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Abstract—Segmentation, filtering out of measurement errors and 

identification of breakpoints are integral parts of any analysis of 
microarray data for the detection of copy number variation (CNV). 
Existing algorithms designed for these tasks have had some successes 
in the past, but they tend to be O(N2) in either computation time or 
memory requirement, or both, and the rapid advance of microarray 
resolution has practically rendered such algorithms useless. Here we 
propose an algorithm, SAD, that is much faster and much less thirsty 
for memory – O(N) in both computation time and memory requirement 
-- and offers higher accuracy. The two key ingredients of SAD are the 
fundamental assumption in statistics that measurement errors are 
normally distributed and the mathematical relation that the product of 
two Gaussians is another Gaussian (function). We have produced a 
computer program for analyzing CNV based on SAD. In addition to 
being fast and small it offers two important features: quantitative 
statistics for predictions and, with only two user-decided parameters, 
ease of use. Its speed shows little dependence on genomic profile. 
Running on an average modern computer, it completes CNV analyses 
for a 262 thousand-probe array in ~1 second and a 1.8 million-probe 
array in 9 seconds. 
 

Keywords—Cancer, pathogenesis, chromosomal aberration, copy 
number variation,   segmentation analysis. 

I. INTRODUCTION 
OCATING chromosomal aberrations in comparative 
genomic DNA samples is an important step in 

understanding the pathogenesis of many diseases. 
Amplification or deletion of chromosomal segments can lead to 
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abnormal mRNA transcript levels and results in malfunctioning 
of cellular processes. This is especially true in cancer, where an 
enormous amount of efforts and resources has been dedicated 
to the detailed characterization of the chromosomal 
abnormalities caused by its various types. 

Array comparative genomic hybridization (CGH) is a 
high-throughput technique developed for measuring such 
changes [1]-[3]. CGH arrays using BAC (Bacterial Artificial 
Chromosome) clones have resolutions of the order of 1Mb [2]. 
Those using cDNA and oligonucleotide as probes [4][5] are 
less robust than BACs for large segments, but offer much 
higher resolutions (in the order of 50-100kb). In particular, 
oligonucleotide arrays allow design flexibility and greater 
coverage and provide good sensitivity [5]. Tiling on custom 
arrays is also available now for even finer resolution of specific 
regions and allow the detection of micro-amplifications and 
deletions [6][7]. The drastic improvement in resolution has led 
to a corresponding increase in the number of probes on an 
array; modern high-resolution arrays now easily exceed one 
million probes. Arrays of such size and larger exact a severe 
requirement on the speed and accuracy of algorithms used to 
analyze the arrays, and have practically rendered useless 
existing algorithms that are O(N2) (where N is array size) in 
computation time or memory requirement. Here, we propose a 
novel algorithm – Segmentation Analysis of DNA (SAD) – for 
studying copy number variation in high-resolution arrays. SAD 
has an extremely simple formulation, has in essence a single 
parameter and, compared with algorithms found in the 
literature, easier to understand, simpler to use, provides clearer 
statistical interpretation for its results, requires less memory, 
offers better accuracy, and is vastly faster in computation 
speed. 

The design of SAD is based on three ingredients: (1) the 
assumption that measurement errors are normally distributed, 
(2) a clustering procedure based on Gaussian merging, and (3) 
t-statistic. The assumption in (1) is justified in Appendix A. 
SAD views every piece of raw datum as a statistical event from 
which the true value can be predicted via a normal, probability 
distribution function (PDF), or simply a Gaussian, whose 
variance (denoted by σ ̃) is extracted from the array data. Our 
algorithm employs a key property of Gaussians: two Gaussians 
can be algebraically merged into a new one. By combining 
pair-wise merging of Gaussians with nearest-neighbor 
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clustering we cluster array data into segments according to 
copy numbers. In an iterating process, two neighboring 
Gaussians are merged if their resolvability t (essentially an 
absolute t-statistic) is less than a threshold value tmin. In the 
result, each segment is assigned an aberrance z defined via its 
associated Gaussian. We call this technique Pair-wise Gaussian 
Merging (PGM). The operational principles of PGM are 
schematically illustrated in Fig. 1. In this case, the original ten 
pieces of data are predicted by SAD to have an underlying 
structure of two segments. A detailed description of PGM is 
given in Methods and Materials. 

