
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:3, 2010

428

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE ISSN 1306-4428 1

Algebraic Specification of Serializability for
Partitioned Transactions

Walter Hussak and John Keane

Abstract— The usual correctness condition for a schedule of
concurrent database transactions is some form of serializability of
the transactions. For general forms, the problem of deciding whether
a schedule is serializable is NP-complete. In those cases other ap-
proaches to proving correctness, using proof rules that allow the steps
of the proof of serializability to be guided manually, are desirable.
Such an approach is possible in the case of conflict serializability
which is proved algebraically by deriving serial schedules using
commutativity of non-conflicting operations. However, conflict se-
rializability can be an unnecessarily strong form of serializability re-
stricting concurrency and thereby reducing performance. In practice,
weaker, more general, forms of serializability for extended models of
transactions are used. Currently, there are no known methods using
proof rules for proving those general forms of serializability. In this
paper, we define serializability for an extended model of partitioned
transactions, which we show to be as expressive as serializability
for general partitioned transactions. An algebraic method for proving
general serializability is obtained by giving an initial-algebra spec-
ification of serializable schedules of concurrent transactions in the
model. This demonstrates that it is possible to conduct algebraic
proofs of correctness of concurrent transactions in general cases.

Keywords— Algebraic Specification, Partitioned Transactions, Se-
rializability.

I. INTRODUCTION

The standard database transaction model [4] has proved
to be inadequate when applied practically, for example to
transactions of long duration. Requiring serializability of such
transactions results in long duration waits and abortion of long
transactions. A proposed solution to overcome these problems
has been to partition transactions. Models of partitioned trans-
actions and suggested application areas have been given in
[16], [11] and [5]. These allow an increase in concurrency for
executing transactions whilst maintaining database consistency
based on data consistency conditions weaker than standard
serializability. However, data consistency conditions are useful
only if there are suitable methods for proving them. In the
standard model of transactions, this means proving serializabil-
ity. The proof techniques are algorithms based on dependency
graphs [12] and [17]. These algorithms are NP-complete and
for this reason stronger forms of serializability that can be
proved in polynomial time, notably ‘conflict’ serializability
[12], have been suggested. Interestingly, conflict serializability
can also be characterized algebraically - a schedule is se-
rializable if and only if it can be transformed into a serial
schedule by commuting non-conflicting operations (i.e. two
reads or two operations accessing different data items). Such

Walter Hussak (corresponding author) is a lecturer in the Depart-
ment of Computer Science, Loughborough University, UK (Email :
W.Hussak@lboro.ac.uk, Tel. : +44(0)1509 222937, Fax: +44(0)1509 211586).

John Keane is a Professor in the School of Informatics, University of
Manchester, UK (Email : John.Keane@manchester.ac.uk).

commutativity-based forms of serializability have also been
characterized in temporal logic [14] and [8]. However, there
have been almost no algebraic or proof-rule characterizations
of forms of serializability that are not commutativity-based.
The specification in [13] is in a temporal logic without
an evident axiomatization and although modest extensions
beyond commutativity-based serializability are possible by
the techniques of [10] and [8], no proof-theoretic method
that uses inference rules has been formulated for general
non-commutative serializability. It should be noted that any
specification of serializability in propositional temporal logic
has a proof method by virtue of an axiomatization of the logic
and, as it is decidable, a fully automatic algorithm. However,
such an algorithm cannot improve on one based on dependency
graphs as such logics are PSPACE-complete [18].

In this paper, we give an algebraic method for proving
general serializablility. There are two main results. Firstly,
an extended partitioned transaction model is given and is
shown to be as expressive as the general partitioned transaction
model. Secondly, an algebraic method is given for proving
general serializability in our extended model. Although general
serializability is not commutative, we are able to give an
initial-algebra specification of serializable schedules in the
style of [6] making use of conditional equations to overcome
the problem. The paper is structured as follows. Section
II gives our extended model of partitioned transactions. In
Section III it is proved to be as expressive as the general
partitioned transaction model. The algebraic specification of
serializable schedules for our extended transaction model is in
Section IV. The conclusions are in Section V.

II. A MODEL OF PARTITIONED TRANSACTIONS

A. Steps, transactions and histories

A read or write step to x in transaction Ti will be denoted

r(i, x) or w(i, x)

respectively. A more condensed notation will be used in places
in Section IV where

rx
i and wx

i

will replace r(i,x) and w(i,x). The i subscript or x
superscript will also be omitted occasionally when of no
interest. A transaction (Ti,≤i) is a finite partially ordered
set of steps with transaction identifier i. The corresponding
irreflexive order is denoted <i. A transaction system is a finite
set of transactions.

A schedule or history h is a sequence of steps. The total
order of the sequence is denoted ≤h with <h as the irreflexive



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:3, 2010

429

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE ISSN 1306-4428 2

version. If T = {T1, . . . , Tn} is a transaction system then h
is a history of T if the steps of h are the steps of all the
transactions in T placed in some order such that steps that are
ordered in each Ti preserve that order in h, that is

s1 <i s2 ⇒ s1 <h s2

A history of T represents an execution of the transactions in
T in an interleaved fashion.

