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Abstract—The hidden-point bar method is useful in many 

surveying applications. The method involves determining the 
coordinates of a hidden point as a function of horizontal and vertical 
angles measured to three fixed points on the bar. Using these 
measurements, the procedure involves calculating the slant angles, 
the distances from the station to the fixed points, the coordinates of 
the fixed points, and then the coordinates of the hidden point. The 
propagation of the measurement errors in this complex process has 
not been fully investigated in the literature. This paper evaluates the 
effect of the bar geometry on the position accuracy of the hidden 
point which depends on the measurement errors of the horizontal and 
vertical angles. The results are used to establish some guidelines 
regarding the inclination angle of the bar and the location of the 
observed points that provide the best accuracy. 
 

Keywords—Hidden point, accuracy, error propagation, 
surveying, evaluation, simulation, geometry.  

I. INTRODUCTION 
ETERMINATION of the precise three-dimensional (3D) 
coordinates of a hidden point is a challenge task in land 

surveying. Basically, two methods have been used to 
determine the coordinates of a hidden point: mirror 
observations and hidden-point bar. The advantage of the 
hidden-point bar method is that the target point may not be 
visible from the measurement instrument [1]. Furthermore, the 
bar may not be settled vertically on the point target. 

Generally, the hidden-point bar method can be performed 
using three different techniques: (a) by observing marked 
points on the bar at known positions using two theodolites, (b) 
by fitting a sphere, with a radius equal to the length of the bar 
and the center is at the hidden point, to a set of pre-defined 
points on the bar, or (c) by observing a number of points on 
the bar using only one theodolite. The later technique is the 
most cost-effective and reliable one because it needs only one 
theodolite instrument and it is applicable for most practical 
cases, especially when the free space to setup both the 
theodolite and the bar is limited. 
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The research related to the hidden-point bar method has 
been limited. Teskey et al. [2] has investigated the precise 
heighting using the hidden point bar method. The 
investigation included development of the mathematical model, 
calibration of the hidden point bar using double resection [3], and 
comparison with precise leveling and precise trigonometric 
heighting. The method was applied in the field and the authors 
concluded that the hidden point bar method for precise heighting 
could be applied in industrial surveys where the required level of 
precision is on the order of 0.1 mm.  

Teskey et al. [4] has further investigated the 3D 
positioning by the hidden point bar method. The investigation 
included development of both closed form and least-squares 
solutions, and calibration of the hidden point bar. The method 
was applied in the field at the University of Calgary Central 
Heating and Cooling Plant. Known movements were introduced 
and then recovered using the hidden-point bar method. The 
differences between the known and recovered movements were 
found to be 0.11 mm or less. 

Antonopoulos [5] has applied the least squares adjustment 
with constraints to determine the coordinates of inaccessible 
points. The author used conventional methods of coordinate 
determination to check the efficiency of the method. The 
results showed that in this adjustment (normally of low 
redundancy) the assignment of accurate provisional values to 
the hidden-point coordinates constituted an essential task. 

Recently, Recoskie et al. [6] performed laboratory and 
field measurements to test a three-prism reflector probe. This 
configuration allowed redundancy in the observations that 
required the use of the least-squares adjustment. The results 
indicated the need for improving the construction of the probe 
to ensure collinearity of the prisms 

This paper focuses on the effect of the measurement errors 
of the observed horizontal and vertical angles on the overall 
accuracy of the determined coordinates of the hidden point 
using error propagation. Specifically, the paper investigates 
the effect of changing the locations of the fixed points on the 
bar and the effect of the bar inclination on the overall 
accuracy of the hidden point. A simulation approach was 
developed, along with a MATLAB program, to generate 
different observations and to estimate the corresponding errors 
in the determined hidden point. The following sections 
describe the details of the developed evaluation method, 
followed by the analysis results and the conclusions. 
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Fig. 1 Geometry of the hidden-point bar method 

 

II.   HIDDEN-POINT BAR METHOD  
The geometry of the hidden-point bar method is shown in 

Fig. 1. It is required to determine the coordinates of the hidden 
point D. The bar is placed on D at a convenient orientation. 
Consider a 3D Cartesian right-handed xyz coordinate system 
whose origin is located at T, where the z axis is directed 
upwards and the y axis is defined by its bearing Uo to a given 
direction (for convenience, Uo = 0).  

