
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3709

Text Mining Technique for Data Mining Application
M. Govindarajan

Abstract—Text Mining is around applying knowledge discovery
techniques to unstructured text is termed knowledge discovery in text
(KDT), or Text data mining or Text Mining. In decision tree
approach is most useful in classification problem. With this
technique, tree is constructed to model the classification process.
There are two basic steps in the technique: building the tree and
applying the tree to the database. This paper describes a proposed
C5.0 classifier that performs rulesets, cross validation and boosting
for original C5.0 in order to reduce the optimization of error ratio.
The feasibility and the benefits of the proposed approach are
demonstrated by means of medial data set like hypothyroid. It is
shown that, the performance of a classifier on the training cases from
which it was constructed gives a poor estimate by sampling or using a
separate test file, either way, the classifier is evaluated on cases that
were not used to build and evaluate the classifier are both are large. If
the cases in hypothyroid.data and hypothyroid.test were to be
shuffled and divided into a new 2772 case training set and a 1000
case test set, C5.0 might construct a different classifier with a lower
or higher error rate on the test cases. An important feature of see5 is
its ability to classifiers called rulesets. The ruleset has an error rate
0.5 % on the test cases. The standard errors of the means provide an
estimate of the variability of results. One way to get a more reliable
estimate of predictive is by f-fold –cross- validation. The error rate of
a classifier produced from all the cases is estimated as the ratio of the
total number of errors on the hold-out cases to the total number of
cases. The Boost option with x trials instructs See5 to construct up to
x classifiers in this manner. Trials over numerous datasets, large and
small, show that on average 10-classifier boosting reduces the error
rate for test cases by about 25%.

Keywords—C5.0, Error Ratio, text mining, training data, test
data.

I. INTRODUCTION
ECISION tree approach is most useful in
classification problems. With this technique, a tree is

constructed to model the classification process. Once the tree
is built, it is applied to each tuple in the database and results in
a classification for that tuple. There are two basic steps in the
technique: building the tree and applying the tree to the
database.

1) C 5.0 algorithm: [3] C5.0 (called See5 on windows) is a
commercial version of C4.5 now widely used in many data
mining packages such as Clementine and RuleQuest. It is
targeted toward use with large datasets. The DT induction is
close to that C4.5, but the rule generation is different. Unlike
C4.5, the precise algorithms used for C4.5 have not been

Manuscript received November 15, 2007. This work was supported by

Career Award for Young Teachers (CAYT) grant from All India Council for
Technical Education, New Delhi.

M. Govindarajan is with the Annamalai University, Annamalai Nagar,
Tamil Nadu, India (phone: 91-4144-221946; e-mail:
govind_aucse@yahoo.com).

divulged. C5.0 does include improvements to generate rules.
Results show that C5.0 improves on memory usage by about
90 percent, runs between 5.7 and 240 times faster than C4.5
and produces more accurate rules.
 One major improvement to the accuracy of C5.0 is based
on boosting. Boosting is an approach to combining different
classifiers. While boosting normally increase the time that it
takes to run a specific classifier, it does improve the accuracy.
Boosting does not always help when the training data contains
a lot of noise. Boosting works by creating multiple training
sets from one training set. Each item in the training set is
assigned a weight. The weight indicates the importance of this
item to the classification. A classifier is constructed for each
combination of weights used. Thus, multiple classifiers are
actually constructed. When C5.0 performs a classification,
each classifier is assigned a vote, voting is performed, and the
target tuple is assigned to the class with the most number of
votes.

2) Proposed C5.0 algorithm: The feasibility the benefits of the
proposed approach are demonstrated by means of medial data
set like hypothyroid. It is shown that, the performance of a
classifier on the training cases from which it was constructed
gives a poor estimate by sampling or using a separate test file,
either way, the classifier is evaluated on cases that were not
used to build and evaluate the classifier are both are large. If
the cases in hypothyroid data and hypothyroid test were to be
shuffled and divided into a new 2772 case training set and a
1000 case test set, C5.0 might construct a different classifier
with a lower or higher error rate on the test cases. One way to
get a more reliable estimate of predictive is by f-fold –cross-
validation. The error rate of a classifier produced from all the
cases is estimated as the ratio of the total number of errors on
the hold-out cases to the total number of cases.
 Another innovation incorporated in See5 is adaptive
boosting, based on the work of Rob Schapire and Yoav
Freund. The idea is to generate several classifiers (either
decision trees or rulesets) rather than just one. When a new
case is to be classified, each classifier votes for its predicted
class and the votes are counted to determine the final class.