As an example, suppose that a transaction Ti reads an
integer data item a, updates a, reads an integer data item b,
and updates b. Then, Ti is seen as just a succession of formal
reads and writes to a and b thus:

r(i, a)w(i, a)r(i, b)w(i, b)

without further information about the nature of a or b or the
read or write steps. If there are two such transactions T1 and
T2, then the following sequence of steps is a history:

r(1, a)w(1, a)r(2, a)w(2, a)r(2, b)w(2, b)r(1, b)w(1, b)

B. Partitions and tiers

Let TP = {T1, . . . , Tn} be a transaction system. Then a
partition of T is a collection of partitions of the individual
Ti’s

P = {P1, . . . ,Pn}
where Pi = {Ti1, . . . , Tipi

} is a partition of the set of steps
of Ti (1 ≤ i ≤ n). If we wish to indicate that a step belongs to
Tij in the partition Pi, we shall add an extra (first) argument
as in:

r(j, i, x) or w(j, i, x)

Each member Tij of a partition Pi is called a Pi-segment (or
just segment). If, in addition, for each i, q and r (q and r
distinct) it is impossible to have steps s1, s2, s3, and s4 such
that

s1, s2 ∈ Tiq, s3, s4 ∈ Tir

and
s1 <i s3 and s4 <i s2 (1)

then P is a tiered partition. Each segment is then called a tier,
and a transaction partitioned into tiers will be called a tiered
transaction. We shall use the tiered transaction model as our
model of partitioned transactions. Tiers have a high intuitive
appeal. By condition (1), a transaction that is partitioned into
tiers can be pictured as being constructed of a succession of
tiers placed end to end without overlap. This gives the tiered
partitioned model simple algebraic properties. An example of
partitioned transactions will be given in II.D below.

C. History equivalence and tiered-serializability

Two histories are ‘equivalent’ iff they have the same set
of read and write steps, and every read step ‘sees’(i.e. reads)
the same value in both and also the final database state is the
same for both. In detail, let h be any history s1 . . . sK (not
necessarily of any particular transaction system). A read step

sk of a variable x sees a write step sl to the same variable x
in h, denoted functionally as seesh(sk) = sl, iff

sl <h sk

and there is no write step s to x such that

sl <h s <h sk

A history h′ is equivalent to h, denoted h′ ≈ h, iff there is a
permutation ρ of {1, . . . ,K} such that h′ is

sρ(1) . . . sρ(K)

and
seesh(sk) = sl ⇔ seesh′(sk) = sl

for every read step sk and write step sl and, furthermore, for
each variable x, h and h′ have the same last write steps.

A history of a transaction system T is serial iff given
(distinct) transactions Ti1 , Ti2 in T either

s1 <h s2 for all s1 ∈ Ti1 , s2 ∈ Ti2

or
s2 <h s1 for all s1 ∈ Ti1 , s2 ∈ Ti2

and serializable iff it is equivalent to a serial history. If
the transactions are partitioned by a tiered partition Pt, then
a history of T is Pt-serial or just tiered-serial (with the
understanding that the tiers are as in Pt) iff given distinct
transactions Ti1 and Ti2 in T , and tiers Ti1j1 , Ti2j2 , either

s1 <h s2 for all s1 ∈ Ti1j1 , s2 ∈ Ti2j2

or
s2 <h s1 for all s1 ∈ Ti1j1 , s2 ∈ Ti2j2

Clearly, a serial history is tiered-serial. A history h is Pt-
serializable or just tiered-serializable iff it is equivalent to a
tiered-serial history.

D. An example of tiered-serializability

The reason for tiered serializability is seen from the follow-
ing example. Suppose that a travel database has data items
x and y corresponding to booking information for flights
between between destinations A and B and flights between
destinations B and C respectively. Further, suppose that trans-
actions Ti arrange journeys between destinations A and C, by
first obtaining flight booking information and booking flights
between A and B and then obtaining flight information and
booking connecting flights between B and C, so that each Ti

comprises the following succession of read and write steps:

r(i, x)w(i, x)r(i, y)w(i, y)

Consider the following history for the concurrent execution of
three such transactions T1, T2 and T3:

r(1, x)w(1, x)r(2, x)w(2, x)r(2, y)w(2, y)

r(1, y)r(3, x)w(1, y)w(3, x)r(3, y)w(3, y) (2)

In the history (2), T1 and T2 are not serialized because T1

books its first flight and then T2 books both its first and



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:3, 2010

430

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE ISSN 1306-4428 3

connecting flight before T1 manages to book its connecting
flight - if all of T1 had been executed before T2, T1 would,
in general, have had more connecting flights to choose from
and may have booked those differently; if all of T2 had been
executed before T1, T2 would, in general, have had more first
flights to choose from and may have booked those differently.
However, the history (2) still books first and connecting flights
consistently and allowing it increases concurrency. Here, con-
sistency means tiered-serializability where the accesses to first
flight and connecting flight information respectively constitute
the tiers, i.e. each Ti is the tiered transaction:

r(1, i, x)w(1, i, x)r(2, i, y)w(2, i, y)

and (2) becomes the tiered-serializable history:

r(1, 1, x)w(1, 1, x)r(1, 2, x)w(1, 2, x)r(2, 2, y)w(2, 2, y)

r(2, 1, y)r(1, 3, x)w(2, 1, y)w(1, 3, x)r(2, 3, y)w(2, 3, y)

equivalent to the tiered-serial history:

r(1, 1, x)w(1, 1, x)r(1, 2, x)w(1, 2, x)r(2, 2, y)w(2, 2, y)