The horizontal and vertical angles are measured to three 
points A, B, and C on the bar from one station (e.g. theodolite) 
setup at T. The horizontal angles (UA, UB, and UC) are 
measured from the y-axis and the vertical angles (VA, VB, and 
VC) are measured from the horizontal plane. The distances 
between A and B (SAB) and between B and C (SBC) are known, 
and so is the distance between C and D (SCD). The solution 
method is as follows [5].  The slant angles ATB and BTC are 
computed based on spherical trigonometry by 
 

ATB = cos-1 [sin(VA) sin(VB)  
           + cos(VA) cos(VB) cos(UB – UA)]        (1) 

 
BTC = cos-1 [sin(VB) sin(VC)  
           + cos(VB) cos(VC) cos(UC – UB)]        (2) 

 
The angles TCA, CAT, and TBA are then determined by 

resection, based on the fact that A, B, and C lie on a straight 
line, as follows [1] 
 

TCA = cot-1{K + cos (R)] / sin (R)}        (3) 
 
where 
 

       K = [SBC sin(ATB)] / [SAB sin (BTC)]       (4) 
 
 

R = 180° − (ATB + BTC)         (5)  
Then, 

TAC = TAB = R − TCA          (6) 
 

TBA = 180° − (TAB + ATB)         (7) 
 
Subsequently, the lengths STA, STB, and STC are computed using 
the sin law as 

STA = SAB sin(TBA) / sin(ATB)         (8) 
 

STB = SAB sin(TAB) / sin (ATB)        (9) 
 

STC = SBC sin(180° − TBA) / sin(BTC)       (10) 
 

The coordinates of A, B, and C are then determined in the 
xyz system by 
 

xA = STA sin(UA) cos(VA)         (11) 
 

yA = STA cos(UA) cos(VA)         (12) 
 

zA = STA sin(VA)          (13) 
 

xB = STB sin(UB)  cos(VB)         (14) 
 

yB = STB cos(UB) cos(VB)         (15) 
 

zB = STB sin(VB)          (16) 
 

xC = STC sin(UC) cos(VC)         (17) 
 

yC = STC cos(UC) cos(VC)         (18) 
 

zC = STC sin(VC)          (19) 
 

Finally, the coordinates of the hidden point D are 
calculated as follows 
 

xD = xC + lSCD           (20) 
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yD = yC + mSCD          (21) 
zD = zC + nSCD           (22) 

 
where l, m, and n are the direction cosines of the bar which are 
given by 

l = (xC − xA) / SAC          (23) 
 

m = (yC − yA) / SAC          (24) 
 

n = (zC − zA) / SAC          (25) 

III.    ERROR PROPAGATION 
The coordinates of the hidden point D, given by (20)–(22), 

are implicit functions of the measured horizontal and vertical 
angles. Therefore, the measurement errors in the angles will 
affect the standard error in the coordinates through error 
propagation. The error propagation is quite complex since it 
will propagate through (1)–(19) to the coordinates of D. 
Assuming that the measurement errors of the angles are 
independent, the standard error of the coordinates of D can be 
written as [7, 8] 
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where ∂xD / ∂xi  is the first derivative of xD with respect to xi, 
where i = 1,2, …, 6 and xi refers to the six horizontal and 
vertical angles (UA, UB, UC, VA, VB, and VC) and σxi  is the 
measurement error of xi. The terms ∂yD / ∂xi and ∂zD / ∂xi are 
defined similarly. The error propagation involves 18 first 
derivatives (six for each of the three coordinates of D) as 
indicated by (26)–(28). Since the first derivatives are complex, 
they are obtained using MATLAB [9]. 

The point standard error of D is then given by 
 

5.0222 )( zDyDxDD
σσσσ ++=          (29) 

 
To appreciate the complexity of the first derivatives, the 

first derivative of xD with respect to UA (as an example) is 
presented in Appendix I. 

IV. EVALUATION RESULTS 

A. Effect of Changing Location of Fixed Points 

This example is an actual application conducted by 
Antonopoulos [5] to determine the position of a hidden point 
in the Oil Refinery installations at Aspropyrgos, Athens. The 
application involved a 4-m scaled invar bar suitably supported 
by four counter props to avoid differential bending due to bar 

weight. The horizontal and vertical angles were measured to 
four points on the bar A, B, C, and F at indications 0, 1, 2, and 
3 m, respectively, using a total station (Table 1).  
 

TABLE I  
OBSERVED ANGLES TO THE BAR FOR EXAMPLE 1 [5] 

 
Point            Angle a 

     Bearing  
 (grad) 

    Vertical      
(grad) 

A 
B 
C 
F 

384.9002 
395.5674 

4.6436 
12.1700 

13.3908 
8.9314 
4.8622 
1.3790 

a These angles are listed in grads and in this study they were multiplied by 
(360/400) to convert them into degrees (the grad is 1/400 of a full circle). 
 
