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Abstract—Graph transformation has recently become more and 

more popular as a general visual modeling language to formally state 

the dynamic semantics of the designed models. Especially, it is a 

very natural formalism for languages which basically are graph (e.g. 

UML). Using this technique, we present a highly understandable yet 

precise approach to formally model and analyze the behavioral 

semantics of UML 2.0 Activity diagrams. In our proposal, AGG is 

used to design Activities, then using our previous approach to model 

checking graph transformation systems, designers can verify and 

analyze designed Activity diagrams by checking the interesting 

properties as combination of graph rules and LTL (Linear Temporal 

Logic) formulas on the Activities. 

Keywords—UML 2.0 Activity, Verification, Model Checking, 

Graph Transformation, Dynamic Semantics. 

I. INTRODUCTION

ML Activity diagrams are suitable means to model 

dynamic parts of a system. They allow modeling of 

complex and large processes or specifying workflows [1]. 

They can be used to model the behavior of a system or to 

specify the global behavior of a service-oriented architecture 

[2]. Oftentimes, however, modeling must be complemented 

with suitable analysis capabilities to let the user understand 

whether the designed model fulfills the stated requirements. 

To have a precise analysis in an automated way, design 

models like Activities should be stated with a formal language 

(i.e. a language with a precise semantics). 

Since the past decade, Unified Modeling Language (UML) 

has been a standard modeling language to express models in a 

software development process. The major drawback of UML 

is that it only defines syntax for modeling without a precise 

formal semantics. Formal methods are crucial in automated 

software engineering. But the problem of formal methods is 

that they are difficult to be understood by designers because 

there is a complex mathematics behind them. Hence, our aim 

is to implement a precise semantics –based on UML 2.0 

specification [3]-yet easily understandable for UML 2.0 

Activities using graph transformation systems [4,5]. 

Graph transformation has recently become more and more 

popular as a general formal modeling language. Many of the 

artifacts which software engineers are used to deal with are 

nothing but suitable annotated graphs. Software architectures, 
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class diagrams, and version histories are only a few well-

known examples in which graphs have proven their usefulness 

in everyday software engineering. These models, and many 

others, can easily be described by means of suitable graph 

transformation systems to formalize their syntax and define 

the formal semantics of used notations [6]. Hence, graph 

transformation is a natural formalism for languages which 

basically are graphs and this motivates us to choose graph 

transformation as a semantic background for modeling 

Activities. 

To analyze Activities –modeled by graph transformation 

system-we use model checking. For doing so, based on our 

defined semantics, the transition system must be generated. In 

the generated transition system states are graphs representing 

the current state of the Activity. Then it is possible to check 

specified properties of the model (e.g. via temporal logics 

interpreted on the transition system). To implement semantics 

of UML 2.0 Activity diagrams, we use AGG1 toolset [7]. 

AGG supports attributed typed graphs and layered graph 

transformation systems. It is also possible to define desired 

constraints using atomic constraints in AGG. As AGG cannot 

generate transition systems, we use our previous approach to 

generate transition systems and to do model checking [8]. We 

translate graph transformation systems designed in AGG to 

BIR (Bandera Intermediate Language) –the input language of 

Bogor2 model checker [9]-. Bogor generates the transition 

system and checks desired properties stated by LTL. This 

translation is done automatically and designers can use this 

approach without any knowledge about the BIR or Bogor. 

As it was mentioned before, one of the main application 

areas of the Activities is workflow modeling. Hence, we use 

our proposed semantics of UML 2.0 Activity diagrams for 

modeling workflows. To verify the correctness of workflows, 

we consider several crucial properties of Activities modeling 

workflows. We describe how our proposed semantics can be 

used automatically to verify workflows. In contrast to 

previous approaches [10,11], our proposed semantics supports 

concepts defined in UML 2.0 Activities (e.g. Petri-like 

semantics and traverse-to-completion). Furthermore, our 

approach can cover more elements of Activities (e.g. 

exception handling and events) for modeling than [12]. Also, 

it has more flexibility to check user defined properties on the 

Activities.  

1 http://tfs.cs.tu-berlin.de/agg/ 
2 http://bogor.projects.cis.ksu.edu/ 
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The paper is organized as follows. Section II surveys the 

related works. Section III describes our solution to define a 

formal semantics for Activities. Section IV shows our 

approach to verify modeled Activity diagrams and section V 

concludes the paper. 

