
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2213

Abstract—Graph transformation has recently become more and

more popular as a general visual modeling language to formally state

the dynamic semantics of the designed models. Especially, it is a

very natural formalism for languages which basically are graph (e.g.

UML). Using this technique, we present a highly understandable yet

precise approach to formally model and analyze the behavioral

semantics of UML 2.0 Activity diagrams. In our proposal, AGG is

used to design Activities, then using our previous approach to model

checking graph transformation systems, designers can verify and

analyze designed Activity diagrams by checking the interesting

properties as combination of graph rules and LTL (Linear Temporal

Logic) formulas on the Activities.

Keywords—UML 2.0 Activity, Verification, Model Checking,

Graph Transformation, Dynamic Semantics.

I. INTRODUCTION

ML Activity diagrams are suitable means to model

dynamic parts of a system. They allow modeling of

complex and large processes or specifying workflows [1].

They can be used to model the behavior of a system or to

specify the global behavior of a service-oriented architecture

[2]. Oftentimes, however, modeling must be complemented

with suitable analysis capabilities to let the user understand

whether the designed model fulfills the stated requirements.

To have a precise analysis in an automated way, design

models like Activities should be stated with a formal language

(i.e. a language with a precise semantics).

Since the past decade, Unified Modeling Language (UML)

has been a standard modeling language to express models in a

software development process. The major drawback of UML

is that it only defines syntax for modeling without a precise

formal semantics. Formal methods are crucial in automated

software engineering. But the problem of formal methods is

that they are difficult to be understood by designers because

there is a complex mathematics behind them. Hence, our aim

is to implement a precise semantics –based on UML 2.0

specification [3]-yet easily understandable for UML 2.0

Activities using graph transformation systems [4,5].

Graph transformation has recently become more and more

popular as a general formal modeling language. Many of the

artifacts which software engineers are used to deal with are

nothing but suitable annotated graphs. Software architectures,

Siamak Rasulzadeh is with Islamic Azad University, Naragh Branch, Iran

(e-mail: S_rasulzadeh@yahoo.com).

class diagrams, and version histories are only a few well-

known examples in which graphs have proven their usefulness

in everyday software engineering. These models, and many

others, can easily be described by means of suitable graph

transformation systems to formalize their syntax and define

the formal semantics of used notations [6]. Hence, graph

transformation is a natural formalism for languages which

basically are graphs and this motivates us to choose graph

transformation as a semantic background for modeling

Activities.

To analyze Activities –modeled by graph transformation

system-we use model checking. For doing so, based on our

defined semantics, the transition system must be generated. In

the generated transition system states are graphs representing

the current state of the Activity. Then it is possible to check

specified properties of the model (e.g. via temporal logics

interpreted on the transition system). To implement semantics

of UML 2.0 Activity diagrams, we use AGG1 toolset [7].

AGG supports attributed typed graphs and layered graph

transformation systems. It is also possible to define desired

constraints using atomic constraints in AGG. As AGG cannot

generate transition systems, we use our previous approach to

generate transition systems and to do model checking [8]. We

translate graph transformation systems designed in AGG to

BIR (Bandera Intermediate Language) –the input language of

Bogor2 model checker [9]-. Bogor generates the transition

system and checks desired properties stated by LTL. This

translation is done automatically and designers can use this

approach without any knowledge about the BIR or Bogor.

As it was mentioned before, one of the main application

areas of the Activities is workflow modeling. Hence, we use

our proposed semantics of UML 2.0 Activity diagrams for

modeling workflows. To verify the correctness of workflows,

we consider several crucial properties of Activities modeling

workflows. We describe how our proposed semantics can be

used automatically to verify workflows. In contrast to

previous approaches [10,11], our proposed semantics supports

concepts defined in UML 2.0 Activities (e.g. Petri-like

semantics and traverse-to-completion). Furthermore, our

approach can cover more elements of Activities (e.g.

exception handling and events) for modeling than [12]. Also,

it has more flexibility to check user defined properties on the

Activities.