r(2, 1, y)w(2, 1, y)r(1, 3, x)w(1, 3, x)r(2, 3, y)w(2, 3, y)

as swapping the places of r(1, 3, x) and w(2, 1, y) does not
affect the sees function. Notice that serializability of at least
the tiers is needed as, for example, the history

r(1, 1, x)r(1, 2, x)w(1, 1, x)w(1, 2, x)r(2, 2, y)w(2, 2, y)

r(2, 1, y)r(1, 3, x)w(2, 1, y)w(1, 3, x)r(2, 3, y)w(2, 3, y)

can result in an inconsistent database state, as flights booked
by transaction T1 may be overwritten by those booked by T2.
Also, notice that tiers cannot be treated as separate transactions
because of interdependencies between tiers belonging to a
common transaction - in the example just given, the particular
connecting flights booked depend on the particular first flights
booked for reasons such as connections being able to be made.

III. EXPRESSIVENESS

In Section II above, we defined Pt-serializability for tiered
partitions Pt. A similar definition of P-serializability (see
below) can be given for arbitrary partitions P that do not
satisfy condition (1), and corresponds to serializability for
general models of partitioned transactions such as that given
in [16]. We have chosen tiers because they can be specified
algebraically. In this section we show that they are also as
expressive, in that the set of P-serial histories for an arbitrary
partition P is equal to the set of Pt-serial histories for
some tiered partition Pt. As such, a required data consistency
condition that is defined in terms of P-serializability for some
partition P can, with a little extra effort, be defined in terms
of Pt-serializability for some tiered partition Pt.

A. P-definability

Let T = {T1, . . . , Tn} be a transaction system and let P
= {P1, . . ., Pn} be any partition (not necessarily a tiered
partition) of T . Then, a history h of T is P-serial (as in [16])
iff given distinct transactions Ti1 and Ti2 and segments P1 ∈
Pi1 and P2 ∈ Pi2 either

s1 <h s2 for all s1 ∈ P1, s2 ∈ P2

or
s2 <h s1 for all s1 ∈ P1, s2 ∈ P2

A history h of T is P-serializable iff it is equivalent to a P-
serial history. A set of histories H of T is P-definable iff it
consists of precisely the P-serial histories.

B. Slices

Let h be a history. Then, by choosing steps at which changes
of transaction occur in the history, we can find steps

s1 ≤h s2 ≤h . . . ≤h s2i−1 ≤h s2i ≤h . . . ≤h s2m−1 ≤h s2m

such that:
(i) for 1 ≤ i ≤ m, all steps in {s : s2i−1 ≤h s ≤h s2i}

belong to the same transaction;
(ii) for 1 ≤ i ≤ m, all steps in {s : s2i−1 ≤h s ≤h s2i}

and {s : s2i+1 ≤h s ≤h s2i+2} belong to different
transactions;

The subsequence of h comprising the steps in
{s : s2i−1 ≤h s ≤h s2i} is called the i-th slice of h
(1 ≤ i ≤ m). Slices are used in the following convenient
characterization of P-serial histories:

Lemma 1 Let T be a transaction system and P a partition of
T . A history h of T is P-serial if and only if each slice of h
is a union of complete P-segments of the same transaction.

Proof If a segment P1 intersects two distinct slices,
there will be an intermediate slice with steps belonging to a
segment P2 of some other transaction. Thus, there will be
s11, s12 ∈ P1 and s2 ∈ P2 such that

s11 <h s2 <h s12

Thus, h is not P-serial by the definition in III.A. This proves
the “only if” part of the lemma. The “if” part is obvious.

C. Tier-definability

A set of histories H of a transaction system T is
tier-definable iff there is a tiered partition Pt of T such
that H is Pt-definable. The next theorem shows that
general P-serial histories can be generated by (a suitable
choice of) tiers. This proves the generality of the tiered model.

Theorem 2 Let T be a transaction system and P a
partition of T . A set of histories H of T that is P-definable
is also tier-definable.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:3, 2010

431

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE ISSN 1306-4428 4

Proof Suppose that H is a set of histories that is P-
definable. Define the relation ∼i on a transaction Ti ∈ T to
be such that s1 ∼i s2 iff, for all h ∈ H,

s1 ≤h s ≤h s2 ∨ s2 ≤h s ≤h s1 ⇒ s ∈ Ti

i.e. s1 and s2 cannot be separated by a step s not in Ti in any
history h ∈ H. Firstly, we check that ∼i is an equivalence
relation on Ti. It is trivially reflexive and symmetric. Suppose
that s1 ∼i s2 and s2 ∼i s3. Let h ∈ H and s be such that s1
≤h s ≤h s3. If s2 ≤h s, then s2 ≤h s ≤h s3 and so s ∈ Ti

as s2 ∼i s3. If s <h s2, then s1 ≤h s <h s2 and so s ∈ Ti

as s1 ∼i s2. By a symmetric argument s3 ≤h s ≤h s1 ⇒ si

∈ Ti. It follows that ∼i is transitive and thus an equivalence
relation.

