
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1261

Abstract—In field of Computer Science and Mathematics,

sorting algorithm is an algorithm that puts elements of a list in a

certain order i.e. ascending or descending. Sorting is perhaps the

most widely studied problem in computer science and is frequently

used as a benchmark of a system’s performance. This paper

presented the comparative performance study of four sorting

algorithms on different platform. For each machine, it is found that

the algorithm depends upon the number of elements to be sorted. In

addition, as expected, results show that the relative performance of

the algorithms differed on the various machines. So, algorithm

performance is dependent on data size and there exists impact of

hardware also.

Keywords—Algorithm, Analysis, Complexity, Sorting.

I. INTRODUCTION

ORTING algorithms are classified by several criteria such

as Computational complexity where worst, average and

best number of comparisons for several typical test cases in

terms of the size of the list are computed. Stability is based on

memory usage and use of other computer resources. The

difference between worst case and average behavior,

behaviors on practically important data sets. The data sets

could be completely sorted, inversely sorted and almost

sorted. There many algorithms are available for sorting. Such

case requires comparison of algorithms to implement sorting

on that data structure so that better one is chosen. The analysis

of an algorithm is based on time complexity and space

complexity. The amount of memory needed by program to run

to completion is referred as space complexity. The amount of

time needed by an algorithm to run to completion is referred

as time complexity. For an algorithm time complexity depends

upon the size of input.

 In this paper, a comparative performance evaluation of

improved heap sort algorithm is done with three traditional

Parvinder S. Sandhu is Professor with Computer Science &

Engineering Department, Rayat & Bahra Institute of Engineering & Bio-

Technology, Sahauran, Distt. Mohali (Punjab)-140104 India

(phone: +91-98555-32004; e-mail: parvinder.sandhu@gmail.com).

Vandana Sharma is Sr. Lecturer with Computer Science & Engineering

Department, Chitkara Institute of Engineering & Technology, Raj Pura

(Punjab)-India.

Satwinder Singh is Lecturer (Computer Science & Engineering

Department), Baba Banda Singh Bahadur Engg. College, Fategarh Sahib

(Punjab)-India.

Baljit Saini is Lecturer (Computer Science & Engineering Department),

Sant Baba Bhag Singh Institute of Engg. & Technology, Jalandhar (Punjab)-

India

sorting algorithms: heap sort, quick sort, and merge sort. In

order to study the interaction between the algorithms and the

platform, all the algorithms have been implemented on

different platforms for a range of integer data items.

II. SORTING ALGORITHMS

 According to Knuth theoretical lower bound for general

sorting algorithms is [1]:

log(n!) = nlogn-nloge+ (log n)

 n logn – 1.442695n

 For the worst-case numbers of comparisons, this lower

bound makes sorting by merging, sorting by insertion and

binary search very efficient.

 Merge Sort follow divide and conquer approach. Merge

Sort performs at most nlogn – n+1 key comparisons and

requires O(n) extra space.

 Quick Sort is also a divide and conquer algorithm that is

most often implemented using recursion [2]. Quick Sort has

worst-case running time of (n2) but is typically O(nlogn) and

in practice one of the fastest of the comparison based sorting

algorithms. Hoare proposed CLEVER-QUICKSORT in worst

case still it has (n2) comparisons and in average case number

of comparisons are reduced to 1.188nlogn-2.255n [3].

 HEAPSORT needs 2nlogn comparisons [4-5]. Heap Sort is

a divide and conquer algorithm that first orders keys in a

binary heap and then reorders the heap into sorted order [6].

Heap Sort is an optimal comparison sort, achieving O(nlogn)

performance for any input ordering. It is relatively easy to

implement as an in-place and non-recursive sort. In 1990 in

proceedings of MFCS90, Wegner proved that Heap sort

needs 2nlogn comparisons and upper bound for comparisons

in Bottom-up-heap sort of 1.5nlogn [7].

 In [8] worst case number of comparisons of the algorithm is

about 1.5nlogn-0.4n. A variant of Heap sort proposed by

Carlson, needs nlog n + (n log log n) comparisons [9].

Wegner showed that McDiarmid and Reed's variant of

Bottom-up-heap sort needs nlogn+1.1 n comparisons [10].