1 http://tfs.cs.tu-berlin.de/agg/
2 http://bogor.projects.cis.ksu.edu/

Formal Modeling and Verification of Software

Models

U

Siamak Rasulzadeh

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2214

The paper is organized as follows. Section II surveys the

related works. Section III describes our solution to define a

formal semantics for Activities. Section IV shows our

approach to verify modeled Activity diagrams and section V

concludes the paper.

II. RELATED WORK

There is much research done about definition of formal

semantics for Activity diagrams using different formal

languages. In [13], Hausmann defines a concept named

Dynamic Meta Modeling (DMM) using graph transformation

systems. He extends the traditional graph rules by defining a

new concept named “rule invocation”. In DMM, there are two

kinds of rules: big-step and small-step rules. Big-step rules act

as traditional rules but small-step rules should be invoked by

big-step rules. Hausmann then defines semantics for Activity

diagrams using concept of DMM. Engels et al. [14] use DMM

and semantics defined by Hausmann for modeling and

verification of workflows. For verification, they use

GROOVE [15], but as GROOVE does not support rule

invocation, they change the rules to be verifiable by

GROOVE. They check deadlock freeness and action

reachability properties on the modeled workflows. In contrast

to this work, our approach has more flexibility to support user

defined properties. Furthermore, our approach has the ability

to support data flow; also event and exception modeling can

be supported. Additionally, the extension defined by

Hausmann (small/big step rules and rule invocation) can not

be modeled directly in existing graph transformation tools;

hence it is not so easy for designers to use this approach.

Störrle et al. [16] use Petri nets as the semantic background

for the UML 2.0 Activities. They examine Activities as

described in the UML version 2.0 standard by defining

denotational semantics. It covers basic control flow and data

flow, expansion nodes and exception handling. They show

that some of the constructs proposed in the standard are not so

easily formalized by Petri nets. Due to the traverse-to-

completion semantics in UML 2.0, they conclude that it is not

possible to use Petri nets for this purpose.

Eshuis [17] defines a statechart-like semantics for UML 1.5

Activity diagrams. He defines a property called ‘strong

fairness’ (the model should not have any infinite loops) to

verify functional requirements of the model. This approach

uses NuSMV model checker [18] to check the strong fairness

property stated in an LTL expression. This approach and

others [11,19] do not treat UML 2.0 Activities, but its 1.5

predecessor.

Baldan et al. [20] use hypergraphs to show the behavior of

a model (instance graph) by using UML Activities (rather than

to define semantics for Activities). They use instance graph to

show the static model of a system, then by defining a rule for

each Action in the Activity and using synchronized

hypergraph rewriting, they control the application of the rules.

They present a variant of monadic second-order logic to verify

hypergraphs. But they do not introduce any tools to implement

their ideas. Furthermore, they do not use semantics defined by

UML 2.0 (e.g. token flow) to implement their proposal.

III. IMPLEMENTING THE SEMANTICS

To ease modeling of workflows we only use a subset of

UML 2.0 Activities, since using this subset suffices to model

many types of workflows. Our approach focuses mainly on

control flow perspective; but it also can handle data flow. The

parts of Activities which we consider for workflow modeling

are shown in Fig. 1. Before we present our defined semantics

for workflow modeling, we need to show its basic idea.

According to the UML 2.0 specification [3] “Activities have a

Petri net-like semantics”, i.e., the semantics is based on token

flow. When an Activity is executed, the Init node starts the

flow of token. Then based on our defined rules this token is

routed through the Activity.

Taking the semantics described above into account, we

need to define an accurate syntax for the models under design.

For doing so, we define some constraints on the models.

These constraints are as following:

1. Each Activity diagram must have exactly one Init

node and one Final node.

2. Init node has no incoming edges and Final node has

no outgoing edges.

3. Each Fork and Decision node should have exactly

two outgoing edges.

4. Each Merge, Action, Object, Init and Join node must

have exactly one outgoing edge.

5. The source and target node of each edge should not

be identical. (There must not be any self-edge in the

graphs.)

6. Each Final, Object, Action, Fork and Decision node

should have only one incoming edge.

7. Each Join and Merge node should have exactly two

incoming edges.

8. Each Action node can have some outgoing edges to

some different ExceptionHandler node and each

ExceptionHandler node should have exactly one

outgoing edge to an Action node (this kind of edges is

different from other edges).