Since only three observed points are needed for the solution, a 
least-squares solution was used.  The observed angles have a 
standard error of about ±2”. The station was mounted on a 
chained tripod and centered above a marked point T’ on the 
ground floor and the instrument height h was 1.5365 m 
determined by precise levelling. The origins of bearings and 
vertical angles, the centering of the theodolite, and the scaling 
of the bar are considered practically errorless. The standard 
deviation of the coordinates computed by Antonopoulos [5, 
10] ranged from 0 to ±5.9x10−4 m. The positioning results are 
shown in Table 2.  
 

TABLE II 
RESULTS OF THE POINT COORDINATES OF EXAMPLE 1 [5] 

 
Point Coordinates 

  x(m)      y(m)          z(m) 
A 
B 
C 
F 

D a 

−1.1840 
−0.3765 
0.4311 
1.2386 
2.0462 

4.8980 
5.3988 
5.8995 
6.4003 
6.9011 

1.0758 
0.7643 
0.4527 
0.1412 
−0.1704 

        a Coordinates of D are based on the four fixed-point observations. 
 

To evaluate the effect of the locations of the fixed points, 
the position accuracy of four combinations (each has three 
points) of the four points observed by Antonopoulos [5] were 
examined.  Since  there are  observations  to  four  points  on  
the bar A, B, C, and F that are one meter apart, the 
combinations tested and the corresponding distances in meters 
between the points were: ABC (1, 1), ABF (1, 2), ACF (2, 1), 
and BCF (1, 1). Note that the hidden point is D. 

The corresponding horizontal and vertical angles of Table 
1 are then used to determine the position accuracy for each 
combination. The results are shown in Table 3. For this 
example, the point standard error is the largest for 
combination BCF and the smallest for combination ABF and 
ACF. The combination BCF is the worst since its three 
vertical angles are the smallest and one of its horizontal angles 
is small. On the other hand, the best combinations correspond 
to horizontal and vertical angles that are larger in general.  
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TABLE III  
EFFECT OF THE LOCATIONS OF THE BAR FIXED POINTS 

 
Combinations of Three Observed Points  

Var.a 1 
ABC 

2 
ABF 

3 
ACF 

4 
BCF 

xD 
yD 
zD 

2.0464 
6.9010 
-0.1706 

2.0463 
6.9012 
-0.1703 

2.0461 
6.9011 
-0.1703 

2.0459 
6.9005 
-0.1702 

σxD 
σyD 
σzD 

0.00037 
0.00027 
0.00022 

0.00016 
0.00021 
0.00010 

0.00019 
0.00018 
0.00011 

0.00043 
0.00081 
0.00014 

σD 0.00050 0.00028 0.00028 0.00093 
        a Coordinates of D are based on the corresponding three fixed- 

point observations. 
    

For example, for combination BCF the horizontal angles 
(in radians) are 6.2136, 0.0729, and 0.1912 and the vertical 
angles are 0.1403, 0.0764, and 0.0217. For combination ABF, 
the horizontal angles are 6.0460, 6.2136, and 0.1912, and the 
vertical angles are 0.2103, 0.1403, and 0.0217. It is clear that 
the locations of the fixed points affect the magnitude of the 
angles and in turn position accuracy. These angles depend on 
the relative locations of the fixed points with respect to the 
observation station. In this example, the results suggest that 
the observation of the lowest three points BCF would not be a 
good strategy.                       

B. Effect of Bar Inclination 

The effect of the inclination angle of the bar on the position 
accuracy of point D was evaluated using the results of 
Example 1 (combination ABC) as a starting step to establish 
the initial geometry of the bar. The bar vertical angle θ was 
changed by rotating the bar around point D, where the rotation 
was made in a vertical plane through the initial bar position 
(Fig. 2). The corresponding simulated horizontal and vertical  
angles  of   points  A,  B,  and  C  are  then  calculated  and the       

  
position accuracy is determined. 

The vertical angle of bar AD with the horizontal plane, θo 
(Fig. 2) corresponds to combination ABC of Example 1. 
Using the results of the x and y coordinates of points A and D 
of this example, the angle θo is given by  

 
θo = sin-1 [(zA-zD)/SAD]        (30) 

 
Then, the lengths TA’, TD’, and A’D’ and the angles β and φ 
are calculated. The angle η is then given by 

 
η = 90o  –  β – φ          (31) 

 
where η = angle between TD’ and the y-axis, β = angle 
between A’D’ and TD’ and φ = angle between A’D’ and the x-
axis. Both angles remain unchanged as the vertical angle of 
the bar changes. 