A. Performances of Decision Trees
Decision trees [3] are powerful and popular tools for

classification and prediction. The attractiveness of decision
trees is due to the fact that, in contrast to neural networks,
decision trees represent rules. Rules can readily be expressed
so that humans can understand them or even directly used in a
database access language like SQL so that records falling into
a particular category may be retrieved. In some applications,
the accuracy of a classification or prediction is the only thing
that matters. In such situations we do not necessarily care how
or why the model works. In other situations, the ability to

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3710

explain the reason for a decision is crucial. In marketing one
has describe the customer segments to marketing
professionals, so that they can utilize this knowledge in
launching a successful marketing campaign. This domain
expert must recognize and approve this discovered knowledge,
and for this we need good descriptions. There are a variety of
algorithms for building decision trees that share the desirable
quality of interpretability. A well known and frequently used
over the years is C4.5 (or improved, but commercial version
See5/C5.0). A decision tree can be used to classify an example
by starting at the root of the tree and moving through it until a
leaf node, which provides the classification of the instance.
Decision tree induction is a typical inductive approach to learn
knowledge on classification. The key requirements to do
mining with decision trees are:

 Attribute-value description: object or case must be
expressible in terms of a fixed collection of
properties or attributes. This means that we need to
discrete continuous attributes, or this must have been
provided in the algorithm.

 Predefined classes (target attribute values): The
categories to which examples are to be assigned must
have been established beforehand (supervised data).

 Discrete classes: A case does or does not belong to a
particular class, and there must be more cases than
classes.

 Sufficient data: Usually hundreds or even thousands
of training cases.

1) Which attribute is the best classifier?
The estimation criterion in the decision tree algorithm [3] is

the selection of an attribute to test at each decision node in the
tree. The goal is to select the attribute that is most useful for
classifying examples. A good quantitative measure of the
worth of an attribute is a statistical property called information
gain that measures how well a given attribute separates the
training examples according to their target classification. This
measure is used to select among the candidate attributes at
each step while growing the tree.

2) Issues in data mining with decision trees
Practical issues in learning decision trees include

determining how deeply to grow the decision tree, handling
continuous attributes, choosing an appropriate attribute
selection measure, handling training data with missing
attribute values, handing attributes with differing costs, and
improving computational efficiency. Below we discuss each
of these issues and extensions to the basic ID3 algorithm that
address them.

3) Avoiding over-fitting the data
In principle decision tree algorithm described in Fig. 2 can

grow each branch of the tree just deeply enough to perfectly
classify the training examples. While this is sometimes a
reasonable strategy, in fact it can lead to difficulties when
there is noise in the data, or when the number of training
examples is too small to produce a representative sample of

the true target function. In either of these cases, this simple
algorithm can produce trees that over-fit the training examples.
Over-fitting [3] is a significant practical difficulty for decision
tree learning and many other learning methods. There are
several approaches to avoiding over-fitting in decision tree
learning. These can be grouped into two classes:

• approaches that stop growing the tree earlier, before
it reaches the point where it perfectly classifies the
training data,

• approaches that allow the tree to over-fit the data, and
then post prune the tree.

B. Strengths and weakness of Decision Tree Methods

The strengths of decision tree methods are:

• Decision trees are able to generate understandable
rules.

• Decision trees perform classification without
requiring much computation.

• Decision trees are able to handle both continuous and
categorical variables.

• Decision trees provide a clear indication of which
fields are most important for prediction or
classification.

The weaknesses of decision tree methods:

• Decision trees are less appropriate for estimation
tasks where the goal is to predict the value of a
continuous attribute.

• Decision trees are prone to errors in classification
problems with many class and relatively small
number of training examples.

