
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2721

Dynamic Decompression for Text Files
Ananth Kamath1, Ankit Kant2, Aravind Srivatsa3, Harisha J.A.4

#Information Science and Engineering, Rashtreeya Vidyalaya College of Engineering

1ananthrkamath@gmail.com
2ankit.k9@gmail.com

3aravind.eric@gmail.com
4harisha.ja@gmail.com

Abstract—Compression algorithms reduce the redundancy in

data representation to decrease the storage required for that data.
Lossless compression researchers have developed highly
sophisticated approaches, such as Huffman encoding, arithmetic
encoding, the Lempel-Ziv (LZ) family, Dynamic Markov
Compression (DMC), Prediction by Partial Matching (PPM), and
Burrows-Wheeler Transform (BWT) based algorithms.
Decompression is also required to retrieve the original data by
lossless means. A compression scheme for text files coupled with
the principle of dynamic decompression, which decompresses only
the section of the compressed text file required by the user instead of
decompressing the entire text file. Dynamic decompressed files offer
better disk space utilization due to higher compression ratios
compared to most of the currently available text file formats.

Keywords—Compression, Dynamic Decompression, Text file
format, Portable Document Format, Compression Ratio.

I. INTRODUCTION
HE Use of compression for storing text files has become
inherent part of personal as well as commercial

computing. The various compression applications available
perform two functions, compression and decompression. The
text document is first compressed and then the entire
document is decompressed when required. This has some
implications such as the unnecessary use of disk space for
storing the compressed document as well as uncompressed
document at the same time. Another implication is that even
though an end user may require only a part of the document,
the entire document as a whole is decompressed.

The algorithm (and application) described in this document
addresses both of the above-mentioned problems associated
with compression applications and readers. The algorithm
performs compression of the text file and displays only the
section of the text file required by the user in decompressed
format on the developed Graphical User Interface. Therefore
it provides a better and efficient way of storing and reading
the text files, saving unnecessary wastage of disk space.

II. RELATED WORK
In [1] it has been shown that text file compression can be

done by assigning 2 character and 3 character ASCII codes. It
has also been shown that about 75% reduction in size is
achieved by using it with gzip and bzip2. Also, the number of
possible codes is 73680, which is lesser than the number of
words in the scheme of compression highlighted in this paper.

However, only the compression scheme has been highlighted.
[1] does not specify a decompression scheme for dynamically
decompressing data.

[9] presents a variable length word-coding scheme, which
allows the direct search of the compressed file without
decompression of the entire file using a variant of the Boyer
Moore algorithm. The compression technique used in [9]
provides for efficient decoding of arbitrary portion of text as
well as smaller vocabulary representation. In comparison, the
compression technique used in this paper uses a much simpler
algorithm for compression and searching operations are
directly done on the compressed file without decompressing
the file either. However, in addition to the features in [9], the
compression algorithm used by us allows line wise decoding
of the compressed file, which allows dynamic decompression
of the file as required by the user.

III. COMPRESSION PRINCIPLE
The Compression algorithm applied assigns a unique 3-

character code to every word in the source file. The position
of the codes in the compressed file corresponds to the position
of the respective words in the source file, i.e. their order of
occurrence is not changed. Codes assigned consist of
combinations of lowercase and uppercase ASCII alphabets.

Numbers are not compressed and are retained in the
compressed file in their original form.

The compression algorithm uses page markers by using a ~
at the start of each page. Each page is determined by assigning
a specific number of lines and characters for each line. The
page markers play an important role in the current dynamic
decompression algorithm as the decompression function uses
a page marker count to determine the page number, and then
decompresses the required page.

A sequence of spaces is coded by counting the number of
spaces and prefixing the two-digit count with #. Newline
characters are encoded as the character y. When either a # or y
is encountered in the source file, they are prefixed with the
character z to ensure that there is no ambiguity while
decompressing. One letter and two letter words are coded by
prefixing Y and X respectively to them. Words greater than 20
letters in length are not coded either and are prefixed with the
character t and suffixed with #. For words with length >2 and
<20, every code is in the form of αβγ where β and γ take
values as from a to z and then from A to Z in sequence. The α
value is determined from the Table I.

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2722

TABLE I
ALPHA VALUES FOR ASSIGNING CODES

 An example sequence of codes assigned for 3 letter words
would be αaa – αaz – αaA - αaZ - αba – αbz αza – αzz – αzA
– αzZ – αAa – αAz – αAA – αAZ – αBa – αZa – αZz – αZA –
αZZ initially with α = a and after the completion of the
sequence with α=A.