Notice that in practice, constraints 1,3 and 7 do not restrict

the modeler: more than one Init node can be modeled

equivalently by one Init node and one or more Fork node(s).

(Final and Join nodes accordingly). Fork (or Decision) nodes

with more than two outgoing edges can be modeled

equivalently by cascading two or more Fork (Decision) nodes

(we use the same way for Join and Merge nodes). We have

proposed these constraints to have models with precise syntax

and it is possible to draw many of UML 2.0 Activities using

these constructs3.

The class diagram shown in Fig. 1 represents a portion of

UML 2.0 Activity diagrams’ metamodel [21]. This metamodel

can be formally considered as an attributed typed graph. The

3 We do not consider labels or guards on the edges because it has not any

effect on our approach for verification.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2215

abstract syntax of a modeling language is defined by a

metamodel and it can be represented formally as a type graph.

Since UML 2.0 specification stipulates that activities “use a

Petri-like semantics” [21], therefore; to show tokens, we add

an attribute to Action node, named “token” of type “boolean”.

Fig. 2 shows the enhanced metamodel as a type graph for

Activity diagrams.

Fig. 2 shows the proposed type graph based on the

enhanced metamodel and listed constraints. This type graph

and other parts of proposed graph transformation system are

designed in AGG toolset. AGG automatically checks that each

host graph (i.e. Activity diagram) and rules are consistent with

its type graph and other constraints. Modeling an Activity in

AGG ensures us that it is syntactically consistent with type

graph and other constraints.

The proposed type graph comprises one abstract type (i.e.

Node), the star (*) sign on the top right corner shows the

multiplicity of these nodes in the models. Other nodes (except

Exception) have inherited this abstract type. Using

inheritance, all the other nodes (except Exception) have the

associations with the specified multiplicities to node type

“Edge”. Based on UML 2.0 specification, only Action and

Object nodes can hold the token, while control nodes and

edges can not. Preventing control nodes and edges from

holding tokens ensures that tokens do not get "stuck" when

alternative paths are open [22].Taking this semantics into

account, we enhanced Action nodes with a “Token” attribute.

For Object nodes there are two kinds of these attributes. Since

Object nodes can hold more than one token at a time and each

object node specifies the maximum number of tokens it can

hold [22], we used “UB” to show the upper bound of tokens.

“CV” shows the current value of tokens. Before the execution

of the Activity, the value of “CV” is zero and it means that the

Object node does not carry any token. Greater values for

“CV” show the number of tokens in an Object node and thus

we do not need “token” attribute for Object nodes. Node type

“Exception” is used to support exception handling. Each

Action can raise one or more exceptions and each exception is

associated with a handler (it is specified with an Action node).

The type graph has a node type “Key”. This node type has a

boolean attribute “flag”. Each Activity has exactly one node

of type “key” and the initial value for “flag” is false. We use

this node to control the execution of the Activity at the

beginning and at the end (by some graph rules). Each node

type “Edge” points to the “token” which it wants to route

(using the “points” association).

This type graph does not satisfy all the above constraints.

Therefore, we need some more constraints besides this type

graph. For example, based on this type graph, it is possible to

have host graphs (Activity diagrams) with some Edge without

the source or target nodes. In AGG, using atomic graph

constraint and formula constraint, we can define desired

constraints on the model. As an example, consider Fig. 3. It

consists of three atomic graph constraints which have been

described by three rules. First one depicts each Edge must

have exactly one source and one target node (and the source

and target are not identical). The second constraint states each

node can not have two outgoing edges to a node of type

“Edge” (we will use the negation of this constraint in the

formula constraint). The last constraint says each Fork node

must have exactly two outgoing Edges. Then the formula

constraint: (1 && (! 2) && 3) states that all the host graphs

(Activities) should follow these three constraints.