II. RELATED WORK

There is much research done about definition of formal 

semantics for Activity diagrams using different formal 

languages. In [13], Hausmann defines a concept named 

Dynamic Meta Modeling (DMM) using graph transformation 

systems. He extends the traditional graph rules by defining a 

new concept named “rule invocation”. In DMM, there are two 

kinds of rules: big-step and small-step rules. Big-step rules act 

as traditional rules but small-step rules should be invoked by 

big-step rules. Hausmann then defines semantics for Activity 

diagrams using concept of DMM. Engels et al. [14] use DMM 

and semantics defined by Hausmann for modeling and 

verification of workflows. For verification, they use 

GROOVE [15], but as GROOVE does not support rule 

invocation, they change the rules to be verifiable by 

GROOVE. They check deadlock freeness and action 

reachability properties on the modeled workflows. In contrast 

to this work, our approach has more flexibility to support user 

defined properties. Furthermore, our approach has the ability 

to support data flow; also event and exception modeling can 

be supported. Additionally, the extension defined by 

Hausmann (small/big step rules and rule invocation) can not 

be modeled directly in existing graph transformation tools; 

hence it is not so easy for designers to use this approach.  

Störrle et al. [16] use Petri nets as the semantic background 

for the UML 2.0 Activities. They examine Activities as 

described in the UML version 2.0 standard by defining 

denotational semantics. It covers basic control flow and data 

flow, expansion nodes and exception handling. They show 

that some of the constructs proposed in the standard are not so 

easily formalized by Petri nets. Due to the traverse-to-

completion semantics in UML 2.0, they conclude that it is not 

possible to use Petri nets for this purpose.  

Eshuis [17] defines a statechart-like semantics for UML 1.5 

Activity diagrams. He defines a property called ‘strong 

fairness’ (the model should not have any infinite loops) to 

verify functional requirements of the model. This approach 

uses NuSMV model checker [18] to check the strong fairness 

property stated in an LTL expression. This approach and 

others [11,19] do not treat UML 2.0 Activities, but its 1.5 

predecessor. 

Baldan et al. [20] use hypergraphs to show the behavior of 

a model (instance graph) by using UML Activities (rather than 

to define semantics for Activities). They use instance graph to 

show the static model of a system, then by defining a rule for 

each Action in the Activity and using synchronized 

hypergraph rewriting, they control the application of the rules. 

They present a variant of monadic second-order logic to verify 

hypergraphs. But they do not introduce any tools to implement 

their ideas. Furthermore, they do not use semantics defined by 

UML 2.0 (e.g. token flow) to implement their proposal. 

III. IMPLEMENTING THE SEMANTICS

To ease modeling of workflows we only use a subset of 

UML 2.0 Activities, since using this subset suffices to model 

many types of workflows. Our approach focuses mainly on 

control flow perspective; but it also can handle data flow. The 

parts of Activities which we consider for workflow modeling 

are shown in Fig. 1. Before we present our defined semantics 

for workflow modeling, we need to show its basic idea. 

According to the UML 2.0 specification [3] “Activities have a 

Petri net-like semantics”, i.e., the semantics is based on token 

flow. When an Activity is executed, the Init node starts the 

flow of token. Then based on our defined rules this token is 

routed through the Activity. 

Taking the semantics described above into account, we 

need to define an accurate syntax for the models under design. 

For doing so, we define some constraints on the models. 

These constraints are as following:  

1. Each Activity diagram must have exactly one Init

node and one Final node. 

2. Init node has no incoming edges and Final node has 

no outgoing edges. 

3. Each Fork and Decision node should have exactly 

two outgoing edges.  

4. Each Merge, Action, Object, Init and Join node must 

have exactly one outgoing edge. 

5. The source and target node of each edge should not 

be identical. (There must not be any self-edge in the 

graphs.) 

6. Each Final, Object, Action, Fork and Decision node 

should have only one incoming edge. 

7. Each Join and Merge node should have exactly two 

incoming edges.  

8. Each Action node can have some outgoing edges to 

some different ExceptionHandler node and each 

ExceptionHandler node should have exactly one 

outgoing edge to an Action node (this kind of edges is 

different from other edges).  

Notice that in practice, constraints 1,3 and 7 do not restrict 

the modeler: more than one Init node can be modeled 

equivalently by one Init node and one or more Fork node(s). 