The compressed file structure consists of two parts, the

codes and the words. The coded form of the source file is
stored in the compressed file first. This is followed by a ~
which denotes that the codes have all been stored. For the
decompression algorithm to relate each word with its
corresponding code, the words are first classified based on
their length and then words of a each length are ordered based
on the order of their first occurrence in the source file. The
words are then stored at the end of the compressed file. Since
codes are assigned based on the order of the occurrence, this is
a reliable technique for the decompression algorithm to
associate each code with its corresponding word.

IV. DYNAMIC DECOMPRESSION
The principle of Dynamic Data Decompression refers to

the decompression of a compressed file when it is being

viewed. The entire file is not decompressed, but only the page
that is currently being viewed is decompressed. The rest of the
file remains in the compressed state. Hence better storage
efficiency is obtained as the space required on the secondary
storage media is reduced by a factor almost equal to the
Compression Ratio of the algorithm used for compression.

Given the source file size as S bytes with N pages and the

compression ratio as C, the compressed file size = S/C bytes.
The average page size in the source file = S/N bytes. The
compressed file is then subject to dynamic data
decompression. Therefore, average size occupied on disk is

(S / C) + (S / N) bytes (1)

This is a considerable decrease in size from the original S

bytes. The dynamic data decompression functionality in its
current implementation is provided by a User Interface front
end and a decompression function that operates as the back
end. When a compressed file is first opened, the first page of it
is decompressed and displayed. Command buttons are
provided on the user interface to view the next and previous
pages. Whenever one of these buttons is clicked on, the User
Interface control sends a page number as a parameter to the
decompression function. The page specified by the page
number is then decompressed by the decompression function,
which identifies pages by maintaining a count of page markers
encountered. Hence, the page requested only is decompressed.
Therefore, at any point of time, the space occupied on disk is
the sum of the compressed file size and the decompressed size
of the page that is currently being viewed.

A. Decompression Function

The Decompression function is used to decompress the

compressed text file. It takes a parameter, the page number of
the page to be decompressed and decompresses only this page.
It uses a combination of page markers and line markers to
distinguish between pages. For every code in the compressed
file, the decompression function refers Table 1 to determine
the length of the corresponding word for the code. Once the
length is determined, it also calculates the displacement from
the initial code for words of that length. Based on this
displacement value, it determines the corresponding word for
the code. This is done by checking the words of the
determined length at the end of the compressed file. Since the
codes are assigned and words are stored based on the order of
occurrence, the displacement value leads the decompression
function to the required word.

An added advantage of storing codes is faster searching
operations as each word is reduced to a three-character code.
Hence, once the code for the word that has to be searched is
determined by comparison at the end of the file, the searching
operation speed is increased. For Example, even a 15
character word is reduced to a 3 character code and by just
comparing the first character of each code, we would be able
to determine if it is represents a 15 character word. In any

Word length α values Number of codes

3 a, A 5408

4 b,B 5408

5 c,C 5408

6 d,D 5408

7 e,E 5408

8 f,F 5408

9 g,G 5408

10 h,H 5408

11 i,I 5408

12 j,J 5408

13 k,K 5408

14 l,L 5408

15 m,M 5408

16 n,N 5408

17 o,O 5408

18 p,P 5408

19 q,Q 5408

20 r,R 5408

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2723

other case, a comparison that extends till the 15th character is
required. But in this case a maximum of 3 comparisons are
required.

Fig. 1 A Block Diagram showing the interaction between various
components of the dynamic decompression system.

V. EXPERIMENTAL RESULTS
For the purpose of comparison with other popular file

formats for text file, experiments were conducted. The other
file formats used were .docx (Microsoft Word 2007 Document
format), .pdf (Adobe Portable Document format), and .txt
(Text file format). Every source data was converted into these
formats and the size was observed.

Additionally, the source data was compressed using the
compression principle that is discussed in this paper. Then, the
compressed file was subjected to dynamic decompression and
an average of the decompressed page size for a certain range
of pages was computed. At any point of time, the size
occupied on disk was taken to be the sum of the average
decompressed page size and the compressed file size from
Equation (1). This value was computed and documented.

Source data of four different sizes were taken and each of
them were converted into the different file formats above and
also compressed using the principle discussed in this paper
and the value for each as per equation (1) were calculated and
tabulated in Table II.

TABLE III
SIZE COMPARISON FOR DATA IN DIFFERENT FILE FORMATS

All values
in

Kilo bytes
(approx.)