Fig. 3 Three atomic graph constraints

After adding other constraints to the graph transformation

system, the metamodel of the proposed formal semantics is

completed. Now, we can model workflows (or Activities)

directly as a host graph in graph transformation system. Fig. 4

shows a sample workflow modeled by an Activity diagram

[3]. The dashed region shows the area that the exception

“Cancel Order Request” can be raised. All Action nodes in

this area can raise this exception. We will use this Activity

diagram as a running example for the rest of this paper. It

describes the processing of orders in a company. The meaning

of this diagram is supposed as follows:

When an order arrives, it might be accepted or rejected (the

Decision node with two guards shows this fact). In the case of

acceptance, Action Fill Order must be done. Then, to speed

up the process, two Actions Ship Order and Send Invoice are

performed in parallel. When these two actions are terminated

(or the order has been rejected), Order Close Action is

performed. Finally either by reaching the Final node or raising

the exception Cancel Order Request, the process is

terminated.

In our approach, this diagram must be modeled in AGG

based on the type graph (metamodel) of Fig. 3. For the lack of

space we cannot show the equivalent host graph for Activity

of Fig. 4. Notice that we have modeled workflows directly as

a host graph (Activity) in AGG, but it is possible to draw the

Activity in a desired UML editor. Then using a one to one

mapping between UML and AGG constructs, we can

implement a transformer.

Most of the constraints formulated above put restrictions on

the syntax of Activities rather than on their semantics. Since

syntax restrictions can be automatically verified by AGG,

their verifications will not be discussed further. The dynamic

semantics are more important. To verify them, at first we need

a formal semantics of the behavior of Activity diagrams.

Hence, the next step is designing the dynamic semantics of the

model by defining graph transformation rules. The proposed

rules show the token flow in the host graphs. To define these

rules we consider following definitions for token flow:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2216

1. In each workflow, at first, there is no token, i.e. the Edge

nodes do not point to any node. The token flow will be

started by Init node as soon as the Activity is executed.

2. Tokens can not get stuck on nodes, it means as soon as

there is a suitable way, the token should be routed. This is

compliance with the UML specification which states the

traverse-to-completion semantics for tokens.

3. The flow of tokens will be terminated as soon as a token

arrives to Final node.

Based on these definitions and the desired behavior of

Activity diagrams, we have proposed 26 graph transformation

rules as dynamic semantics for Activities. Due to the lack of

space, we can not explain all of them here, but we briefly

describe some of them.

We have implemented the token flow semantics in a simple

way: as soon as a token arrives at the incoming Edge(s) of a

node (in this case the Edge points to Action or Object node

holding the token), this node (based on its defined semantics)

will offer the token to its following Edge(s) till it reached to

incoming Edge of another Action or Object and in this case,

the holding Action or Object node will really pass the token

(and this is the traverse to completion).

Fig. 5 shows a rule implementing the semantics of the Init

node. NAC (Negative Application Condition) and LHS (Left

Hand Side) describe the preconditions, while RHS (Right

Hand Side) shows the post-conditions of the rule. We have

used notation defined by AGG to show the rules. The rule

shown in Fig. 5 depicts that if flag attribute of node Key is

false and the outgoing Edge of Init node does not point to Key

node, then the Edge must point to the Key node (in this case

Key node plays the role of a token). In fact, this rule shows the

starting point for the execution of the Activity. Notice that at

the beginning of the execution, there is no existing token in

the model. Hence, the Key node will play the role of a token

till the token arrives at an Action or Object node. We use the

Key node (while its flag is false) in the LHS of all designed

rules.

When a token arrives at the Final node, the value of flag

will be changed to true. Thus the flow of tokens will be

terminated because no more rules can be applied on the

Activity. For the lack of space, the rule implementing

semantics of Final node is not discussed here.

Fig. 5 The proposed rule as the semantics of Init node

Fig. 6 shows two other rules implementing portions of the

semantics of Object nodes4. Rule (A) of Fig. 6 describes a

case when the incoming Edge of an Object node points to a

4 In this article we focused mostly on control flow, hence the implemented

semantics for Object nodes is based on control flow as opposed to data flow.