Next, we show that the equivalence classes define a tiered
partition of T . Let Tiq and Tir be distinct equivalence classes
and assume, on the contrary, that condition (1) of II.B is not
satisfied for Tiq and Tir. Then, there are s1, s2 ∈ Tiq , s3, s4
∈ Tir such that

s1 <i s3 and s4 <i s2

As s1 and s3 belong to distinct equivalence classes and
therefore s1 	∼i s3, we can choose h ∈ H such that there
exists s 	∈ Ti with

s1 ≤h s ≤h s3

If s ≤h s2 then
s1 ≤h s ≤h s2

and so s1 	∼i s2 contradicting the fact that s1 and s2 belong
to the same equivalence class Tiq . On the other hand, if s2
<h s then

s4 <h s2 <h s ≤h s3

as s4 <i s2 implies s4 <h s2. This means that s4 	<i s3
contrary to s3 and s4 being in the same equivalence class
Tir. We have thus shown that the equivalence classes define a
tiered partition, Pt say, of T .

Finally, it remains to show that H is Pt-definable. Now, as
H is P-definable, it consists of the P-serial histories of T . If
s1 and s2 belong to the same P-segment of Ti then, given
a history h ∈ H, as h is P-serial, it is easy to see from the
definition of P-serial histories in III.A that no step s /∈ Ti can
come between s1 and s2 in h. Therefore, by the definition of
∼i, s1 ∼i s2 and so s1 and s2 are in the same tier. Thus,
each tier is a union of complete P-segments. Also, given h
∈ H, two steps s1 and s2 in the same tier, of transaction Ti

say, cannot be in different slices otherwise, by the definition
of slices in III.B, they could be separated by some s /∈ Ti,
which would contradict the fact that, being in the same tier,
s1 ∼i s2. Therefore, the slices of each h ∈ H are unions of
complete tiers. It follows that

h ∈ H ⇔ h is P-serial
⇔ the slices of h are a union of complete
P-segments (by Lemma 1)

⇔ the slices of h are a union of complete tiers
⇔ h is Pt-serial (by Lemma 1)

IV. ALGEBRAIC THEORY

The basis of the algebraic approach is the observation that
sometimes an equivalent history is produced if two adjacent
steps are switched. Thus

rx
i r

y
jw

x
i w

z
j and rx

i w
x
i r

y
jw

z
j (x 	= y, i 	= j)

are equivalent. For general serializability, not all serializable
histories can be derived from serial histories using this form
of commutativity. The problem is with commuting write steps.
For example, in

rx
i w

x
i w

x
j r

y
kw

x
k (x 	= y, i 	= j, j 	= k, i 	= k)

the two writes wx
i and wx

j may be commuted to form an
equivalent history, whereas equivalence will not be preserved
if they are commuted in

rx
i w

x
i w

x
j r

x
kw

x
k (x 	= y, i 	= j, j 	= k, i 	= k)

as rx
k will, in general, read a different value of x. The

solution we shall adopt in such cases is essentially to commute
‘write blocks’ where each write block comprises a write step
followed by the read steps that read that write. Thus, the last
history is equivalent to

rx
i w

x
j r

x
kw

x
i w

x
k

where the write blocks wx
i and wx

j r
x
k have been commuted.

The theory we present enables all tiered-serializable histo-
ries to be derived from tiered-serial histories. In IV.A, we give
an equational presentation of the theory in the style of [6]. In
IV.B, we show that the algebra of tiered-serializable histories
is ‘initial’ for this presentation, which means that histories
defined to be tiered-serializable as in II.C are exactly those
that can be proved to be tiered-serializable by the equations
in IV.A.

A. Equational presentation

In the theory below, the operation r and w generate read
and write steps r(j, i, x) and w(j, i, x) where j, i and x are
natural number labels for tiers, transactions and data items
respectively. Natural numbers are specified by the operations
1, succ and isequal. Histories are formed by use of the
associative infix operator . to concatenate other histories. For
example, the following expression:

r(1, succ(1), succ(succ(1))).w(1, succ(1), succ(succ(1)))

represents the history comprising a read step followed by a
write step to a data item labelled 3 by a tier labelled 1 of a
transaction labelled 2. The predicate operations tier, trans
and tser have the following meanings: tier(h,j,i) as-
serts that h is a j-labelled tier of an i-labelled transaction,
trans(h,m,i) asserts that h is an i-labelled transaction
with m tiers, and tser(h,n) asserts that h is a tiered-serial
history with n transactions.

Equations (E1)-(E4) belong to the specification of natural
numbers, and (E5) is associativity of the . concatenation
operator. Equations (E6)-(E13) enable all serial histories of
transactions to be generated, where the constituent transactions



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:3, 2010

432

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE ISSN 1306-4428 5

are labelled by consecutive integers starting at 1, and where
the tiers within each transaction are also labelled consecu-
tively. The equation (E14) allows other tiered-serial histories,
where transactions and tiers are not necessarily labelled by
consecutive integers, to be generated by commuting adjacent
tiers belonging to different transactions (tiers h3 and h4 are
commuted in (E14)).

Proving serializability for a history h requires proving
tserz(h) = TRUE. The predicate tserz and history equiv-
alence predicates Tequiv and Vequiv along with correspond-
ing equations (E15)-(E34) are discussed in IV.B.