• Decision tree can be computationally expensive to
train. The process of growing a decision tree is
computationally expensive. At each node, each
candidate splitting field must be sorted before its best
split can be found. In some algorithms, combinations
of fields are used and a search must be made for
optimal combining weights. Pruning algorithms can
also be expensive since many candidate sub-trees
must be formed and compared.

• Decision trees do not treat well non-rectangular
regions. Most decision-tree algorithms only examine
a single field at a time. This leads to rectangular
classification boxes that may not correspond well
with the actual distribution of records in the decision
space.

The remainder of this article is structured as follows. First,
the state of the art is analyzed to motivate our work (Section
II) and the C5.0 algorithm was described (Section III). Then,
the model evaluation of C5.0 algorithm is introduced (Section
IV). After that, preprocessing of dataset was described.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3711

(Section V). Finally, the main findings are summarized and an
outlook on future work is given (Section VI).

II. STATE OF THE ART
In this section, the state of the art concerning rule sets, cross

validation, boosting of C5.0 algorithm is investigated. The
results of this survey will motivate a new approach.

A. Related Work
These articles focus on error ratio using rulesets, cross

validation, boosting of C5.0 algorithm. Rule sets, Cross
validation, boosting methods are described in [1]. Here, we
discuss examples of the combination of C5.0 and Proposed
C5.0 algorithm. The feasibility the benefits of the proposed
approach are demonstrated by means of medial data set like
hypothyroid. The following steps are carrying out to classify
decision tree methods like C5.0 algorithm [4].

1. Decision tree induction: Construct a DT using training
 data
2. For each ti є D, apply the DT to determine its class

Since the application of a given tuple to a DT is relatively
straightforward.

B. Motivation for a New Approach
C5.0 [4] offers a number of improvements on C4.5. Some

of these are:

 Speed - C5.0 is significantly faster than C4.5
(several orders of magnitude)

 Memory Usage - C5.0 is more memory efficient
than C4.5

 Smaller Decision Trees - C5.0 gets similar
results to C4.5 with considerably smaller
decision trees.

 Support For Boosting - Boosting improves the
trees and gives them more accuracy.

 Weighting - C5.0 allows you to weight different
attributes and misclassification types.

Winnowing - C5.0 automatically winnows the data to help
reduce noise.

III. CLASSIFICATION WITH C5.0 ALGORITHM
C5.0 (called See5 on windows) [4] is a commercial version

of C4.5 now widely used in many data mining packages such
as Clementine and RuleQuest. It is targeted toward use with
large datasets. The DT induction is close to that C4.5, but the
rule generation is different. Unlike C4.5, the precise
algorithms used for C4.5 have not been divulged. C5.0 does
include improvements to generate rules. Results show that
C5.0 improves on memory usage by about 90 percent, runs
between 5.7 and 240 times faster than C4.5 and produces more
accurate rules. One major improvement to the accuracy of
C5.0 is based on boosting. Boosting is an approach to
combining different classifiers. While boosting normally
increase the time that it takes to run a specific classifier, it

does improve the accuracy. Boosting does not always help
when the training data contains a lot of noise. Boosting works
by creating multiple training sets from one training set. Each
item in the training set is assigned a weight. The weight
indicates the importance of this item to the classification. A
classifier is constructed for each combination of weights used.
Thus, multiple classifiers are actually constructed. When C5.0
performs a classification, each classifier is assigned a vote,
voting is performed, and the target tuple is assigned to the
class with the most number of votes.

In pseudocode the algorithm looks like this:

• Check for base cases
• For each attribute a
• Find the normalized information gain from splitting

on a
• Let a_best be the attribute with the highest

normalized
• information gain

• Create a decision node node that splits on a_best
• recurse on the sublists obtained by splitting on a_best

and add those nodes as children of node

IV. MODEL EVALUATION
In this section, a schematic overview of rule sets, cross

validation, boosting used for C5.0 algorithm. Then, the
standard techniques are sketched and our innovative
extensions are described in detail.

