coalition. The optimal access prices for the
grand coalition are obtained by differentiation of U1+U2+U3

p1 =
1
4

[
β(q3 + q2 − 3q1) + 1

]

p2 = −1
2

[
β(−q3 + q2 + q1) − 1

]

p3 = −1
4

[
β(q3 + q2 + q1) − 3

]
By substitution, the grand coalition’s utility takes the form

U1 + U2 + U3 =
1
8

[
(3β2q2

3 + (−2β2q2 − 2β2q1 − 2β)q3

+ 3β2q2
2 + (−2β2q1 − 2β)q2 + 3β2q2

1

− 2βq1 + 3)N − 8
∑

i=1,2,3

Ioϑ(qi)
]

Example 1. Information level quadratic in the quality of
service / content level The grand coalition’s maximized utility
is

U∗ =
3N − 3β2N2

2β4N2 − 10β2N + 8

The optimal quality of service / content levels are identical for
the three providers in the grand coalition

q∗1 = q∗2 = q∗3 =
β3N2 − βN

β4N2 − 5β2N + 4
The optimal access prices are identical for firm A1 and A2

p∗1 = p∗2 =
1
4
(1 − β(β3N2 − βN)

β4N2 − 5β2N + 4
)

p∗3 =
1
4
(3 − 3β(β3N2 − βN)

β4N2 − 5β2N + 4
)

Example 2. Information level linear in the quality of service
/ content level The grand coalition’s maximized utility is

U∗ =
−3βN − 6

β2N

The quality of service / content levels at the optimum are
identical for the three service providers

q∗1 = q∗2 = q∗3 =
βN + 4
β2N

Identically, the optimal access prices for the three providers
coincide

p∗1 = p∗2 = p∗3 =
1
4
(1 − βN + 4

βN
)

B Computation of the Shapley value allocations
We determine the Shapley value of our game for two

categories of information level functions. The Shapley value
gives us a fair manner to share the grand coalition’s total
revenue between the three providers.

Example 1. Information level quadratic in the quality of
service / content level Provider A1’s share of the grand coalition
revenue is defined analytically as follows

φ1(ν) = −
(
64β20N11 − 1242β18N10 + 10625β16N9

− 52839β14N8 + 169460β12N7 − 366930β10N6

+ 544327β8N5 − 547317β6N4 + 357612β4N3

− 137312β2N2 + 23552N
)(

192β22N11 − 4896β20N10

+ 56076β18N9 − 381012β16N8 + 1707612β14N7

− 5304828β12N6 + 11666904β10N5 − 18183408β8N4

+ 19702368β6N3 − 14150784β4N2 + 6070272β2N

− 1179648
)−1

For provider A2, we obtain the following expression

φ2(ν) = −
(
64β24N13 − 1644β22N12 + 19162β20N11

− 133934β18N10 + 625014β16N9 − 2051140β14N8

+ 4853783β12N7 − 8345493β10N6 + 10348649β8N5(
192β26N13 − 9027025β6N4 + 5258292β4N3

− 1836544β2N2 + 290816N
)(

192β26N13 − 5664β24N12

+ 76428β22N11 − 624900β20N10 + 3455964β18N9

− 13659324β16N8 + 39716664β14N7 − 165693888β8N4

+ 141482880β6N382063872β4N2 + 28999680β2N

− 4718592
)−1
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Finally, for provider A3 we get

φ3(ν) = −
(
64β24N13 − 1754β22N12 + 21993β20N11

− 166403β18N10 + 844492β16N9 − 3024612β14N8

+ 7834326β12N7 − 14785310β10N6 + 20184005β8N5

− 19448725β6N4 + 12565220β4N3 − 4891264β2N2

+ 868352N
)(

192β26N13 − 5664β24N12 + 76428β22

... N11 − 624900β20N10 + 3455964β18N9 − 13659324

... β16N8 + 39716664β14N7 − 86070336β12N6

+ 139103616β10N5 − 165693888β8N4 + 141482880

... β6N3 − 82063872β4N2 + 28999680β2N

− 4718592
)−1

Example 2. Information level linear in the quality of service
/ content level Provider A1’s share of the grand coalition total
revenue is

φ1(ν) = −
(
64β9N5 + (115β8 − 512β7 − 48β6)N4

+ (−1150β6 + 1536β5 + 96β4)N3 + (4255β4 − 2112β3

− 48β2)N2 + (1152β − 6900β2)N + 4140
)(

96β10N5

− 960β8N4 + 3552β6N3 − 5760β4N2 + 3456β2N
)−1

For provider A2, we obtain the following expression

φ2(ν) = −
(
32β9N5 + (37β8 − 256β7 − 24β6)N4

+ (−370β6 + 768β5 + 48β4)N3 + (1369β4 − 1056β3

− 24β2)N2 + (576β − 2220β2)N + 1332
)(

48β10N5

− 480β8N4 + 1776β6N3 − 2880β4N2 + 1728β2N
)−1

Finally, for provider A3 we get

φ3(ν) =
(
64β9N5 + (259β8 − 896β7 + 96β6)N4

+ (−2590β6 + 4032β5 − 192β4)N3 + (9583β4

− 7296β3 + 96β2)N2 + (4608β − 15540β2)N

+ 9324
)(

96β10N5 − 960β8N4 + 3552β6N3

− 5760β4N2 + 3456β2N
)−1
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