SORTS
N (naturals), H (histories)

VARIABLES
m,n,i,j,i1,i2,...,j1,j2,...x,y : N
h,h1,h2,... : H

OPERATIONS

(O1) 1 : -> N
(O2) succ : N -> N
(O3) r : N,N,N -> H
(O4) w : N,N,N -> H
(O5) . : H,H -> H
(O6) _isequal_ : N,N -> B
(O7) _=_ : H,H -> B
(O8) tier : H,N,N -> B
(O9) trans : H,N,N -> B
(O10) tser : H,N -> B
(O11) wb : H,N -> B
(O12) Tequiv : H,H -> B
(O13) Vequiv : H,H -> B
(O14) tserz : H -> B

EQUATIONS

(E1) 1 isequal 1 = TRUE
(E2) 1 isequal succ(n) = FALSE
(E3) m isequal n = n isequal m
(E4) m isequal n = succ(m) isequal succ(n)

(E5) (h1.h2).h3 = h1.(h2.h3)

(E6) tier(r(j,i,x),j,i) = TRUE
(E7) tier(w(j,i,x),j,i) = TRUE
(E8) tier(h.r(j,i,x),j,i) = TRUE

IF tier(h,j,i) = TRUE
(E9) tier(h.w(j,i,x),j,i) = TRUE

IF tier(h,j,i) = TRUE

(E10) trans(h,1,i) = TRUE
IF tier(h,1,i) = TRUE

(E11) trans(h1.h2,succ(m),i) = TRUE
IF trans(h1,m,i) = TRUE,

tier(h2,succ(m),i) = TRUE

(E12) tser(h,1) = TRUE
IF trans(h,m,1) = TRUE

(E13) tser(h1.h2,succ(n)) = TRUE
IF tser(h1,n) = TRUE,

trans(h2,m,succ(n)) = TRUE
(E14) tser(h1.h2.h4.h3.h5.h6,n) = TRUE

IF tser(h1.h2.h3.h4.h5.h6,n) = TRUE,
tier(h2,j2,i2) = TRUE,

tier(h3,j3,i3) = TRUE,
tier(h4,j4,i4) = TRUE,
tier(h5,j5,i5) = TRUE,
j2 isequal j3 = FALSE OR
i2 isequal i3 = FALSE,
j4 isequal j5 = FALSE OR
i4 isequal i5 = FALSE,
i3 isequal i4 = FALSE

(E15) Tequiv(h,h) = TRUE
(E16) Tequiv(h1,h2) = Tequiv(h2,h1)
(E17) Tequiv(h1,h3) = TRUE

IF Tequiv(h1,h2) = TRUE,
Tequiv(h2,h3) = TRUE

(E18) Tequiv(h.h1,h.h2)
IF Tequiv(h1,h2) = TRUE

(E19) Tequiv(h1.h,h2.h)
IF Tequiv(h1,h2) = TRUE

(E20) Vequiv(h,h) = TRUE
(E21) Vequiv(h1,h2) = Vequiv(h2,h1)
(E22) Vequiv(h1,h3) = TRUE

IF Vequiv(h1,h2) = TRUE,
Vequiv(h2,h3) = TRUE

(E23) Vequiv(h.h1,h.h2)
IF Vequiv(h1,h2) = TRUE

(E24) Vequiv(h1.h,h2.h)
IF Vequiv(h1,h2) = TRUE

(E25) Tequiv(r(j1,i1,x).r(j2,i2,y),
r(j2,i2,y).r(j1,i1,x)) = TRUE
IF i1 isequal i2 = FALSE

(E26) Tequiv(r(j1,i1,x).w(j2,i2,y),
w(j2,i2,y).r(j1,i1,x)) = TRUE
IF i1 isequal i2 = FALSE

(E27) Tequiv(w(j1,i1,x).w(j2,i2,y),
w(j2,i2,y).w(j1,i1,x)) = TRUE
IF i1 isequal i2 = FALSE

(E28) wb(w(j,i,x),x) = TRUE
(E29) wb(h.r(j,i,x),x) = TRUE

IF wb(h,x) = TRUE

(E30) Vequiv(r(j1,i1,x).r(j2,i2,y),
r(j2,i2,y).r(j1,i1,x)) = TRUE

(E31) Vequiv(r(j1,i1,x).w(j2,i2,y),
w(j2,i2,y).r(j1,i1,x)) = TRUE
IF x isequal y = FALSE

(E32) Vequiv(w(j1,i1,x).w(j2,i2,y),
w(j2,i2,y).w(j1,i1,x)) = TRUE
IF x isequal y = FALSE

(E33) Vequiv(h1.h2.w(j,i,x),
h2.h1.w(j.i.x)) = TRUE
IF wb(h1,x) = TRUE, wb(h2,x) = TRUE

(E34) tserz(h2) = TRUE
IF tser(h1,n) = TRUE,

Tequiv(h1,h2) = TRUE,
Vequiv(h1,h2) = TRUE

B. Initiality

The main result is Theorem 7 which shows that a his-
tory h is tiered-serializable if and only if tserz(h) = TRUE
can be proved for the term h corresponding to h. Proving
tserz(h) = TRUE requires proving Tequiv(h1, h) = TRUE
and Vequiv(h1, h) = TRUE by (E34) for some history h1.
To this end, we first define the two new equivalences for



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:3, 2010

433

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE ISSN 1306-4428 6

histories, namely ‘T-equivalence’ and ‘V-equivalence’, which
together amount to history equivalence as defined in II.C,
and show that they correspond to Tequiv and Vequiv in the
equational presentation in IV.A respectively. The proof that T-
equivalence corresponds to Tequiv is immediate. The proof
that V-equivalence corresponds to Vequiv is more difficult
and is proved in Lemma 6, after defining a relation ≈V on
histories and proving intermediate results (Lemmas 3,4 and 5)
concerning ≈V and V-equivalence.