For any observation point, say C, on an inclined bar with a 
given angle θ (Fig. 2), the horizontal and vertical angles are 
then calculated as follows, 
 

D’C’ = SCD cos(θ)          (32) 
 

CC’ = SCD sin(θ) + zD          (33) 
 

TC’ = [(TD’)2 + (D’C’)2 
  –  2(TD’) (D’C’) cos(β)]0.5                   (34) 

 
α  = cos-1{ [(TD’)2 + (TC’)2 – (D’C’)2]  

/ [2(TD’) (TC’)] }               (35) 
 

UC =  360o  –  α +  η          (36) 
 

VC  = tan-1(CC’ / TC’)          (37) 

 
Fig. 2  Geometry of changing the bar vertical angle θ 

z 

 x 

   y 

A 

D 

Bar 

    A’ 

D’ 

 VA 

VC 

UC T 
Horizontal Plane through T 

β

C 

C’ 
φ 

η 

α 

  θ

θo
Hidden  
Point 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:4, No:8, 2010

276

 

 

The horizontal and vertical angles for points A and B are 
calculated similarly. 

To evaluate the position accuracy, the angle θ was 
changed from 5o to 90o using an increment of 5o. The 
corresponding standard errors of the coordinates are 
calculated. Note that in all cases the resulting coordinates of 
point D were identical to the coordinates of D (Table 1) which 
is fixed during the simulation  of  the  horizontal  and  vertical  
angles  of  the bar fixed points. This has served as a 
verification of the developed simulation procedures.  

The standard errors are shown in Figs. 3–5. The standard 
error  in  xD decreases as the vertical angle of the bar increases 
to about 50o and then increases for larger vertical angles of the 
bar. The standard errors of yD and zD increase through the 
entire range of θ.  

  
σxD (m) 

 
 
                               Bar vertical angle, θ (degrees) 
 

Fig. 3  Standard error of the coordinates σxD 
 

σyD (m) 

 
 
                            Bar vertical angle θ, (degrees) 

 
Fig. 4  Standard error of the coordinates σyD 

 
      σzD (m) 

 
 
                            Bar vertical angle θ, (degrees) 
 

Fig. 5  Standard error of the coordinates σzD 

σD (m) 

 
 
                            Bar vertical angle, θ (degrees) 

 
Fig. 6  Standard error of the coordinates σD 

(Combination ABC) 
 
The point standard error is shown in Fig. 6. This error 

remains fairly constant until about θ = 30o and start to 
moderately increase to about θ = 50o. For larger vertical 
angles, the standard error substantially increases and becomes 
about 8 times its value for small bar vertical angles. 

Note that the point standard error of Fig. 6 has a minimum 
point at about θ = 20o, but this point is not clear in the figure. 
This trend is caused by the nature of the angles that are 
involved in the calculations of the standard error. While the 
vertical angles increase as the bar vertical angle increases, 
other angles become small which would have a detrimental 
effect on error propagation. 

C. Effect of Bar Inclination and Combination of Observed 
Points 

Since the values of the horizontal and vertical angles for 
the observed three points on the bar, it is expected that the 
position error of the coordinates of D (σD), would depend on 
both the locations of the observed points and the bar vertical 
angle θ. To evaluate this effect, the relationship between σD 
and θ was established for the worst combination of observed 
points BCF (see Table 3). A comparison of the standard error 
of fixed-point combinations is shown in Fig. 7, where 
combinations 1–4 refer to ABC, ABF, ACF, and BCF, 
respectively. The 3D representation is used for illustration 
purposes only, noting that combination 4 (BCF) may be 
viewed as a simple shift of one meter of combination 1 
(ABC). The red arrow approximately refers to the actual bar 
vertical angle corresponding to Section 3A (θo = 18.2o). It is 
clear from the figure that the standard error of D varies 
significantly with the change in the bar inclination angle and 
the locations of the observed points on the bar.   