Text
File

Format
(.txt)

MS Word

Document
(.docx)

Adobe
PDF
(.pdf)

Dynamically
Decompressed

File

Data 1 48 32 109 39
Data 2 120 60 202 85
Data 3 714 359 1310 509
Data 4 1012 505 1800 668

Fig. 2 Graph indicating size of data on disk stored in various file
formats

VI. CONCLUSIONS
Dynamic decompression reduces the disk space needed to

store a text file drastically. For compression applications
currently available, there is a point in time wherein both the
text file decompressed by the application and the compressed
file exist simultaneously on disk. This leads to inefficient disk
utilization. The dynamic decompression scheme addresses this
anomaly by having only the coded file and only a section of
file required by the user decompressed on the disk at any point
in time. Therefore, the space occupied on the disk can be
reduced significantly. This feature alone makes the developed
reader very suitable for low-end consumers as well as in
commercial industry where the disk space is of great value

User interaction via
Keyboard or Mouse

User Interface
Control

Display

Decompression
function

Source File
(Compressed State)

Decompressed page

Graphical User
Interface

Parameter –
page number

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2724

and in comparison to other text file formats currently available,
offers much more compression ratio.

Since the compression scheme, even though providing
compression more than the most of the available text file
formats, doesn't quite compress the text files as effectively as
other stand alone compression applications available, there is
still scope for improvement in the encoding function that we
have used. One way in which it can be achieved is by
encoding the words based on their frequency of occurrence in
the text file and also doing the encoding at the bit level.

The compression time taken by the application can be
reduced by using better data structures available such as a B-
Tree, and also by using binary search when searching for a
keyword in a list. Since the Graphical User Interface that we
have developed currently uses page markers and line markers
to decompress pages according to need, we can solve the
problem of Graphical User Interface window resizing,
wherein the number of characters in a line increase or
decrease when resizing a window, by having a character count
for a particular window size instead.

A further improvement can be made on the Graphical User
Interface front, by providing encryption standards along with
the features of dynamic decompression. An editor can also be
integrated to the developed reader where in a user can edit the
page being viewed and it gets correctly encoded again after he
navigates to another page.

ACKNOWLEDGMENT
We would like to thank Professor N.K. Srinath of

Information Science and Engineering Department, Rashtreeya
Vidyalaya College of Engineering for his inputs and valuable
suggestions that resulted in an improved version of our paper.

REFERENCES
[1] Md. Ziaul Karim Zia, Dewan Md. Fayzur Rahman, and Chowdhury

Mofizur Rahman. “Two-Level Dictionary-Based Text Compression
Scheme”. Proceedings of 11th International Conference on Computer
and Information Technology.

[2] Behrouz A. Forouzan and Richard F. Gilberg, Computer Science A
Structured Programming Approach Using C, Thomson, 2003

[3] Data Structures using C, Aaron M. Tenenbaum, Yedidyah Langsam
and Moshe J. Augenstein, Pearson Education, 2006

[4] Michael J. Folk, Bill Zoellick, Greg Ricardi. File Structures-An Object
Oriented Approach with C++, Addison-Wesley, 1998

[5] B.S. Shajeemohan and V.K.Govindan, Intelligent Compression
Scheme For Faster And Secure Transmission Of Text And Image Data
Over Internet, International Conference on Human Machine Interface
ICHMI 2004

[6] Marc L. Corliss , E. Christopher Lewis , Amir Roth, The
implementation and evaluation of dynamic code decompression using
DISE, ACM Transactions on Embedded Computing Systems (TECS),
v.4 n.1, p.38-72, February 2005.

[7] R. Franceschini, H. Kruse, N. Zhang, R. Iqbal, and A. Mukherjee,
“Lossless, Reversible Transformations that Improve Text Compression
Ratio,” Project paper, University of Central Florida, USA. 2000.

[8] U. Manber, “A Text compression scheme that allows fast searching
directly in compressed file,” ACM Transactions on Information
Systems, Vol.52, N0.1, pp.124-136, 1997.

[9] “A Scheme That Facilitates Searching And Partial Decompression Of
Textual Documents. Ashutosh Gupta . Intl. Journal of Advanced
Computer Engineering, Volume 1, No 2, pages 99 -109, 2008.

[10] F. Awan, N. Zhang, N. Motgi, R. Iqbal, and A. Mukherjee, “LIPT: A
Reversible Lossless Text Transform to Improve Compression

Performance,” Proceedings IEEE Data Compression Conference, pp.
481-210, 2001.

[11] D. A. Huffman, “A method for the construction of minimum
redundancy codes,” In Proc. IRE 40, volume 10, pages 1098–1101,
September 1952.

[12] Terry A. Welch, “A Technique for High Performance Data
Compression,” IEEE Computer, Vol. 17, pp. 8-19, June 1984.