But, our approach has the flexibility to support data flow.

token. The LHS of this rule has an Attribute Condition5:

AC=x>y to state that this rule can only be applied on the

Activity if the current number of holding tokens by Object

node is less than the defined Upper Bound for that Object

node. This is in compliance with the UML 2.0 specification

which states that when the number of tokens in an Object

node reaches its upper bound, it cannot accept any more

tokens [22]. In the RHS of this rule, the current number of

tokens is increased by one (to show the acceptance of the

token by Object node) and the incoming Edge of the Object

node does not further point to the token. To show the token in

this rule we use An Action node, notice that it is possible to

use the Key or Object node instead of the Action node. Thus,

we need two similar rules for those cases (which are not

shown). As it is shown, the token attribute of the Action node

is changed to false, when the token is accepted by Object

node. This is compliant with the traverse to completion

semantics. The NAC of this rule depicts that this rule can be

applied only if there is no other Edge(s) in the model which

points to it. Some nodes like Forks can make copies of the

token; hence the token can be false when all the copies have

been routed and accepted by destination Object or Action

nodes. For the cases that there are more than one pointing

Edge to the Action/Object node, the Object/Action node in the

RHS just receive the token and the token in the LHS remains

without changes (we implement this semantic by other rules).

Rule (B) of Fig. 6 shows the case where an Object node

holding one or more tokens (i.e. AC=y>0) offers a token to its

outgoing Edge. The NAC of this rule says that the outgoing

Edge must not point to the token. The RHS of this rule shows

that the outgoing Edge will point to the Object node (i.e. the

Edge is carrying the token) and the Current Value of tokens

remains as the same as LHS. This value will be decreased by

one, when another Action or Object node accepts it in the

future (by some other rules like rule (A)).

Fig. 6 Two example rules implementing portions of the semantics for

Object nodes

Applying all enabled rules to initial state (the Activity

diagram before applying rules) will result in a transition

system. This resulting transition system represents the

complete behavior of the Activity under consideration. It will

be the basis for analysis of the Activity, using model

checking. In the next section, we show our approach to verify

an Activity using its transition system.

5
Attribute Condition (AC) is one of the useful facilities provided by AGG

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2217

IV. VERIFICATION AND VALIDATION

To analyze designed Activities we use our previous

approach to verify graph transformation systems [8]. In the

cases where designers are expert in graph transformation, they

can model workflows directly by graph transformation (rather

than UML). In the cases where designers are not familiar with

graph transformation, they can model workflows by UML

Activities6 (rather than graph transformation), in that case,

they do not need to define any rules for verification, because

we have designed some fixed properties to be used by

designers. It means designers only model the workflow, and

the verification is done automatically via our fixed designed

properties (without intervention of designers). In addition, it is

possible to define new properties by expert designers. Using

rules to state properties has this advantage that designers do

not need to learn any other formalism, and they can state

properties by the same formalism that they model the system

(i.e. graph transformation).

Fig. 7 Rules KeyFalse, KeyTrue and ActionWithToken

First, recall from section III, that for an Activity to be

supposed sound, a token must finally arrive at the Final node.

It means the Activity must be deadlock free. To verify this

property we should check that for all possible executions of

the Activity, Final node is reachable. To state this property,

we have designed two rules: KeyFalse and KeyTrue. Fig. 7

shows these rules. They have no NAC and their LHS and

RHS are identical. If a property rule matches a state, we know

that the preconditions of that rule hold within the state. The

only precondition of KeyFalse is that the token has not arrived

at the Final node (in contrast to KeyTrue), notice that when

the token arrives at the Final node, the flag is changed to true.

Hence, we can state this property using the following LTL

expression: (KeyFalse (KeyTrue)), where symbol “ ”

means always, “ ” means finally and symbol “ ” shows the

implication. The result of checking this property on the

transition system is true if in every possible execution of the

Activity, there is a state in a path in which KeyFalse is

satisfied and then eventually there is a state in the postfix of

that path, in which the token arrives to the Final node (i.e.

KeyTrue is satisfied). It means that the token must always

arrive to the Final node. As an example where this property is

satisfied by the Activity, consider Activity of Fig. 4. In this

Activity token always arrive to the Final node. But as an

example where the mentioned property is not satisfied,

consider the Activity of Fig. 8 (a). This Activity shows an

Activity which contains a deadlock. In this diagram, there is a

Join node immediately after Init node and it prevents token to

be propagated from Init node. Therefore, token never reaches

6 In this case, a transformer is needed to automatically transform UML

Activities to graph transformation

to the Final node and it causes a deadlock. Hence, the

mentioned property is never satisfied for this Activity.