Two histories h1 and h2 are T-equivalent iff they are
histories of the same transaction system. It is easy to see
that h1 and h2 are T-equivalent if and only if one can be
obtained from the other by repeatedly commuting adjacent
steps belonging to different transactions, i.e.

h1, h2 are T-equivalent⇔ Tequiv(h1, h2) = TRUE (3)

where Tequiv(h1,h2)=TRUE can be proved for the terms
h1 and h2 corresponding to h1 and h2 respectively, from the
equations (E25)-(E27).

Two histories h1 and h2 comprising the same set of steps but
not necessarily having steps of a given transaction in the same
order, are V-equivalent iff they have the same sees function
and the same last write steps to each variable x. It is easy
to see that h1 and h2 are equivalent (in the sense of II.C) if
and only if h1 and h2 are T-equivalent and V-equivalent. We
characterize V-equivalence in terms of the ≈V relation given
below which requires the definition of a ‘write block’.

A write block to a variable x is a sequence of steps
comprising a write step to x, followed by several reads to
x. A history h is in write block form iff it is of the form

wx1rx1 . . . rx1wx2rx2 . . . rx2 . . . wxp [rxp . . . rxp ] (p ≥ 1)

where the square brackets indicate that there may or may not
be read steps after the last write step wxp . The relation ≈V is
the transitive closure of the reflexive and symmetric relation
≈V 0

on histories which has h1 ≈V 0
h2 iff any of the following

is the case:

h1 = s1 . . . sk−1r
x
i r

y
j sk+2 . . . sK ,

h2 = s1 . . . sk−1r
y
j r

x
i sk+2 . . . sK , (4)

h1 = s1 . . . sk−1r
x
i w

y
j sk+2 . . . sK ,

h2 = s1 . . . sk−1w
y
j r

x
i sk+2 . . . sK , (x 	= y) (5)

h1 = s1 . . . sk−1w
x
i w

y
j sk+2 . . . sK ,

h2 = s1 . . . sk−1w
y
jw

x
i sk+2 . . . sK , (x 	= y) (6)

h1 = s1 . . . skw
x
i11r

x
i12 . . . r

x
i1k1

wx
i21r

x
i22 . . . r

x
i2k2

wx
j sl . . . sK ,

h2 = s1 . . . skw
x
i21r

x
i22 . . . r

x
i2k2

wx
i11r

x
i12 . . . r

x
i1k1

wx
j sl . . . sK

(7)
Thus, for histories h1 and h2, h1 ≈V h2 iff one can be obtained
from the other by commuting adjacent non-conflicting steps
((4), (5) and (6)), or adjacent write blocks to a variable x,
which immediately precede a write wx

j to x as in (7). As (4),
(5), (6) and (7) correspond to (E30), (E31), (E32) and (E33)
respectively

h1 ≈V h2 ⇔ Vequiv(h1, h2) = TRUE (8)

for the terms h1 and h2 representing h1 and h2.

Lemma 3 If h ≈V h′, then h and h′ have the same last
write step to any given variable x.

Proof The last write step to x in h cannot be moved
to the left of another write step to x by use of any of (4), (5),
(6) or (7).

Lemma 4 Let h be a history of the form

h = s1 . . . sk w
xrx . . . rx︸ ︷︷ ︸
w.block 1

. . . wxrx . . . rx︸ ︷︷ ︸
w.block n

sl−1sl . . . sK

where sl−1 is a write step to a variable x and n write blocks
to x precede sl−1 in h. Then, given a permutation π of
{1, . . . , n}, for

h′ = s1 . . . sk w
xrx . . . rx︸ ︷︷ ︸

w.block π(1)

. . . wxrx . . . rx︸ ︷︷ ︸
w.block π(n)

sl−1sl . . . sK

we have that h ≈V h′.

Proof The history h′ can be obtained by repeatedly
commuting adjacent write blocks, in the manner of (7), until
the desired order of write blocks is achieved.

Lemma 5 Let h1 and h2 be histories. Then, h1 and h2 are
V-equivalent if and only if h1 ≈V h2.

Proof If h1≈V h2, then h1 and h2 have the same sees
function as (4)-(6) do not affect the write that a read step
sees. Also, by Lemma 3, h1 and h2 have the same last
write step to any given variable x. Thus, h1 and h2 are
V-equivalent. This proves the “if” part.

We now prove the “only if” part. Suppose that h1 and h2

are V-equivalent. By repeatedly commuting adjacent rx
i and

wy
j steps in h1 and h2, as in (5), we can find histories h′1 and

h′2 in write block form such that

h1 ≈V h′1, h2 ≈V h′2

say

h′1 = wx1rx1 . . . rx1wx2rx2 . . . rx2 . . . wxp [rxp . . . rxp ],

h′2 = wy1ry1 . . . ry1wy2ry2 . . . ry2 . . . wyq [ryq . . . ryq ]

Since h1≈V h′1, by the “if” part of this lemma h1 is V-
equivalent to h′1. Likewise, h2 is V-equivalent to h′2. As h1

is V-equivalent to h2 and V-equivalence is clearly transitive,
it follows that h′1 is V-equivalent to h′2. From this it is clear
that p = q and, indeed, h′1 and h′2 have the same write blocks
though possibly in a different order. Furthermore, h′1 and h′2
have the same last write blocks to any given variable x.