(Final and Join nodes accordingly). Fork (or Decision) nodes 

with more than two outgoing edges can be modeled 

equivalently by cascading two or more Fork (Decision) nodes 

(we use the same way for Join and Merge nodes). We have 

proposed these constraints to have models with precise syntax 

and it is possible to draw many of UML 2.0 Activities using 

these constructs3.

The class diagram shown in Fig. 1 represents a portion of 

UML 2.0 Activity diagrams’ metamodel [21]. This metamodel 

can be formally considered as an attributed typed graph. The 

3 We do not consider labels or guards on the edges because it has not any 

effect on our approach for verification.  
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abstract syntax of a modeling language is defined by a 

metamodel and it can be represented formally as a type graph. 

Since UML 2.0 specification stipulates that activities “use a 

Petri-like semantics” [21], therefore; to show tokens, we add 

an attribute to Action node, named “token” of type “boolean”. 

Fig. 2 shows the enhanced metamodel as a type graph for 

Activity diagrams. 

Fig. 2 shows the proposed type graph based on the 

enhanced metamodel and listed constraints. This type graph 

and other parts of proposed graph transformation system are 

designed in AGG toolset. AGG automatically checks that each 

host graph (i.e. Activity diagram) and rules are consistent with 

its type graph and other constraints. Modeling an Activity in 

AGG ensures us that it is syntactically consistent with type 

graph and other constraints.  

The proposed type graph comprises one abstract type (i.e. 

Node), the star (*) sign on the top right corner shows the 

multiplicity of these nodes in the models. Other nodes (except 

Exception) have inherited this abstract type. Using 

inheritance, all the other nodes (except Exception) have the 

associations with the specified multiplicities to node type 

“Edge”.  Based on UML 2.0 specification, only Action and 

Object nodes can hold the token, while control nodes and 

edges can not. Preventing control nodes and edges from 

holding tokens ensures that tokens do not get "stuck" when 

alternative paths are open [22].Taking this semantics into 

account, we enhanced Action nodes with a “Token” attribute. 

For Object nodes there are two kinds of these attributes. Since 

Object nodes can hold more than one token at a time and each 

object node specifies the maximum number of tokens it can 

hold [22], we used “UB” to show the upper bound of tokens. 

“CV” shows the current value of tokens. Before the execution 

of the Activity, the value of “CV” is zero and it means that the 

Object node does not carry any token. Greater values for 

“CV” show the number of tokens in an Object node and thus 

we do not need “token” attribute for Object nodes. Node type 

“Exception” is used to support exception handling. Each 

Action can raise one or more exceptions and each exception is 

associated with a handler (it is specified with an Action node). 

The type graph has a node type “Key”. This node type has a 

boolean attribute “flag”. Each Activity has exactly one node 

of type “key” and the initial value for “flag” is false. We use 

this node to control the execution of the Activity at the 

beginning and at the end (by some graph rules). Each node 

type “Edge” points to the “token” which it wants to route 

(using the “points” association). 

This type graph does not satisfy all the above constraints. 

Therefore, we need some more constraints besides this type 

graph. For example, based on this type graph, it is possible to 

have host graphs (Activity diagrams) with some Edge without 

the source or target nodes. In AGG, using atomic graph 

constraint and formula constraint, we can define desired 

constraints on the model. As an example, consider Fig. 3. It 

consists of three atomic graph constraints which have been

described by three rules. First one depicts each Edge must 

have exactly one source and one target node (and the source 

and target are not identical). The second constraint states each 

node can not have two outgoing edges to a node of type 

“Edge” (we will use the negation of this constraint in the 

formula constraint). The last constraint says each Fork node 

must have exactly two outgoing Edges. Then the formula 

constraint: (1 && (! 2) && 3) states that all the host graphs 

(Activities) should follow these three constraints.  