Another property which should hold for a sound workflow

is that there must not be any useless work (Action) in it, i.e.

for each Action node there should be at least one execution in

which the token arrives to that node. In other words, each

Action in a sound workflow must be reachable. We can state

this property as the following: each specified Action must be

reachable, it means we should design a rule for each Action

(using its name) to check this property, Fig. 7 shows a rule

(ActionWithToken) to state that the Action “Ship Order” in

the Activity of Fig. 4 is reachable. The following LTL

expression states this property: ¬ (¬ActionWithToken), this

property is satisfied on the Activity of Fig. 4. This LTL

expression means that there must be an execution of the

Activity which the specified Action node (“Ship Order” in

this case) has the token (i.e. it is reachable).

Fig. 8 Two faulty Activities (a) contains a deadlock (b) contains an

unreachable Action node

Now, consider the Activity of Fig. 8 (b). If we replace the

name of Action node in Fig. 7 (ActionWithToken) with

“Action4”, then check the property, it is not satisfied. Because

there is a Decision node before “Action1” and “Action2”,

according to the semantics of Decision nodes, the token is

routed to only one of them. Hence in all execution of this

Activity, only one token will arrive at Join node before

“Action4”. Based on the semantics of Join nodes, token will

never reach to the “Action4”. Therefore, we can conclude that

this property is never satisfied for this workflow. We can state

this kind of property in a more general way by ignoring the

name of Action. In this case, checking the property only says

that is there any unreachable Action in the Activity or not, and

it does not determine the unreachable Action itself.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented an approach to formally

define a semantics for UML 2.0 Activities. We have defined

this semantics based on “token flow” and “traverse-to-

completion” using graph transformation systems. To

implement static semantics, we have defined a type graph

(based on UML 2.0 Activity metamodel) and all Activities are

modeled as a host graph. The host graph must confirm to the

type graph. To define dynamic semantics, we have defined

some graph transformation rules. We have used our previous

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2218

approach to verify graph transformations. As workflows are a

typical modeling domain for UML 2.0 Activities, we have

illustrated our proposed verification approach to verify

workflows by defining some quality criterion. Non-expert

designers can use our approach without any knowledge about

underlying formalisms (i.e. BIR and Bogor).

However, further research is required to model other

required elements (e.g. Parameter nodes and Pins). Our

approach has the ability to support data flow, so we have a

plan to model other elements and implement their semantics as

some graph transformation rules.

It remains to discuss the size of Activities (or graphs in

general) that our approach can verify, because in all model

checking approaches state space explosion is a serious

restriction. Scalability of our approach depends on different

parameters: the size of the host graph, the number of dynamic

nodes which must be added/deleted to/from the host graph by

rules, the number of applicable rules in the same time, etc. We

know there is not any dynamic node in the Activities. In

addition, usually the size of Activities is not too large, even in

the cases that the size of Activities is too large (e.g. Activities

with more than 100 nodes) designers can decrease the size of

them using “Action Call” nodes. Hence, we believe that our

approach can support Activities with reasonable size.

ACKNOWLEDGMENT

This research was partially done while the first author was

in university of Politecnico di Milano (Italy) as a visiting

researcher and would like to thank the supports provided by

Professor Luciano Baresi and Dr. Paola Spoletini.

REFERENCES

[1] Eshuis, R., Jansen, D. and Andwieringa, R.: Requirements-level

Semantics and Model Checking of Object-Oriented Statecharts.