SAD has one essential parameter and an optional one. The 
essential parameter is tmin. In addition to its role in terminating 
iteration, tmin also provides quantitative statistics for aberrations 
identified by SAD. The optional parameter is sampling size Ns, 
designed into SAD to avoid sampling the entire array (with N 
probes) repeatedly during iterations. For microarray with 
N<100 k the option is not needed (Ns will be set automatically 
to N), since on a typical modern computer SAD is likely to 
finish the computation in less than one second. For larger 
microarrays, evoking the option by selecting an 1 Ns N 
speeds up the computation by a factor of approximately N/Ns, 
so that SAD becomes O(N) in computation time and memory 
requirement. Our tests show that there is little sacrifice in 
accuracy when Ns ≥ 100, and we recommend setting Ns=100 
when N is large.  
 

II. METHODS AND MATERIALS 

A. Pair-wise Gaussian Merging 
A Gaussian of mean μ  and variance σ  is defined as: 
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Gaussians have a very useful property: a product of Gaussians 
yields a new Gaussian. 
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We apply this Gaussian-Merging technique (GM) to data 
analysis as follows. 
 

 
Fig. 1 Schematic illustration of PGM applied to genome segmentation. 
Frames on the left display the log2-ratios of probes (data) and clusters 
(prediction at various stages) and those on the right display associated 
Gaussians. In (a), each piece of raw data is treated as a Gaussian with 

variance σ ̃. In (b), data o and p, the nearest neighboring pair, are 
merged in the first iteration. (c) and (d) show second and third 

iterations, respectively. In (e), merging stops after eight iterations 
because the remaining cluster pair satisfies t ≥  tmin 

 
Given a set of observations Ω={μi|i=1,N} of a quantity y 

acquired by measurement known to produce Gaussian noise of 
variance σ ̃. Based on Ω, we want to formulate a PDF fΩ(y) for 
predicting the true value. Considering a single observation μi 
first, because the variance of the noise is known, we have 

 { } ( )2 .( ) ; ,
i if y G yμ μ σ=  (3) 

We can therefore associate a Gaussian with each observation. 
Considering Ω altogether, in terms of conditional probability 
and joint probability, 
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where the third relation uses the fact that P(Ω) is independent 
of y and the last one is based on (1). (2)-(4) now yield 

 ( )2 2 2; , ; ; .i
i

f G y N Nμ σ μ μ σ σΩ =    =    =∑  (5) 

The formulations of both μ and σ are intuitively understood: μ 
is the mean of the observations and σ 2 scales as required by the 
Central Limit Theory. 

GM can be applied pair-wisely in a particular order to cluster 
data. Let Gk≡ G(y;μk,σk

2), where k=1 and 2, be two Gaussians 
based on populations of nk observations and G(y;μ,σ 2) be their 
merging product. We define resolvability t as 
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where (5) is employed to obtain the third expression. Note that t 
is essentially an absolute t-statistic used in testing whether the 
means of two normally distributed populations (of equal 
variance) are equal. Given tmin as a threshold value for t, we say 
G1 and G2 are resolvable if t(G1,G2) ≥ tmin or unresolvable 
otherwise. A set of Gaussians can be clustered by carrying out 
GM using the following procedure: (1) Select tmin. (2) Identify 
the unresolvable pair of Gaussians with the smallest t and 
replace it with the merging product. (3) Iterate step (2) until all 
remaining pairs are resolvable. We call this technique Pair-wise 
Gaussian Merging (PGM) and remark that PGM is a type of 
nearest-neighbor clustering using t as distance. 

B. The SAD Algorithm 
SAD has two modes: the linear mode (LM) for 

low-resolution arrays or when computation time is not a 
concern, and the parallel mode (PM) when computation time is 
a concern. LM has a single parameter tmin while PM has an 
additional parameter Ns whose default value of 100 is highly 
recommended. 