 A new variant of Heap Sort is modified heap sort. Basic

idea of new algorithm is similar to classical Heap sort

algorithm but it builds heap in another way. This new

algorithm requires nlogn-0.788928n comparisons for worst-

case and nlogn-n comparisons in average case [11] if it uses

Gonnet and Munro’s [12] fastest algorithm for building heaps.

This algorithm uses only one comparison at each node. With

one comparison it can be decided which child of node

Analysis of Modified Heap Sort Algorithm on

Different Environment

Vandana Sharma, Parvinder S. Sandhu, Satwinder Singh, and Baljit Saini

S

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1262

contains larger element. This child is directly promoted to its

parent position in this way algorithm walks down the path

until a leaf is reached.

 The McDiarmid and Reed’s Variant of BOTTOM-UP-

HEAPSORT algorithm [13] uses, on average about 1.52n

comparisons to build a heap.

 WEAK HEAPSORT proposed by Dutton [14] uses less

than nlogn+0.086013n comparisons. RELAXED-WEAK-

HEAPSORT is a WEAK HEAPSORT [15] variant which

consumes at most O(nlogn) extra bits and executes exactly nk-

2k+1 comparisons in best worst and average cases if k=[log n].

 The MacDiarmid and Reed’s variant of BOTTOM –UP-

HEAP SORT algorithm [13,16-19] uses, on average, about

1.52n comparisons to build a heap. Reinhard [20] shows that

MERGESORT can be designed in place with nlogn –1.3n + O

(logn) comparisons in worst case, but practical purpose

algorithm is too slow.

III. PERFORMANCE STUDY

 In the previous section, complexities of heap sort, quick

sort, merge sort and improved heap sort algorithm are

discussed. A detailed study to assess the performance of

improved heap sort algorithm with respect to the heap, quick

and merge sort algorithms on different platforms is conducted.

The performance metric in all the experiments is the total

execution time taken by the sorting operation. These test beds

are:

Test Bed I: Celeron 2.5 GHz, 512 MB RAM, 40GB

HDD, Windows XP Professional with service Pack

2, Microsoft Visual C++ compiler

Test Bed II: AMD 2800+, 512 MB RAM, 40GB HDD,

Windows XP Professional with service Pack 2,

Microsoft Visual C++ compiler

Test Bed III: Pentium 4, 2.4 GHz, 512MB RAM, 80

GB HDD, Windows XP Professional with Service

Pack 2, Microsoft Visual C++ compiler

Test Bed IV: AMD 64 bit, 1.8GHz, 512 MB RAM, 80

GB HDD, Windows XP Service Pack 2, Microsoft

Visual C++ compiler

Test Bed V: Pentium, 1.6 GHz, 1GB RAM, 60 GB

HDD, Windows XP Professional Service Pack2,

Microsoft Visual C++ compiler

 Results of Teat Bed II are shown in Table I. It shows the

execution times of all the four algorithms for number of data

items ranging from 1K to 100K. In Fig. 1, it is observed that

modified heap sort algorithm takes less time than other sorting

algorithms for data items 100K .

 Results of Test Bed III are shown in Table II. It represents

the execution times of all the four algorithms for no. of data

items ranging from10 to 100K similar as in category I.

Fig. 2 shows that modified heap sort beats all other sorting

algorithms in question for higher no of data items.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1000 5000 10000 50000 100000

No of Data items

T
im

e
 i

n
 m

s
e

c

Heap

Merge

Quick

Modified heap

Fig. 1 Sorting Algorithms Performace Category-I

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N o. o f d at a it ems

heap

merge

quick

modif ied heap

Fig. 2 Sorting Algorithms Performance Category-II

TABLE I

AVERAGE SORTING TIME (IN MSEC) OF ALGORITHMS ON RANDOM DATA

AVERAGED 50 RUNS (TEST BED II)

Number of data item
Sorting

Algorithm

1000 5000 10000 50000 100000

Heap 0.0003 0.0045 0.0033 0.0848 0.0895

Merge 0.0003 0.0045 0.0054 0.094 0.0842

Quick 0.0003 0.0021 0.002 0.0311 0.0473

Modified

Heap
0.0003 0.0057 0.013 0.0454 0.0511

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:6, 2008

1263

IV. CONCLUSION

 This paper presented the comparative performance study of

four sorting algorithms on different platform. For each

machine, it is found that the algorithm depends upon the

number of elements to be sorted. In addition, as expected,

results show that the relative performance of the algorithms

differed on the various machines. In category I for large

number of data items performance of improved heap sort is

better than heap sort. But for small number of data items

performance of modified heap sort is similar to other

algorithms. But in Category II platform, in case of data size

1K, modified heap sort algorithm performs exceptionally well.