Fig. 3 Three atomic graph constraints 

After adding other constraints to the graph transformation 

system, the metamodel of the proposed formal semantics is 

completed. Now, we can model workflows (or Activities) 

directly as a host graph in graph transformation system. Fig. 4 

shows a sample workflow modeled by an Activity diagram 

[3]. The dashed region shows the area that the exception 

“Cancel Order Request” can be raised. All Action nodes in 

this area can raise this exception. We will use this Activity 

diagram as a running example for the rest of this paper. It 

describes the processing of orders in a company. The meaning 

of this diagram is supposed as follows: 

When an order arrives, it might be accepted or rejected (the 

Decision node with two guards shows this fact). In the case of 

acceptance, Action Fill Order must be done. Then, to speed 

up the process, two Actions Ship Order and Send Invoice are 

performed in parallel. When these two actions are terminated 

(or the order has been rejected), Order Close Action is 

performed. Finally either by reaching the Final node or raising 

the exception Cancel Order Request, the process is 

terminated.  

In our approach, this diagram must be modeled in AGG 

based on the type graph (metamodel) of Fig. 3. For the lack of 

space we cannot show the equivalent host graph for Activity 

of Fig. 4. Notice that we have modeled workflows directly as 

a host graph (Activity) in AGG, but it is possible to draw the 

Activity in a desired UML editor. Then using a one to one 

mapping between UML and AGG constructs, we can 

implement a transformer.  

Most of the constraints formulated above put restrictions on 

the syntax of Activities rather than on their semantics. Since 

syntax restrictions can be automatically verified by AGG, 

their verifications will not be discussed further. The dynamic 

semantics are more important. To verify them, at first we need 

a formal semantics of the behavior of Activity diagrams. 

Hence, the next step is designing the dynamic semantics of the 

model by defining graph transformation rules. The proposed 

rules show the token flow in the host graphs. To define these 

rules we consider following definitions for token flow: 
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1. In each workflow, at first, there is no token, i.e. the Edge

nodes do not point to any node. The token flow will be 

started by Init node as soon as the Activity is executed. 

2. Tokens can not get stuck on nodes, it means as soon as 

there is a suitable way, the token should be routed. This is 

compliance with the UML specification which states the 

traverse-to-completion semantics for tokens. 

3. The flow of tokens will be terminated as soon as a token

arrives to Final node.  

Based on these definitions and the desired behavior of 

Activity diagrams, we have proposed 26 graph transformation 

rules as dynamic semantics for Activities. Due to the lack of 

space, we can not explain all of them here, but we briefly 

describe some of them.  

We have implemented the token flow semantics in a simple 

way: as soon as a token arrives at the incoming Edge(s) of a 

node (in this case the Edge points to Action or Object node 

holding the token), this node (based on its defined semantics) 

will offer the token to its following Edge(s) till it reached to 

incoming Edge of another Action or Object and in this case, 

the holding Action or Object node will really pass the token 

(and this is the traverse to completion). 

Fig. 5 shows a rule implementing the semantics of the Init

node. NAC (Negative Application Condition) and LHS (Left 

Hand Side) describe the preconditions, while RHS (Right 

Hand Side) shows the post-conditions of the rule. We have 

used notation defined by AGG to show the rules. The rule 

shown in Fig. 5 depicts that if flag attribute of node Key is 

false and the outgoing Edge of Init node does not point to Key

node, then the Edge must point to the Key node (in this case 

Key node plays the role of a token). In fact, this rule shows the 

starting point for the execution of the Activity. Notice that at 

the beginning of the execution, there is no existing token in 

the model. Hence, the Key node will play the role of a token 

till the token arrives at an Action or Object node. We use the 

Key node (while its flag is false) in the LHS of all designed 

rules.  

When a token arrives at the Final node, the value of flag 

will be changed to true. Thus the flow of tokens will be 

terminated because no more rules can be applied on the 

Activity. For the lack of space, the rule implementing 

semantics of Final node is not discussed here. 

Fig. 5 The proposed rule as the semantics of Init node

Fig. 6 shows two other rules implementing portions of the 

semantics of Object nodes4. Rule (A) of Fig. 6 describes a 

case when the incoming Edge of an Object node points to a 

4 In this article we focused mostly on control flow, hence the implemented 

semantics for Object nodes is based on control flow as opposed to data flow. 