The steps in LM are: (1) Computation of σ ̃. Let {μi | i =1,N} 
be the initial data of log2-ratios, qi=μi+1–μi and qIQR be the 
interquartile range of qi (or the difference between the 25th and 
75th percentiles of the ranked qi's). σ ̃ is computed using 

 ,
1.349 2

IQRq
σ =  (7) 

where 1.349 is the interquartile range of G(y;0,12) [17]. 
Consider each probe a cluster and associate G(y;μi,σ ̃ 2) with the 
ith cluster. (2) Selection of tmin. This stipulates when PGM 
iteration stops and requires the statistical insights discussed in 
the following subsections. (3) PGM Phase I. Perform 
chromosome-wide PGM to all adjacent cluster pairs. At the end 
of this phase the remaining clusters are either multi-probe or 
single-probe; a single-probe cluster is called a loner and may 
hamper the merging of its two unresolvable neighbors. (4) 
PGM Phase II. Perform a second round of chromosome-wide 
PGM, now merging unresolvable cluster pairs that are either 

loner-divided or adjacent. When a loner-divided pair is merged, 
the loner is called an outlier. Outliers are excluded from the 
subsequent calculation of PGM. At the end of this phase each 
resultant cluster is called a segment and has an associated 
Gaussian for predicting its true log2-ratio. 

As PGM involves very little computation, LM is inherently a 
very fast algorithm. However, the problem size of either σ ̃ 
computation or LM are O(N2), which implies long computation 
time when N is very large. PM is designed to reduce the 
problem size to O(N) with little sacrifice in accuracy. In PM, a 
sampling size Ns is selected and the algorithm is adjusted 
accordingly. In step (1) σ ̃ is computed using only the first Ns 
probes. This reduces its problem size to O(Ns

2). In (3) and (4), 
before each iteration the current cluster set is partitioned to 
subsets of Ns contiguous clusters, plus a remainder. All subsets 
are processed in parallel and the most unresolvable pair of each 
subset is merged at each iteration. After each iteration, the 
current cluster set is circularly re-partitioned with the beginning 
of the remainder in the previous iteration taken as the starting 
point. Each iteration reduces the number of clusters by a factor 
of ≈ (1–Ns

–1), making the problem size O(NNs). That is, PM is 
N/Ns times faster than LM. 

C. Reliability of a breakpoint 
A breakpoint is the site where two adjacent resolvable 

segments meet. Given a null hypothesis (henceforth referred to 
as NHB) that the breakpoint does not exist, or in other words, 
the two segments have the same mean, the resolvability t as 
defined in (6) quantifies the statistical significance. 

D. Aberrance of a segment 
After clustering, each resultant segment is associated with a 

Gaussian G(y;μ,σ 2). We remark that G(y;μ,σ 2) is the PDF for 
predicting the true log2-ratio rather than the log2-ratio 
distribution of the probes within. We define aberrance z as 

 z μ σ=  (8) 
for measuring the aberrance of a segment. Given a null 
hypothesis (henceforth referred to as NHS) that the segment is 
normal, or μ=0, z is same as the z-value that quantifies the 
statistical significance. If need be, users are advised to 
prioritize further examinations of detected segments according 
to z. 

E. Selection of tmin 
Setting a value for tmin is essentially equivalent to setting a 

statistical level for rejecting NHB and NHS. For NHB this is 
because all remaining adjacent segment pairs are resolvable, 

 min .t t≤  (9) 
For NHS this can be seen by considering an aberrant segment 
G(y;μ,σ 2) of width n wedged between two much wider disomic 
neighbors G(y;0,σk

2) of width nk, k=1 or 2. Let tk be its 
resolvability with its kth neighbor. Combining tmin ≤ tk, nk n, 
(5), (6) and (8), we get 
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  By noting SNR ≡ μ σ , (10) can be rewritten as 

 min .t SNR n≤ ⋅  (11) 
With an estimated SNR, tmin thereby determines the lower 
bound of aberration width. A smaller tmin on one hand facilitates 
detection of narrower segments. On the other hand it is more 
likely to yield false positives. 

These insights make parameter tmin intuitively 
comprehensible and thus facilitate user parameter tuning. 
 

III. RESULTS 
SAD can be run in two modes: the linear mode (LM) and the 

parallel mode (PM). Ns needs to be specified only in PM. 
Hereafter, we designate each set of SAD parameters by 
SAD(tmin,Ns) and refer to LM as SAD(tmin,−). All calculations 
reported here are carried out with an executable computer 
program written in Visual C++ that run on a computer with 
Intel Core 2 CPU 6420 (2.13GHz), 2GBs of DDRII 667 
memory, and Windows XP as operating system. The program 
uses a single core on a multiple-core CPU as it runs as a single 
thread. 