Applying (4), (5) and (6) repeatedly we can find h′′1 and h′′2
such that h′1≈V h′′1 , h′2≈V h′′2 and all write blocks to a given
variable x are grouped together in h′′1 and h′′2 . Let the two
sequences of (distinct) variables corresponding to these groups
of write blocks in h′′1 and h′′2 be:

x
(1)
1 . . . x(1)

pg
and x(2)

1 . . . x(2)
pg



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:3, 2010

434

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE ISSN 1306-4428 7

respectively. By further applying (4), (5) and (6) a multitude of
times, effectively to commute adjacent whole groups of write
blocks to different variables, we can find h′′′1 and h′′′2 such
that h′′1≈V h′′′1 , h′′2≈V h′′′2 and the two sequences of (distinct)
variables corresponding to the groups of write blocks in h′′′1

and h′′′2 :
y
(1)
1 . . . y(1)

pg
and y(2)

1 . . . y(2)
pg

are the same for h′′′1 and h′′′2 , i.e. y(1)
k = y

(2)
k (1 ≤ k ≤ pg).

The only difference between h′′′1 and h′′′2 is the order in
which write blocks occur within a write block grouping
corresponding to a variable x. As noted above, h′1 and h′2
have the same last write blocks to x. It is clear from this and
the construction of h′′1 , h′′2 , h′′′1 and h′′′2 , that h′′′1 and h′′′2 have
the same last write blocks to any given x. The other write
blocks to this x in h′′′1 are just a permutation, πx say, of the
remaining write blocks to x in h′′′2 . By repeated use of Lemma
4 for each variable x in turn we deduce that h′′′1 ≈V h′′′2 .

To summarize,

h1 ≈V h′1 ≈V h′′1 ≈V h′′′1 ≈V h′′′2 ≈V h′′2 ≈V h′2 ≈V h2

It follows that h1≈V h2.

Lemma 6 Let h1 and h2 be histories. Then, h1 and h2 are
V-equivalent if and only if Vequiv(h1, h2) = TRUE can be
proved for the terms h1 and h2 corresponding to h1 and h2

respectively.

Proof Follows from (8) and Lemma 5.

Theorem 7 A history is tiered-serializable if and only
if tserz(h)=true can be proved for the term h
corresponding to h.

Proof

h tiered-serializable ⇔ h equivalent to
tiered-serial history h1

⇔ h1 tiered-serial, h and h1

T-equivalent and V-equivalent
⇔ h1 tiered-serial, h and h1

T-equivalent and h ≈V h1

(by Lemma 5)
⇔ tser(h1, n) = TRUE for some n,

Tequiv(h1, n) = TRUE,
Vequiv(h1, h) = TRUE,
for terms h, h1 corresponding
to h, h1 respectively
(by (3) and Lemma 6)

⇔ tserz(h) = TRUE (by (E34))

C. Example

We give an example of an algebraic proof of the tiered-
serializability of a history h1 which cannot be achieved by
commuting non-conflicting steps. The proof derives a tiered-
serial history h from h1 using equations (E1)− (E34) of IV.A.
For i=1, 2, 3, let the transaction Ti be given by:

r(1,i,x)w(1,i,y)w(1,i,z)r(2,i,y)r(2,i,z)w(2,i,x)

and the history h1 of {T1, T2, T3} be h1 =

rx
11r

x
12r

x
13w

y
11w

y
12w

z
12w

z
11w

y
13w

z
13r

y
21r

z
21w

x
21r

y
22r

z
22w

x
22r

y
23r

z
23w

x
23

The notation for steps has been condensed, e.g. r(j,i,x)
becomes rx

ji, and blocks of steps of interest are underlined.
Now, by repeatedly commuting write steps to different data
items ((E32), (E23) and (E24)), we have that

Vequiv(wy
11w

z
11w

y
12w

z
12w

y
13w

z
13, w

y
11w

y
12w

y
13w

z
11w

z
12w

z
13) = TRUE

(9)
By commuting the write blocks comprising the single steps
wz

11 and wz
12 ((E33), (E23) and (E24)) in the second

term in (9), we have that

Vequiv(wy
11w

y
12w

y
13w

z
11w

z
12w

z
13, w

y
11w

y
12w

y
13w

z
12w

z
11w

z
13) = TRUE

(10)
By commuting write steps ((E32), (E23) and (E24)),

Vequiv(wy
11w

y
12w

y
13w

z
12w

z
11w

z
13, w

y
11w

y
12w

z
12w

z
11w

y
13w

z
13) = TRUE

(11)
By (9), (10) and (11) and transitivity of Vequiv ((E22)),

Vequiv(wy
11w

z
11w

y
12w

z
12w

y
13w

z
13, w

y
11w

y
12w

z
12w

z
11w

y
13w

z
13) = TRUE

(12)
Thus, by (12), (E23) and (E24)

Vequiv(h2, h1) = TRUE (13)

where h2 is the history h2 =

rx
11r

x
12r

x
13w

y
11w

z
11w

y
12w

z
12w

y
13w

z
13r

y
21r

z
21w

x
21r

y
22r

z
22w

x
22r

y
23r

z
23w

x
23

By repeatedly commuting non-conflicting read and write steps
((E31), (E30), (E23) and (E24)),