But, our approach has the flexibility to support data flow. 

token. The LHS of this rule has an Attribute Condition5:

AC=x>y to state that this rule can only be applied on the 

Activity if the current number of holding tokens by Object

node is less than the defined Upper Bound for that Object

node. This is in compliance with the UML 2.0 specification 

which states that when the number of tokens in an Object

node reaches its upper bound, it cannot accept any more 

tokens [22]. In the RHS of this rule, the current number of 

tokens is increased by one (to show the acceptance of the 

token by Object node) and the incoming Edge of the Object

node does not further point to the token. To show the token in 

this rule we use An Action node, notice that it is possible to 

use the Key or Object node instead of the Action node. Thus, 

we need two similar rules for those cases (which are not 

shown). As it is shown, the token attribute of the Action node 

is changed to false, when the token is accepted by Object

node. This is compliant with the traverse to completion 

semantics. The NAC of this rule depicts that this rule can be 

applied only if there is no other Edge(s) in the model which 

points to it. Some nodes like Forks can make copies of the 

token; hence the token can be false when all the copies have 

been routed and accepted by destination Object or Action

nodes. For the cases that there are more than one pointing 

Edge to the Action/Object node, the Object/Action node in the 

RHS just receive the token and the token in the LHS remains 

without changes (we implement this semantic by other rules). 

Rule (B) of Fig. 6 shows the case where an Object node 

holding one or more tokens (i.e. AC=y>0) offers a token to its 

outgoing Edge. The NAC of this rule says that the outgoing 

Edge must not point to the token. The RHS of this rule shows 

that the outgoing Edge will point to the Object node (i.e. the 

Edge is carrying the token) and the Current Value of tokens 

remains as the same as LHS. This value will be decreased by 

one, when another Action or Object node accepts it in the 

future (by some other rules like rule (A)). 

Fig. 6 Two example rules implementing portions of the semantics for 

Object nodes 

Applying all enabled rules to initial state (the Activity 

diagram before applying rules) will result in a transition 

system. This resulting transition system represents the 

complete behavior of the Activity under consideration. It will 

be the basis for analysis of the Activity, using model 

checking. In the next section, we show our approach to verify 

an Activity using its transition system. 

5
Attribute Condition (AC) is one of the useful facilities provided by AGG
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IV. VERIFICATION AND VALIDATION

To analyze designed Activities we use our previous 

approach to verify graph transformation systems [8]. In the 

cases where designers are expert in graph transformation, they 

can model workflows directly by graph transformation (rather 

than UML). In the cases where designers are not familiar with 

graph transformation, they can model workflows by UML 

Activities6 (rather than graph transformation), in that case, 

they do not need to define any rules for verification, because 

we have designed some fixed properties to be used by 

designers. It means designers only model the workflow, and 

the verification is done automatically via our fixed designed 

properties (without intervention of designers). In addition, it is 

possible to define new properties by expert designers. Using 

rules to state properties has this advantage that designers do 

not need to learn any other formalism, and they can state 

properties by the same formalism that they model the system 

(i.e. graph transformation). 

Fig. 7 Rules KeyFalse, KeyTrue and ActionWithToken 

First, recall from section III, that for an Activity to be 

supposed sound, a token must finally arrive at the Final node. 

It means the Activity must be deadlock free. To verify this 

property we should check that for all possible executions of 

the Activity, Final node is reachable. To state this property, 

we have designed two rules: KeyFalse and KeyTrue. Fig. 7 

shows these rules. They have no NAC and their LHS and 

RHS are identical.  If a property rule matches a state, we know 

that the preconditions of that rule hold within the state. The 

only precondition of KeyFalse is that the token has not arrived 

at the Final node (in contrast to KeyTrue), notice that when 

the token arrives at the Final node, the flag is changed to true. 

Hence, we can state this property using the following LTL 

expression: ( KeyFalse ( KeyTrue)), where symbol “ ”

means always, “ ” means finally and symbol “ ” shows the 

implication. The result of checking this property on the 

transition system is true if in every possible execution of the 

Activity, there is a state in a path in which KeyFalse is

satisfied and then eventually there is a state in the postfix of 

that path, in which the token arrives to the Final node (i.e. 

KeyTrue is satisfied). It means that the token must always 

arrive to the Final node. As an example where this property is 

satisfied by the Activity, consider Activity of Fig. 4. In this 

Activity token always arrive to the Final node. But as an 

example where the mentioned property is not satisfied, 

consider the Activity of Fig. 8 (a). This Activity shows an 

Activity which contains a deadlock. In this diagram, there is a 

Join node immediately after Init node and it prevents token to 

be propagated from Init node. Therefore, token never reaches 

6 In this case, a transformer is needed to automatically transform UML 

Activities to graph transformation 

to the Final node and it causes a deadlock. Hence, the 

mentioned property is never satisfied for this Activity.  