In a comparative analysis [8] (hereafter referred to as LJKP), 
eleven algorithms are tested for accuracy using simulated data 
in terms of receiver operating characteristic (ROC) and 
otherwise compared using real Glioblastoma Multiforme 
(GBM) data. For the ROC tests LJKP finds that the three 
smoothing-only algorithms (SO, which does not do 
clustering) – lowess, wavelet [9], and quantreg [10] – give 
better overall results while among the other eight 
estimation-performing algorithms (EP, which do clustering) 
CGHseg [11] and CBS [12] have the best overall ROC 
performance. At moderate to low signal-to-noise ratios (SNRs) 
ChARM [13], ACE [15] and HMM [16] are the low performers. 
For the GBM comparison LJKP finds that ChARM and HMM 
disagree with others in identified global aberrant regions, and 
that CGHseg, GLAD [17] wavelet, GA [18] and quantreg are 
best in locating amplifications and CLAC [19], ChARM and 
HMM are the poorest. Among the algorithm tested by LJKP, 
only CLAC and ACE provide quantitative statistics for the 
identified aberrations. This important feature cannot be added 
to algorithms based only on smoothing, such as the three SOs. 
In the rest of this section, we first duplicate the ROC tests in 
LJKP and test SAD against the eight EP algorithms and then 
make detailed comparisons of SAD with the top LJKP 
performers − CGHseg, CBS and GLAD − in terms of accuracy, 
speed and memory. 

A. Accuracy 
We calculate the ROC curves of SAD in the same way as in 

LJKP except that, for better statistics, we generate 10,000 
rather than 100 simulated chromosomes (of 100 probes) for 

each parameter set. The results, shown in Fig. A2, indicate that 
a higher tmin is more suitable for easy situations (wide 
aberration and large SNR) while a lower tmin better facilitates 
aberration detection in difficult situations (narrow aberration 
and small SNR). Referring to Fig. 2 in LJKP, we see that in 
easy situations SAD(2.5-4,100) match the performance of 
CGHseg, the best among the eight EPs, and in difficult 
situations SAD(1.5-2.5,100) outperforms CGHseg. Compared 
to the other seven EPs, SAD performs significantly better. How 
to select tmin is discussed in details in Methods. 

Fig. 2 focuses on the important part of the comparison and 
shows SAD(tmin,100), tmin=1.5, 2, and 2.5, side by side with the 
eight EPs (as given in LJKP) for two difficult situations, 
(SNR,Width)=(2,5) and (1,10). We understand that the LJKP 
results are obtained from the relevant software packages using 
default parameters, which may not be optimal for the cases 
considered. 

 
 

 
Fig. 2 ROC curves of SAD(1.5,100), SAD(2.0,100) and SAD(2.5,100) 

compared with the eight EPs in LJKP in two difficult situations, 
(SNR,Width) = (2,5) in (a) and (1,10) in (b) 

 
PM differs from LM in clustering order. Although a smaller 

Ns facilitates higher computation speed, it incurs more error. 
This error is estimated in Appendix B and, as suggested by Fig. 
A3, is negligible for Ns ≥ 100. 

B. Speed and Memory 
In Fig. 3 we compare SAD(10,100) to CGHseg, CBS and 

GLAD (with their default parameters) in speed and memory. 
Simulated chromosomes for this calculation are generated as in 
the following. SNR=2. Each simulated chromosome has either 
one or two amplifications. To plant the amplifications, each 
chromosome is divided into five same-width sections first. For 
the one-amplification cases, the second section is amplified. 
For the two-amplification cases, the second and the forth are 
amplified. For speed, we measure computation time τ  (Fig. 3a). 
The difference in τ between one and two amplifications reflects 
the dependence of speed on genomic profiles. Memory test is 
read from the Processes tab of Windows Task Manager and 
involves two steps: data loading and data processing. The 
reading between the two steps, denoted by κd, is memory used 
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for program and data. The maximum reading amid data 
processing is κo=κd+κp (Fig. 3c), where κp (Fig. 3d) is the 
maximum addition for data processing. We derive the scaling 
exponent γτ  (Fig. 3b) in the power-law in τ vs. N from data in 
Fig. 3a, and the scaling exponent γp (Fig. 3e) in κp vs. N from 
data Fig. 3d. 