A. Rulesets
Decision trees can sometimes be quite difficulty to

understand. An important feature of C5.0 is its ability to
generate classifiers called rulesets that consists of unordered
collections of (relatively) simple if-then rules. Rulesets [1] are
generally easier to understand than trees since each rule
describes a specific context associated with a class.
Furthermore, a ruleset generated from a tree usually has fewer
rules than the tree has leaves, another plus for
comprehensibility. (In this example, the first decision tree with
14 leaves is reduced to seven rules.) Finally, rules are often
more accurate predictors than decision trees -- a point not
illustrated here, since the ruleset has an error rate of 0.5% on
the test cases. For very large datasets, however, generating
rules with the ruleset option can require considerably more
computer time.

B. Cross-Validation Method
The performance of a classifier on the training cases from

which it was constructed gives a poor estimate of its accuracy
on new cases. The true predictive accuracy of the classifier
can be estimated by sampling, as above, or by using a separate
test file; either way, the classifier is evaluated on cases that
were not used to build it. However, this estimate can be
unreliable unless the numbers of cases used to build and
evaluate the classifier are both large. If the cases in
hypothyroid.data and hypothyroid.test were to be shuffled and
divided into a new 2772-case training set and a 1000-case test

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3712

set, See5 might construct a different classifier with a lower or
higher error rate on the test cases. One way to get a more
reliable estimate of predictive accuracy is by f-fold cross-
validation. The cases in the data file are divided into f blocks
of roughly the same size and class distribution. For each block
in turn, a classifier is constructed from the cases in the
remaining blocks and tested on the cases in the hold-out block.
In this way, each case is used just once as a test case. The
error rate of a classifier produced from all the cases is
estimated as the ratio of the total number of errors on the hold-
out [6] cases to the total number of cases.

C. Boosting
Another innovation incorporated in See5 is adaptive

boosting, based on the work of Rob Schapire and Yoav
Freund. The idea is to generate several classifiers (either
decision trees or rulesets) rather than just one. When a new
case is to be classified, each classifier votes for its predicted
class and the votes are counted to determine the final class.
But how can we generate several classifiers from a single
dataset? As the first step, a single decision tree or ruleset is
constructed as before from the training data (e.g.
hypothyroid.data). This classifier will usually make mistakes
on some cases in the data; the first decision tree, for instance,
gives the wrong class for 7 cases in hypothyroid.data. When
the second classifier is constructed, more attention is paid to
these cases in an attempt to get them right. As a consequence,
the second classifier will generally be different from the first.
It also will make errors on some cases, and these become the
the focus of attention during construction of the third
classifier. This process continues for a pre-determined number
of iterations or trials, but stops if the most recent classifiers is
either extremely accurate or inaccurate. The Boost option with
x trials instructs See5 to construct up to x classifiers in this
manner. Naturally, constructing multiple classifiers requires
more computation that building a single classifier -- but the
effort can pay dividends! Trials over numerous datasets, large
and small, show that on average 10-classifier boosting reduces
the error rate for test cases by about 25%.

V. DATA PRE-PROCESSING
Even though See5 is relatively fast, building classifiers

from large numbers of cases can take an inconveniently long
time, especially when options such as boosting are employed.
See5 incorporates a facility to extract a random sample from a
dataset, construct a classifier from the sample, and then test
the classifier on a disjoint collection of cases. By using a
smaller set of training cases in this way, the process of
generating a classifier is expedited, but at the cost of a
possible reduction in the classifier's predictive performance.
The Sample option with x% has two consequences. Firstly, a
random sample containing x% of the cases in the application's
data file is used to construct the classifier. Secondly, the
classifier is evaluated on a non-overlapping set of test cases
consisting of another (disjoint) sample of the same size as the
training set (if x is less than 50%), or all cases that were not
used in the training set (if x is greater than or equal to 50%). In
the hypothyroid example, using a sample of 60% would cause
a classifier to be constructed from a randomly-selected 1663

of the 2772 cases in hypothyroid.data [6] then tested on the
remaining 1109 cases. By default, the random sample changes
every time that a classifier is constructed, so that successive
runs of See5 with sampling will usually produce different
results. This re-sampling can be avoided by selecting the Lock
sample option that uses the current sample for constructing
subsequent classifiers. If this option is selected, the sample
will change only when another application is loaded, the
sample percentage is altered, the option is unselected, or See5
is restarted.