Another property which should hold for a sound workflow 

is that there must not be any useless work (Action) in it, i.e. 

for each Action node there should be at least one execution in 

which the token arrives to that node. In other words, each 

Action in a sound workflow must be reachable. We can state 

this property as the following: each specified Action must be 

reachable, it means we should design a rule for each Action 

(using its name) to check this property, Fig. 7 shows a rule 

(ActionWithToken) to state that the Action “Ship Order” in 

the Activity of Fig. 4 is reachable. The following LTL 

expression states this property: ¬ (¬ActionWithToken), this 

property is satisfied on the Activity of Fig. 4. This LTL 

expression means that there must be an execution of the 

Activity which the specified Action node (“Ship Order” in 

this case) has the token (i.e. it is reachable).  

Fig. 8 Two faulty Activities (a) contains a deadlock (b) contains an 

unreachable Action node 

Now, consider the Activity of Fig. 8 (b). If we replace the 

name of Action node in Fig. 7 (ActionWithToken) with 

“Action4”, then check the property, it is not satisfied. Because 

there is a Decision node before “Action1” and “Action2”,

according to the semantics of Decision nodes, the token is 

routed to only one of them. Hence in all execution of this 

Activity, only one token will arrive at Join node before 

“Action4”. Based on the semantics of Join nodes, token will 

never reach to the “Action4”. Therefore, we can conclude that 

this property is never satisfied for this workflow. We can state 

this kind of property in a more general way by ignoring the 

name of Action. In this case, checking the property only says 

that is there any unreachable Action in the Activity or not, and 

it does not determine the unreachable Action itself. 

V. CONCLUSION AND FUTURE WORK

In this paper we have presented an approach to formally 

define a semantics for UML 2.0 Activities. We have defined 

this semantics based on “token flow” and “traverse-to-

completion” using graph transformation systems. To 

implement static semantics, we have defined a type graph 

(based on UML 2.0 Activity metamodel) and all Activities are 

modeled as a host graph. The host graph must confirm to the 

type graph. To define dynamic semantics, we have defined 

some graph transformation rules. We have used our previous 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2218

approach to verify graph transformations. As workflows are a 

typical modeling domain for UML 2.0 Activities, we have 

illustrated our proposed verification approach to verify 

workflows by defining some quality criterion. Non-expert 

designers can use our approach without any knowledge about 

underlying formalisms (i.e. BIR and Bogor).   

However, further research is required to model other 

required elements (e.g. Parameter nodes and Pins). Our 

approach has the ability to support data flow, so we have a 

plan to model other elements and implement their semantics as 

some graph transformation rules. 

It remains to discuss the size of Activities (or graphs in 

general) that our approach can verify, because in all model 

checking approaches state space explosion is a serious 

restriction. Scalability of our approach depends on different 

parameters: the size of the host graph, the number of dynamic 

nodes which must be added/deleted to/from the host graph by 

rules, the number of applicable rules in the same time, etc. We 

know there is not any dynamic node in the Activities. In 

addition, usually the size of Activities is not too large, even in 

the cases that the size of Activities is too large (e.g. Activities 

with more than 100 nodes) designers can decrease the size of 

them using “Action Call” nodes. Hence, we believe that our 

approach can support Activities with reasonable size.   

ACKNOWLEDGMENT

This research was partially done while the first author was 

in university of Politecnico di Milano (Italy) as a visiting 

researcher and would like to thank the supports provided by 

Professor Luciano Baresi and Dr. Paola Spoletini. 

REFERENCES

[1] Eshuis, R., Jansen, D. and Andwieringa, R.: Requirements-level 

Semantics and Model Checking of Object-Oriented Statecharts. 