 
 

 
Fig. 3 Comparisons of SAD to CGHseg, CBS and GLAD in speed and 
memory. For speed, (a) shows computation time τ versus N and (b) 

shows the power-law exponent γτ of (a). For memory, (c) shows 
maximum overall memory κο versus N, (d) shows maximum 

data-processing memory κp versus N and (e) shows the power-law 
exponent γp of (d) 

 
Fig. 3a shows SAD to be vastly faster than the others. Fig. 3b 

shows that τ for GLAD scales as O(N2), and for CBS, though 
claimed to be O(N) at low resolution [20], to trend up as N 
increases and become O(N2) at N ≈ 5×105. Speed-wise CGHseg 
is similar to GLAD and is generally O(N2) above N ≈ 103. SAD 
is constantly O(N). Speed dependence on genomic profile is 
significant for CBS, minor for GLAD and CGHseg, and 
negligible for SAD. 

Figs. 3c and 3d show that SAD requires the least memory, 
overall (κo) or data-processing (κp). Fig. 3e shows memory 
requirement in SAD and GLAD scales as O(N), in CBS more or 
less so while displaying considerable irregularity, and in 
CGHseg scales as O(N2). Moreover, in a computer with 2 GBs 
of memory, CGHseg ceases to function when N approximately 
exceeds 16,000. 

In a test using real data, we run SAD(10,100) on a 1.8 
million-probe Affymetrix Genome-Wide Human SNP Array 

6.0 hybridized with a colorectal cancer sample [21], and 
measure τ =9 seconds and κo =323 MBs. 

C. Validation on a Low-Resolution Dataset 
As a low-resolution validation test and demonstration of tmin 

selection and utility, we apply SAD to a public dataset [22] 
which corresponds to 15 human cell strains from the NIGMS 
Human Genetics Cell Repository. Each cell strain has either 
one or two alterations, as identified by spectral karyotyping, 
and has been hybridized with an array CGH of 2276 BACs, 
spotted in triplicate. 

We use (11) to select a value of tmin. For trisomic segments of 
the dataset, SNR≈0.6/0.08, where 0.6 is approximately the 
log2-ratio of a trisomic segment and 0.08 is σ ̃ estimated using 
(7). To identify a trisomic aberration which is 2 probes or wider 
(because in its design, SAD identifies single-probe aberrations 
as outliers), tmin<10.5 is required. We therefore use 
SAD(10,100) for this calculation. 

This dataset has previously been studied with GLAD [17] 
and CBS [12]. These are compared side-by-side with 
SAD(10,100) in Table 1. The performance of SAD(10,100) 
stand out in two features. (1) SAD(10,100) gives far fewer false 
positives: the average numbers of false positive breakpoints per 
cell strain are 4/15, 46/15, 26/15, 37/9 and 16/9 for, 
SAD(10,100), GLAD(λ′=8), GLAD(λ′=10), CBS(α=0.01) and 
CBS(α=0.01), respectively. (2) Among the three, SAD is the 
only one to give an aberrance z to each of the aberrant segments, 
including whole-chromosome ones, for showing extent of 
aberrance. Eight aberrations on six cell strains are 
whole-chromosome: GM00143/18, GM02948/13, GM03576/2, 
GM03576/21, GM04435/16 GM04435/21, GM07408/20 and 
GM10315/22. For these GLAD and CBS are silent because 
they are based on breakpoint detection within a chromosome. 

The single-probe aberration on GM01535/12 is not detected 
by SAD(10,100) because tmin=10 is optimal for aberrations of 
two probes or wider. A smaller tmin value, say 8, identifies this 
aberration as an outlier but gives a total of 8 false-positive 
breakpoints rather than 4. GLAD identifies this aberration as an 
AWS outlier. CBS fails to detect it. 

Two-probe or wider aberrations can be detected by 
SAD(10,100). As an example, the aberration on GM03563/9 
which comprises the first two probes is successfully detected. 
So can it be detected with GLAD. CBS once again fails this 
detection. 

The 4 false-positive breakpoints detected by SAD(10,100) 
come from 2 false-positive segments which happen to be at the 
same location on 2 different cell strains. Although karyotyping 
is not positive, these segments look monosomic to visual 
expertise. 