It outperforms all other algorithms.

REFERENCES

[1] Knuth D E. The Art of Programming-Sorting and Searching. 2nd edition

Addison Wesley.

[2] Thomas H, Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford

Stein. Introduction to Algorithms, 2nd edition, MIT Press, Cambridge,

May 2001, Chap. 7.

[3] Hoare C A R. Quicksort. Computer Journal, 5(1):10-15.

[4] Floyd R W. Algorithm 245: Treesort 3. Communications of ACM, 1964,

7(4): 701.

[5] Williams J W J. Algorithm 232: HEAPSORT. Communications of

ACM, 1964, 7(4): 347-348.

[6] Cormen et al. Introduction to Algorithms, Chap. 6.

[7] I.Wegner: BOTTOM-UP-HEAPSORT beating on average

QUICKSORT (if n is not very small). Proceedings of the MFCS90,

LNCS 452: 516-522, 1990

[8] Wegner I. The Worst Case Complexity of McDiarmid and Reed’s

Variant of BOTTOM-UP HEAP SORT. Information and computation,

1992, 97(1): 86-96.

[9] S.Carlsson: A variant of HEAPSORT with almost optimal number of

comparisons. Information Processing Letters, 24: 247-250, 1987.

[10] I.Wegner: The worst case complexity of Mc diarmid and Reed's variant

of BOTTOM-UP-HEAP SORT. Proceedings of the STACS91, LNCS

480: 137-147, 1991.

[11] Xio Dong Wang, Ying Jie Wu. An improved heap sort algorithm with

nlogn –0.788928n comparisons in worst case. Journal of Computer

Science and Technology. 22(6): 898-903.

[12] Gonnet G H, Munro J I. Heaps on Heaps. SIAM Journal on Computing,

1986, 15(6): 964-971.

[13] McDiarmid C J H, Reed B A. Building Heaps Fast. Journal of

Algorithms, 1989, 10(3): 352~365.

[14] Dutton R D. Weak Heap Sort. BIT, 1993, 33(3): 372-381.

[15] Edelkamp A S, Stiegeler P. Implementing HEAPSORT with nlogn - .0n

and QUICKSORT with nlogn+0.2n comparisons. ACM journal Of

Experimental Algorithmics (JEA), 2002, 7(1): 1-20.

[16] Cantone D, Cincotti G. QuickHeapsort: an efficient mix of classical

sorting algorithms. Theoretical Computer Science 2002, 285(1): 25-42.

[17] Carlsson S, Chen J. The Complexity of Heaps. The Third Annual ACM

SIAM symposium on Discrete Algorithms, SIAM, Philandelphia, PA,

October 1992, pp 393-402.

[18] Ding Y, Weiss M A. Best Case Lower Bounds for Heap Sort.

Computing, 1992, 49(1): 1-9.

[19] Z LiBruce A. REEd: Heap Building Bounds. LNCS, 2005, 3608(1): 14-

23.

[20] Reinhard K. Sorting in Place with a Worst Case Complexity of nlogn-

1.3n + O(logn) comparisons and nlogn+O(1) transports. LNCS, 1992,

650(6): 489-499.

TABLE II

AVERAGE SORTING TIME (IN MS) OF ALGORITHMS ON RANDOM DATA

AVERAGED 50 RUNS (TEST BED III)

Number of data item
Sorting

Algorithm

500 1000 5000 10000 50000

Heap 0 0.0003 0.0048 0.0092 0.14628

Merge 0 0 0.0027 0.0042 0.0273

Quick 0 0.0003 0.0006 0.0021 0.01548

Modified

Heap
0 0.0015 0.0066 0.0154 0.07428