VI. EMPIRICAL RESULTS
In this section we demonstrated the properties and

advantages of our approach by means of data set like
hypothyroid. The performance of classification algorithms is
usually examined by evaluating the accuracy of the
classification. However, since classification is often a fuzzy
problem [1] [7], the correct answer may depend on the user.
Traditional algorithm [2] evaluation approaches such as
determining the space and time overhead can be used, but
these approaches are usually secondary. Classification
accuracy [4] is usually calculated determining the percentage
of tuples placed in the correct class. This ignores the fact that
there also may be a cost associated with an incorrect
assignment to the wrong class. This perhaps should also be
determined [12]. We examine the Performance of rulsets,
cross validation, boosting for original C5.0 algorithm
depending on error rate. The standard errors of the means
provide an estimate of the variability of results.

TABLE II
ERROR RATIO (USING RULESETS)

Dataset
Factor of

Proposed
C5.0
algorithm
(PC5.0)

Original
C5.0
algorithm
(OC5.0)

Faster by

Hypothyroid

0.5 %

7.2 % 6.7 %

TABLE I
PROPERTIES OF DATA SET

Dataset
Factor of

Proposed
C5.0
algorithm
(PC5.0)

Original
C5.0
algorithm
(OC5.0)

Faster by

Hypothyroid

0.5 %

7.2 % 6.7 %

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3713

Fig. 1 Error ratio for Rulesets

TABLE III
ERROR RATIO (USING 10-CROSS VALIDATION)

Dataset
Factor of

Proposed
C5.0
algorithm
(PC5.0)

Original
C5.0
algorithm
(OC5.0)

Faster by

Hypothyroid

0.3 %

7.2 % 6.9 %

Error Ratio

0
2
4
6
8

1

Original C5.0 algorithm

Pr
op

os
ed

 C
5.

0
al

go
rit

hm O C5.0
P C5.0

Fig. 2 Error ratio for 10-fold Cross Validation

TABLE IV

ERROR RATIO (USING BOOSTING)

Dataset
Factor of

Proposed
C5.0
algorithm
(PC5.0)

Original
C5.0
algorithm
(OC5.0)

Faster by

Hypothyroid

0.2 %

7.2 % 7.0 %

Error Ratio

0
2
4
6
8

1

Original C5.0 algorithm

Pr
op

os
ed

 C
5.

0
al

go
rit

hm O C5.0
P C5.0

Fig. 3 Error ratio for Boosting

VII. CONCLUSION
In this work we developed one text mining classifier using

C5.0 methods to measure the classification accuracy for
hypothyroid data set. First, we utilized our developed text
mining algorithms, including text mining techniques based on
classification of medical data like hypothyroid After that, we
employ exiting C5.0 to deal with measure the classification
accuracy. It is shown that, the performance of a classifier on
the training cases from which it was constructed gives a poor
estimate by sampling or using a separate test file, either way,
the classifier is evaluated on cases that were not used to build
and evaluate the classifier are both are large. If the cases in
hypothyroid.data and hypothyroid.test were to be shuffled and
divided into a new 2772 case training set and a 1000 case test
set, C5.0 might construct a different classifier with a lower or
higher error rate on the test cases. An important feature of
see5 [11] is its ability to classifiers called rulesets. The ruleset
has an error rate 0.5 % on the test cases. The standard errors of
the means provide an estimate of the variability of results. One
way to get a more reliable estimate of predictive is by f-fold –
cross- validation. The error rate of a classifier produced from
all the cases is estimated as the ratio of the total number of
errors on the hold-out cases to the total number of cases. The
Boost option with x trials instructs See5 to construct up to x
classifiers in this manner. Naturally, constructing multiple
classifiers requires more computation that building a single
classifier -- but the effort can pay dividends! Trials over
numerous datasets, large and small, show that on average 10-
classifier boosting reduces the error rate for test cases by about
25%.

ACKNOWLEDGEMENT

Authors gratefully acknowledge the authorities of
Annamalai University for the facilities offered and
encouragement to carry out this work. This part of work is
supported in part by the first author got Career Award for
Young Teachers (CAYT) grant from All India Council for
Technical Education, New Delhi. They would also like to
thank the reviewer’s for their valuable remarks.