Like the other algorithms, SAD(10,100) fails to detect the 
monosomic region on GM07081/15. This is because the 
aberration is not detected by array CGH technology [22]. 

For this particular dataset, the following limitation is shared 
by all algorithms: Breakpoints can be mistakenly located when 
probes at the joins of two segments have ambiguous log2-ratios. 
For instance, with SAD(10,100), RP11-88j19 of GM01535/5 
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and RP11-237j07 of GM05296/10 are mistakenly identified as 
disomic. The latter is also reported with GLAD. 

D. Validation on a High-Resolution Dataset 
As a high-resolution validation test and demonstration of the 

effects of tuning tmin, we apply SAD on the 500K copy number 
sample data provided by Affymetrix 
(http://www.affymetrix.com). The sample data consist of 9 
Tumor/Normal Pairs derived from human cancer cell lines and 
X Chromosome titration set (3X, 4X, and 5X). We apply SAD 
to the 262,217-SNP-long NSP dataset from the (CRL-5868D, 
CRL-5957D) pair, and show the results in Fig. 4 where we have 
zoomed in at the 8th chromosome. Parameter sets we use are 

SAD(50,100), SAD(30,100), and SAD(10,100). With 
SAD(50,100), which is suitable for broad aberrations, two 
segments are identified with z values of 77.9 and 196.0. With 
SAD(30,100), four narrow segments labeled 1, 2, 3, and 4 are 
identified with z values of 52.1, 46.1, 51.0, and 42.2 
respectively, and are magnified in the insets. With 
SAD(10,100), even narrower segments labeled 5, 6, and 7 are 
spotted with z values of 16.5, 39.7, and 31.5, respectively. 
Segment 5 is the narrowest of all identified structures and 
comprises only two probes. 

 
 

TABLE I 
RESULTS OF SAD(10,100) ON SNIJDERS’ DATASET [22] COMPARED WITH GLAD(λ′=8), GLAD(λ′=10) [17], CBS(α=0.01) AND CBS(α=0.01) [12]. THE 
CONVENTION FOR SPECIFYING CHROMOSOME IN THE FIRST COLUMN IS AS FOLLOWS: A NUMBER INDICATES THE CHROMOSOME NUMBER ON WHICH THE 

ABERRATION IS PRESENT; A NUMBER WITH A ‘*’  INDICATES THE ABERRATION IS WHOLE-CHROMOSOME; THE TERM ‘FALSE’ INDICATES THE NUMBER OF 
FALSE-POSITIVE BREAKPOINTS DETECTED. IN COLUMNS 2-6, ‘YES’ MEANS THE ABERRATION ON THE CHROMOSOME IS IDENTIFIED, ‘NO’ MEANS IT IS NOT, ‘–’ 

MEANS NO PREDICTION WAS GIVEN AND ‘NA’ MEANS THE CELL STRAIN IS NOT DISCUSSED. IN COLUMN 2, THE NUMBERS IN SQUARE PARENTHESES ARE Z 
VALUES GIVEN BY SAD FOR SHOWING EXTENT OF ABERRANCE 