To quantitatively illustrate the effect of the bar vertical 
angle and fixed-point locations, the distribution of σD is shown 
for the four combinations in Fig. 8. The graph for combination 
1 (ABC) is the same as that of Fig. 6, where the bars 
correspond to bar vertical angle θ ranging from 5o to 90o. The 
bars for the other two combinations correspond to the same 
range of θ. 
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Fig. 7 Standard error σD for various fixed-point combinations 

 
As noted, for combination 4 (BCF) σD is large for small θ, 

decreases to a minimum at about 50o, remains almost flat to 
about 60o, and then sharply increases for larger values of θ. 
The standard errors for combinations 1 and 4 for θ = 50o are 
σD = 0.0012 m and 0.0004 m, respectively. This interesting 
trend shows that although combination 1 was better than 
combination 4 for the actual observations (see Table 3), the 
minimum σD for combination BCF is in fact three times 
smaller than the corresponding value for combination BCF.  

Combinations 2 (ABF) and 3 (ACF) exhibit a similar trend 
to that of combination 4 except that the minimum value occurs 
at a vertical angle of about 30o, where σD is about 0.00024 m 
and 0.00026 m, respectively. 

It is clear from Fig. 8 that combination 1 is sometimes 
better and sometimes worse than combination 4, depending on 
the bar vertical angle. In general, the optimal bar vertical 
angle depends on the locations of the observed points. In this 
case study, a bar vertical angle θ = 30o–50o is considered good 
for all combinations. 
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Fig. 8 Comparison of the standard error σD for fixed-point 
combinations ABC(1), ABF(2), ACF(3), and BCF(4) 

V.   CONCLUSIONS 
Error propagation has been conducted in the literature to 

examine position accuracy in a number of surveying 
applications [11, 12]. This paper has addressed position 
accuracy of the hidden-point bar method. The study has 
investigated the effect of the measurement errors of the 
vertical and horizontal angles on the overall accuracy of the 
determined hidden point. The paper focused on the effect of 
bar geometry on the standard error of the estimated 
coordinates of the hidden point. Three geometric effects were 
examined: (a) effect of changing the locations of the fixed 
(observed) points, (b) effect of the bar inclination angle, and 
(c) the combined effect of the bar inclination angle and the 
locations of the fixed points.  

The results show that the locations of the fixed points on 
the bar affect the magnitude of the angles. The results show 
that the position accuracy depends on the relative position of 
the fixed points with respect to the observation station. In 
addition, the study shows a general trend of steady standard 
error of the estimated hidden-point with the increase in the bar 
vertical inclination angle until an angle of about 30o–50o. The 
results indicate that there is an optimal combination of the bar 
vertical angle and the locations of the fixed points. Perhaps, 
the best strategy would be to implement an inclination angle 
in the preceding range and select the fixed points in such a 
way to avoid very small or very large angles. 

Future research may be conducted to evaluate the effects 
of other geometric elements of the hidden-point bar method, 
such as the location of the observing station, on the overall 
accuracy of the determined hidden point.     

APPENDIX 1: EXAMPLE OF FIRST DERIVATIVES 
To illustrate the complexity of the first derivatives of the 
coordinates of D, the first derivative of xD with respect to UA 
is shown below.  
 
∂xD / UA = 

– SBC cos(E) F sin(UC) cos(VC) / { ( 1 + [D2 / sin2(C)] )  
(1 – B2)0.5 }   
+ { – SBC cos(E) F sin(UC) cos(VC) / { ( 1 + [D2 / 
sin2(C)] )  (1 – B2)0.5 }  
+ SAB cos(E) F sin(UA) cos(VA) / { ( 1 + [D2 / sin2(C)] )  
(1 – A2)0.5 }    
+ SAB sin(F) sin(UA) cos(VA)  A cos(VB) sin(– UB + UA) 
/ (1 – A2)1.5     
– SAB sin(F) cos(UA) cos(VA) / (1 – A2)0.5 }   
SCD/(SAB + SBC)                (38) 

 
where 
 
 A = sin(VA) sin(VB) + cos(VA) cos(VB) cos(– UB + UA)  (39) 

 
B = sin(VB) sin(VC) + cos(VB) cos(VC) cos(– UC + UB)  (40) 
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C = cos-1(A) + cos-1(B)         (41) 
 

D = { (1 – A2)0.5 /  [SAB (1 – B2)0.5] }  – cos(C)    (42) 
 

E = cos-1 (B) + cot-1 [D / sin(C) ]        (43) 
 

F = { SBC A cos(VA) cos(VB) sin(– UB + UA)  
/  [(1 – A2)0.5 SAB (1 – B2)0.5 ]  + sin(C) cos(VA) 
cos(VB) sin(– UB + UA) / (1 – A2)0.5 } / sin(C) 
–  D cos(C) cos(VA) cos(VB) sin(– UB + UA)  
/ [sin2(C)  (1 –   A2)0.5 ]                       (44) 
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