REFERENCES
[1] Themis P.Exarchos, Markos G. Tsipouras, Costas P. Exarchos, Costas

Papaloukas, Dimitrios I. Fotiadis, Lampros K. Michalis, “A
methodology for the automated creation of fuzzy expert systems for
ischaemic and arrhymic beat classification based on a set of rules
obtained by a decision tree” Artificial Intelligence in medicine (2007)
40, 187-200.

[2] M.Govindarajan, Dr.RM.Chandrasekaran, “Classifier Based Text
Mining for Neural Network” Proceeding of XII international
conference on computer, electrical and system science and engineering,
may 24-26, Vienna , Austria, waste.org,2007. pp. 200-205.

[3] Jiawei Han , Micheline Kamber “ Data Mining – Concepts and
Techniques” Elsevier, 2007 pages 291- 310.

[4] Margaret H.Dunham, “Data Mining- Introductory and Advanced
Topics” Pearson Education, 2007 pages 92-101.

[5] Marion Verduijn, Lucia Sacchi, Niels Peek, Riccardo Bellazzi, Evert de
Jonge, Bas A.J.M. de Mol.”Temporal abstraction for feature extraction:
A comparative case study in prediction from intensive care monitorinf
data” Artificial Intelligence in Medicine (2007) 41, 1-12.

[6] Kemal Polat, Salih Gunes, Sulayman Tosun “Diagnosis disease using
artificial immune recognition system and fuzzy weighted pre-
processing” Pattern Recognition 39 (2006) 2186-2193.

Error Ratio

0
2
4
6
8

1

Original C5.0 algorithm

Pr
op

os
ed

 C
5.

0
al

go
rit

hm O C5.0

P C5.0

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3714

[7] Tim W.Nattemper, Bert Arnrich, Oliver Lichte, Wiebke Timm, Andreas
Degenhard, Linda Pointon, Carmel Hayes, Martin O. Leach.
“Evaluation of radiological features for breast tumour classification in
clinical screening with machine learning methods” Artificial Intelligence
in Medicine (2005) 34, 129-139.

[8] Sanchis, A., GIL, J.A. and Heras, A. (2003): “El análisis discriminante
en la previsión de la insolvencia en las empresas de seguros no vida”,
Revista Española de Financiación y Contabilidad,116, enero-marzo,
183-233.

[9] Segovia, M.J., Gil, J.A., Heras, A. and Vilar, J.L. (2003):
“Lametodología Rough Set frente al Análisis Discriminante en los
problemas de clasificación multiatributo”, XI Jornadas ASEPUMA,
Oviedo, Spain.

[10] Venables, W.N. and Ripley, B.D. (2002): Modern Applied Statistics
with S, Springer-Verlag, New York.

[11] De Anders, J. (2001): “Statistical Techniques vs. SEE5 Algorithm. An
Application to a Small Business Environment”, International Journal of
Digital Accounting Research, 1 (2), 153-179.

[12] Duda, R.O., Hart, P.E. and STORK, D.G. (2001): Pattern Classification,
John Wiley & Sons, Inc., New York.

M. Govindarajan received the B.E and
M.E and Pursuing Doctoral Degree in
Computer Science and Engineering from
Annamalai University, Tamil Nadu, India
in 2001 and 2005 and 2006 respectively.
He is currently a lecturer (Senior Scale) at
the Department of Computer Science and
Engineering, Annamalai University,
Tamil Nadu, India. He has presented and
published more than 25 papers in
Conferences and Journals. His current
Research Interests include Data Mining
and its applications, Algorithms, Text
Mining, Neural Networks, genetic

Algorithms, support vector machine, Radial Basis Function, ontology based
Reasoning, Case Based Reasoning.

He has conducted National Conference on Recent Trends in Data Mining
and its Applications (March 11-12, 2006) as well as proposed to conduct
National Conference on “Research Prospects on knowledge Mining will be
March 22nd & 23rd , 2008. He was the recipient of the Achievement Award for
the field and to the Conference Bio-Engineering, Computer science,
Knowledge Mining (2006), Prague, Czech Republic and All India Council for
Technical Education “Career Award for Young Teachers (2006), New Delhi,
India. He is Life Member of Computer Society of India, Indian Society for
Technical Education and Session Member of Indian Science Congress
Association.