Cell strain/chromosome SAD(10,100) GLAD(8) GLAD(10) CBS(.01) CBS(.001) 
GM00143/18* Yes[54.1] – – NA NA 
GM00143/False 0 8 0 NA NA 
GM01524/6 Yes[35.3] Yes Yes Yes Yes 
GM01524/False 0 0 0 6 2 
GM01535/5 Yes[20.4] Yes Yes Yes Yes 
GM01535/12 No Yes Yes No No 
GM01535/False 0 0 0 2 0 
GM01750/9 Yes[25.3] Yes Yes Yes Yes 
GM01750/14 Yes[21.1] Yes Yes Yes Yes 
GM01750/False 0 0 0 1 0 
GM02948/13* Yes[39.5] – – NA NA 
GM02948/False 0 1 0 NA NA 
GM03134/8 Yes[45.6] Yes Yes Yes Yes 
GM03134/False 2 4 4 3 1 
GM03563/3 Yes[48.1] Yes Yes Yes Yes 
GM03563/9 Yes[18.6] Yes Yes No No 
GM03563/False 0 8 4 8 5 
GM03576/2* Yes[84.5] – – NA NA 
GM03576/21* Yes[48.7] – – NA NA 
GM03576/False 0 0 0 NA NA 
GM04435/16* Yes[59.5] – – NA NA 
GM04435/21* Yes[36.6] – – NA NA 
GM04435/False 2 2 2 NA NA 
GM05296/10 Yes[47.5] Yes Yes Yes Yes 
GM05296/11 Yes[37.4] Yes Yes Yes Yes 
GM05296/False 0 8 6 3 0 
GM07081/7 Yes[58.1] Yes Yes Yes Yes 
GM07081/15 No No No No No 
GM07081/False 0 6 6 1 0 
GM07408/20* Yes[113.6] – – NA NA 
GM07408/False 2 2 2 NA NA 
GM10315/22* Yes[31.5] – – NA NA 
GM10315/False 0 3 0 NA NA 
GM13031/17 Yes[30.4] Yes Yes Yes Yes 
GM13031/False 0 4 4 5 3 
GM13330/1 Yes[44.8] Yes Yes Yes Yes 
GM13330/4 Yes[43.7] Yes Yes Yes Yes 
GM13330/False 0 0 0 8 5 
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Fig. 4 A high-resolution validation test by SAD. Data are in pink and 
SAD predictions are in dark purple. The three frames are for the three 

parameter sets: SAD(50,100), SAD(30,100) and SAD(10,100). 
Details, with z values, of structures at the numbered sites are 

magnified in the insets. The two z values in the first frame, refer to the 
segments in the two-step structure 

 

IV. DISCUSSIONS 
We have developed SAD for genome segmentation for copy 

number analysis and have demonstrated that, compared with 
existing algorithms, SAD is more accurate, far faster and 
parsimonious in memory use. SAD owes its computational 
efficiency to the way each piece of a raw datum is viewed: Not 
as a number that contributes to the collective nature of a 
segment, but as an independent statistical event that gives a 
PDF for predicting the segment. The rest of the algorithm is 
universal: the assumption that measurement errors are normally 
distributed, a clustering procedure based on Gaussian merging 
and t-statistic. 

The statistical aspect of the view leads to clear statistical 
interpretation of its predictions and easy parameter tuning. The 
statistical significances of NHB and NHS are t and z, 
respectively. The former reflects the reliability of a breakpoint 
while the latter, the extent of aberrance of a segment. Parameter 
tuning is easy because tmin and Ns are intuitively 
comprehensible. tmin is the statistical level for rejecting NHB 
and NHS. It also defines the lower bound of aberration width if 

SNR is known. Ns is a balance between speed and accuracy and 
facilitates PM in which SAD is O(N) in computation time and 
memory requirement. We show in our test that 100 is a good 
default value which incurs little error. 

Because a user-specific tmin can yield a significant gain in 
accuracy, as is demonstrated in Figs. 2, A2 and Table I, SAD 
users are advised to select tmin based on either their requirement 
of statistical significance (using (9) and (10)) or the typical 
SNR of data combined with their aberration width of interest 
(using (11)). 

APPENDIX 

A. The Assumption 
SAD is based on a universal assumption that measurement 

errors are normally distributed. In a microarray dataset, each 
datum (in the form of log2-ratio) from a probe is viewed as an 
independent observation. The set of probes on a segment of a 
copy number are therefore assumed to exhibit normally 
distributed values of log2-ratio centered at the true value. 

In Fig. A1 we test our assumption using the 500K copy 
number sample data provided by Affymetrix 
(http://www.affymetrix.com). Fig. A1a shows the genomic 
profile of chromosome 2 from the (CRL-5868D,CRL-5957D) 
STY pair. Two sections of the chromosome, which by visual 
expertise belong to two segments of different copy numbers, 
are examined. In Fig. A1b, the log2-ratio distributions of the 
two sections are shown with two Gaussians: G(y;0.36,0.222) 
and G(y;−0.12,0.222). The two distributions resemble the 
corresponding Gaussians and the variances are similar in spite 
of different copy numbers. In Fig. A1c, we show that, in terms 
of σ ̃ estimation, the two sections are similar to a simulated one. 
The simulated section is 8000 probes wide and is randomly 
generated using G(y;0,0.222). For each n taken, each of the 
three sections is divided into subsections of n probes, plus a 
remainder. Each subsection yields a σ ̃. The entire set of 
subsections gives a mean and a standard deviation which are 
denoted by a square and an error bar, respectively. The three 
sections show similar means and similar variances. The means 
appear to be constant of n. 
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Fig. A1 A test of our assumption on the 500K copy number sample 

data provided by Affymetrix (http://www.affymetrix.com). (a) is the 
genomic profile of chromosome 2 from the (CRL-5868D,CRL-5957D) 