Requirements Eng. J. 7, 243–263, (2002)

[2] Alonso, G., Casati, F., Kuno, H. and Machiraju, V.: Web Services:

Concepts, Architectures and Applications. Springer, (2004)

[3] Object Management Group: UML Specification V2.0.

http://www.omg.org/ technology/documents/modeling spec catalog.htm

(2005)

[4] Baresi, L. and Heckel, R.: Tutorial Introduction to Graph

Transformation: A Software Engineering Perspective, In proc. of first

International Conference on Graph Transformation (ICGT), vol 2505 of

LNCS, 402-429, (2002)

[5] Ehrig, H., Engels, G., Kreowski, H.j. and Rozenberg, G. (eds.):

Handbook on Graph Grammars and Computing by Graph

Transformation, vol. 2: Applications, Languages and Tools. World

Scientific, (1999)

[6] Kuske, S.: A Formal Semantics of UML State Machines Based on

Structured Graph Transformation, In Proc. of UML 2001, vol. 2185,

Springer-Verlag, (2001)

[7] Beyer, M.: AGG1.0 – Tutorial. Technical University of Berlin,

Department of Computer Science, (1992)

[8] Baresi, L., Rafe, V., Rahmani, A.T. and Spoletini, P.: An Efficient

solution for Model Checking Graph Transformation Systems. Electronic

Notes in Theoretical Computer Science (ENTCS), Vol. 213, PP. 3-21,

(2008)

[9] Robby, Dwyer, M. and Hatcliff, J.: Bogor: An Extensible and Highly-

Modular Software Model Checking Framework, In Proc. of the 9th

European software engineering Conference, 267–276, (2003)

[10] Eshuis, R.: Semantics and Verification of UML Activity Diagrams for

Workflow Modelling, Ph.D. Thesis, University of Twente, Netherlands,

(2005)

[11] Bolton, C., Davies, J.: On Giving a Behavioural Semantics to Activity

Graphs. In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. vol. 1939 of

LNCS, Springer, Heidelberg (2000)

[12] Soltenborn, C.: Analysis of UML Workflow Diagrams with Dynamic

MetaModeling Techniques, Master’s Thesis, University of Paderborn,

Germany,(2006)

[13] Hausmann, J. H.: Dynamic Meta Modeling: A Semantics Description

Technique for Visual Modeling Languages, Ph.D. Thesis, University of

Paderborn, Germany, (2005)

[14] Engels, G., Soltenborn, C. and Wehrheim, H.: Analysis UML Activities

Using Dynamic Meta Modeling, In Proc. of 9th IFIP International

Conference on Formal Methods for Open Object-Based Distributed

Systems (FMOODS), vol 4468 of LNCS, 76-90, (2007)

[15] Rensink, A.: The GROOVE Simulator: A Tool for State Space

Generation, In Applications of Graph Transformations with Industrial

Relevance (AGTIVE), vol. 3062 of Lecture Notes in Computer Science,

479-485, (2004)

[16] Störrle, H., Hausmann, J.H.: Towards a Formal Semantics of UML 2.0

Activities. In: Liggesmeyer, P., Pohl, K., Goedicke, M. (eds) Software

Engineering. LNI., GI, vol. 64 pp. 117–128 (2005)

[17] Eshuis, R.: Symbolic Model Checking of UML Activity Diagrams.

ACM Transaction on Software Engineering Methodology, 15(1), 1–38

(2006)

[18] Cimatti, A., Clarke, E., Giunchiglia, F. and Roveri, M.: NuSMV: A New

Symbolic Model Checker,” International Journal on Software Tools for

Technology Transfer, 2(4):410–425, (2000)

[19] Börger, E., Cavarra, A., Riccobene, E.: An ASM Semantics for UML

Activity Diagrams. In: Rus, T. (ed.) AMAST 2000. vol. 1816 of LNCS,

pp. 293–308. Springer, Heidelberg (2000)

[20] Baldan, P., Corradini, A., and Gadducci, F.: Specifying and Verifying

UML Activity Diagrams via Graph Transformation. In Proc. of Global

Computing, vol. 3267 of LNCS, 18-33, (2004)

[21] Störrle, H.: Semantics of Control-Flow in UML 2.0 Activities, In: N.N.,

editor, Proc. IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC) (2004)

[22] Bock, C.: UML 2 Activity and Action Models Part 4: Object Nodes, In

Journal of Object Technology, vol. 3, no. 1, pp. 27-41. (2004)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2219

Fig. 1 A small portion of UML 2.0 metamodel [21]

Fig. 2 Proposed type graph for UML 2.0 Activity diagram

Fig. 4 A sample Activity diagram [3]