Requirements Eng. J. 7, 243–263, (2002) 

[2] Alonso, G., Casati, F., Kuno, H. and Machiraju, V.: Web Services: 

Concepts, Architectures and Applications. Springer, (2004) 

[3] Object Management Group: UML Specification V2.0. 

http://www.omg.org/ technology/documents/modeling spec catalog.htm 

(2005) 

[4] Baresi, L. and Heckel, R.: Tutorial Introduction to Graph 

Transformation: A Software Engineering Perspective, In proc. of first 

International Conference on Graph Transformation (ICGT), vol 2505 of 

LNCS, 402-429, (2002) 

[5] Ehrig, H., Engels, G., Kreowski, H.j. and Rozenberg, G. (eds.): 

Handbook on Graph Grammars and Computing by Graph 

Transformation, vol. 2: Applications, Languages and Tools. World 

Scientific, (1999) 

[6] Kuske, S.: A Formal Semantics of UML State Machines Based on 

Structured Graph Transformation, In Proc. of UML 2001, vol. 2185, 

Springer-Verlag, (2001) 

[7] Beyer, M.: AGG1.0 – Tutorial. Technical University of Berlin, 

Department of Computer Science, (1992) 

[8] Baresi, L., Rafe, V., Rahmani, A.T. and Spoletini, P.: An Efficient 

solution for Model Checking Graph Transformation Systems. Electronic 

Notes in Theoretical Computer Science (ENTCS), Vol. 213, PP. 3-21, 

(2008) 

[9] Robby, Dwyer, M. and Hatcliff, J.: Bogor: An Extensible and Highly-

Modular Software Model Checking Framework, In Proc. of the 9th 

European software engineering Conference, 267–276, (2003) 

[10] Eshuis, R.: Semantics and Verification of UML Activity Diagrams for 

Workflow Modelling, Ph.D. Thesis, University of Twente, Netherlands, 

(2005) 

[11] Bolton, C., Davies, J.: On Giving a Behavioural Semantics to Activity 

Graphs. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. vol. 1939 of 

LNCS, Springer, Heidelberg (2000) 

[12] Soltenborn, C.: Analysis of UML Workflow Diagrams with Dynamic 

MetaModeling Techniques, Master’s Thesis, University of Paderborn, 

Germany,( 2006) 

[13] Hausmann, J. H.: Dynamic Meta Modeling: A Semantics Description 

Technique for Visual Modeling Languages, Ph.D. Thesis, University of 

Paderborn, Germany, (2005) 

[14] Engels, G., Soltenborn, C. and Wehrheim, H.: Analysis UML Activities 

Using Dynamic Meta Modeling, In Proc. of  9th IFIP International 

Conference on Formal Methods for Open Object-Based Distributed 

Systems (FMOODS), vol 4468 of LNCS, 76-90, (2007)   

[15] Rensink, A.: The GROOVE Simulator: A Tool for State Space 

Generation, In Applications of Graph Transformations with Industrial 

Relevance (AGTIVE), vol. 3062 of Lecture Notes in Computer Science, 

479-485, (2004) 

[16] Störrle, H., Hausmann, J.H.: Towards a Formal Semantics of UML 2.0 

Activities. In: Liggesmeyer, P., Pohl, K., Goedicke, M. (eds) Software 

Engineering. LNI., GI, vol. 64 pp. 117–128 (2005) 

[17] Eshuis, R.: Symbolic Model Checking of UML Activity Diagrams. 

ACM Transaction on Software Engineering Methodology, 15(1), 1–38 

(2006) 

[18] Cimatti, A., Clarke, E., Giunchiglia, F. and Roveri, M.: NuSMV: A New 

Symbolic Model Checker,” International Journal on Software Tools for 

Technology Transfer, 2(4):410–425, (2000) 

[19] Börger, E., Cavarra, A., Riccobene, E.: An ASM Semantics for UML 

Activity Diagrams. In: Rus, T. (ed.) AMAST 2000.  vol. 1816 of LNCS, 

pp. 293–308. Springer, Heidelberg (2000) 

[20] Baldan, P., Corradini, A., and Gadducci, F.: Specifying and Verifying 

UML Activity Diagrams via Graph Transformation. In Proc. of Global 

Computing, vol. 3267 of LNCS, 18-33, (2004) 

[21] Störrle, H.: Semantics of Control-Flow in UML 2.0 Activities, In: N.N., 

editor, Proc. IEEE Symposium on Visual Languages and Human-Centric 

Computing (VL/HCC) (2004) 

[22] Bock, C.: UML 2 Activity and Action Models Part 4: Object Nodes, In 

Journal of Object Technology, vol. 3, no. 1, pp. 27-41. (2004) 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2219

Fig. 1 A small portion of UML 2.0 metamodel [21] 

Fig. 2 Proposed type graph for UML 2.0 Activity diagram 

Fig. 4 A sample Activity diagram [3] 