STY pair. The two colored sections are selected for analysis. (b) is 
log2-ratio distributions of the selected sections compared with two 

Gaussians: G(y;0.36,0.222) and G(y;–0.12,0.222). (c) is σ ̃ (estimated 
from subsections of n probes) of the two sections compared with a 

simulated section randomly generated with G(y;0,0.222) 
 

B. Accuracy Assessment 
In Fig. A2, we assess the accuracy of SAD using ROC 

curves. The ROC curves are calculated in the same way as in 
LJKP [8]. Aberration widths of 5, 10, 20 and 40 probes and 
SNRs of 1, 2, 3 and 4 are investigated. SNR was defined as the 
mean magnitude of the aberration (i.e. signal) divided by the 
standard deviation of the superimposed Gaussian noise. For 
each aberration width and SNR, we generated 10,000 simulated 
chromosomes (rather than 100 of LJKP), each consisting of 
100 probes and with a square-wave signal profile added to the 
center of the chromosome. True positive rate (TPR) is defined 
as the number of probes inside the aberration whose fitted 
values are above the threshold level divided by the number of 
probes in the aberration. False positive rate (FPR) is defined as 
the number of probes outside the aberration whose fitted values 
are above the threshold level divided by the total number of 
probes outside the aberration. In order to compute the ROC 
curve, we vary the threshold value for aberration from the 
minimum log2-ratio value to the maximum. Each threshold 
value results in a TPR and a FPR, represented by a point on the 
ROC curve. A set of TPRs and FPRs are then plotted to reveal 
the algorithm's ROC profile for the particular aberration width 

and SNR. 
For each situation of aberration width and SNR, we test 

parameter sets of SAD(tmin,−), tmin=1.5 to 4.0 in intervals of 0.5. 
The panels are arranged so that data become more difficult 
(lower SNRs and narrower aberrations) to analyze as one goes 
from upper-left to lower-right. We find in Fig. A2 that a higher 
tmin is more suitable for easy situations while a lower tmin 
facilitates aberration detection in difficult situations. 

 
 

 
Fig. A2 ROC curves of SAD(tmin,−) in 16 different situations: 

Aberration widths of 5, 10, 20 and 40 and SNRs of 1, 2, 3 and 4. tmin 
values used are 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0. 

 
Referring to Fig. 2 of LJKP, we see that in easy situations 

SAD(2.5-4,−) matches the performance of CGHseg, the best 
among the eight EPs, and in difficult situations SAD(1.5-2.5,−) 
outperform CGHseg. 

PM of SAD differs from LM in clustering order. We 
compare PM to LM in accuracy as follows. Based on the 
aberration seen on chromosome 3 of MCF7, one of the three 
breast cancer cell lines evaluated using the Affymetrix 100K 
SNP platform [23], the specifics of this calculation are: N=8000 
and SNR=3; A 250-probe-wide amplification is planted at the 
center of the chromosome; 10,000 simulated chromosomes are 
generated for each parameter set tested. SAD(tmin,−), 
SAD(tmin,400), SAD(tmin,200), SAD(tmin,100) and SAD(tmin,50) 
are tested with tmin=4, 8 and 16. The results are shown in Fig. 
A3, where we have zoomed in on the top-left corner of ROC 
space. With tmin=4, in terms of area under curve (AUC), 
SAD(4,100) differs from SAD(4,−) by 6.3×10–6. With tmin=8, 
the five curves are indistinguishable. With tmin=16, which is not 
shown in Fig. A3, the curves get even closer. We therefore 
consider the error incurred by Ns=100 negligible.  
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Fig. A3 Comparison of PM (Ns=50, 100, 200 and 400) with LM in 

error by ROC. We zoom in on the top-left corner of ROC space. (a) is 
for tmin= 4 and (b) for tmin= 8. In (b) the 5 curves are indistinguishable 
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