Vequiv(h, h2) = TRUE (14)

where h is the history h =

rx
11w

y
11w

z
11 rx

12w
y
12w

z
12 rx

13w
y
13w

z
13 ry

21r
z
21w

x
21 ry

22r
z
22w

x
22 ry

23r
z
23w

x
23

By (13), (14) and transitivity of Vequiv ((E22)),

Vequiv(h, h1) = TRUE (15)

By straightforward applications of (E6)-(E14), h is clearly
tiered-serial, i.e.

tser(h, 3) = TRUE (16)

By repeatedly commuting steps belonging to different trans-
actions we have, by (E25)-(E27) and (E15)-(E19), that

Tequiv(h, h1) = TRUE (17)

By (16), (17), (15) and (E34), we conclude that
tserz(h1)=TRUE as required.

V. CONCLUSIONS

We have given an algebraic theory of serializable schedules
for a model of concurrent partitioned transactions. The main
contribution of this work lies in its generality. Rather than
presenting a neat algebraic method for a specific class of
serializability problem, we have given a general algebraic
method that is applicable to a very wide range of serializability
problems. Practically, an algebraic approach may or may
not be the best way of proving serializability in a given
application. It is not the aim of this paper to determine if



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:3, 2010

435

INTERNATIONAL JOURNAL OF COMPUTER SCIENCE ISSN 1306-4428 8

an algebraic approach is suitable for a particular application.
The aim in this paper is to give the option of an algebraic
approach if an alternative method of proof is required.

Most other work on algebraic specification of concurrency
has been in the area of process algebras, notably CSP [7]
and the π-calculus [15]. A comprehensive survey of different
algebraic approaches to concurrency can be found in [1],
although most approaches are applied to processes other than
database transactions. An exception is the equational theory
in [3] which is used to analyze the interplay between ACID
properties of transactions. The initial-algebra approach in
this paper has not been used in connection with database
transactions. However, it is an established area of algebraic
specification and standardized systems to support its use have
been developed recently [2].

REFERENCES

[1] E. Astesiano, M. Broy and G. Regio, “Algebraic Specification of
Concurrent Systems,” in Algebraic Foundations of System Specification,
IFIP State-of-the-Art Reports, chapter 13, Springer, 1999.

[2] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. Mosses, D.
Sannella, and A. Tarlecki, “CASL: The Common Algebraic Specification
Language,” Theoretical Computer Science, vol. 286(2), pp. 153-196,
2002.

[3] A.P. Black, V. Cremet, R. Guerraoui and M. Odersky, “An Equational
Theory for Transactions,” Proc. Foundations of Software Technology and
Theoretical Computer Science 2003, LNCS vol. 2914, Springer-Verlag,
pp. 38-49, 2003.

[4] C.J. Date, An Introduction to Database Systems, Addison Wesley, 2004.
[5] H. Garcia-Molina and B. Kogan, “Achieving high availability in dis-

tributed databases,” IEEE Transactions on Software Engineering, vol.
14(7), 1988.

[6] J.A. Goguen, J.W. Thatcher and E.G. Wagner, “An Initial Algebra Ap-
proach to the Specification, Correctness and Implementation of Abstract
Data Types,” in Current Trends in Programming Methodology IV, R.T.
Yeh (ed.), pp. 68-95 Prentice-Hall, 1978.

[7] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall,
1985.

[8] W. Hussak, “Serializable Histories in Quantified Propositional Temporal
Logic,” International Journal of Computer Mathematics, vol. 81(10), pp.
1203-1211, 2004.

[9] W. Hussak and J.A. Keane, “Concurrency Control of Tiered Flat
Transactions,” Proc. 13th British National Conference on Databases,
LNCS vol. 940, Springer-Verlag, pp. 172-182, 1995.

[10] S. Katz and D. Peled, “Defining conditional independence using col-
lapses,” Theoretical Computer Science, vol. 101, pp. 337-359, 1992.

[11] H. Korth and G. Speegle, “Formal Model of Correctness Without
Serializability,” Proc. ACM SIGMOD, pp. 379-388, 1988.

[12] C. Papadimitriou, The Theory of Database Concurrency Control, Com-
puter Science Press, 1986.

[13] D. Peled, S. Katz, and A. Pnueli, “Specifying and proving serializability
in temporal logic,” Proceedings LICS 1991, pp. 232-245, IEEE Com-
puter Society Press, 1991.

[14] D. Peled and A. Pnueli, “Proving partial order properties,” Theoretical
Computer Science, vol. 126, pp. 143-182, 1994.

[15] D. Sangiorgi and D. Walker, The π-calculus: a Theory of Mobile
Processes, Cambridge University Press, 2001.

[16] L. Sha, J.P. Lehoczky and E.D. Jensen, “Modular Concurrency Control
and Failure Recovery,” IEEE Transactions on Computers, vol. 37(2), pp.
146-159, 1988.

[17] K. Vidyasankar, “Generalized Theory of Serializability,” Acta Informat-
ica, vol. 24, pp. 105-119, 1987.

[18] P. Wolper, “Temporal Logic Can Be More Expressive,” Information and
Control, vol. 56, pp. 72-99, 1983.


