
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:6, No:1, 2012

65

 

 

    Abstract—In this paper, the potential use of an exponential 

hidden Markov model to model a hidden pavement deterioration 

process, i.e. one that is not directly measurable, is investigated. It is 

assumed that the evolution of the physical condition, which is the 

hidden process, and the evolution of the values of pavement distress 

indicators, can be adequately described using discrete condition states 

and modeled as a Markov processes. It is also assumed that condition 

data can be collected by visual inspections over time and represented 

continuously using an exponential distribution. The advantage of 

using such a model in decision making process is illustrated through 

an empirical study using real world data. 

 

Keywords—Deterioration modeling, Exponential distribution, 

Hidden Markov model, Pavement management 

I. INTRODUCTION 

A. Insufficient data 

The prediction of future condition is necessary in the 

determination of optimal pavement intervention strategies 

(OISs). Accurate prediction requires that prediction models be 

validated using past condition data. In reality, however, the 

quantity and quality of past condition data is often insufficient 

to validate the prediction models and therefore to determine 

the OIS. Two examples of insufficient data from which to 

determine OISs are:   

 • There exists extensive data on the visual appearance of 

the pavement surface, e.g. percentage of surface area that is 

cracked, but there is sparse data on the longitudinal and 

transversal unevenness, friction or load bearing capacity of the 

road section.  

 • There exists extensive data on the road roughness, e.g. the 

International Roughness Index (IRI), but there is sparse data 

on the percentage of surface area that is cracked.  

Determining OISs in either one of these cases may result in 

the exclusion of certain types of interventions, as appropriate 

triggers cannot be assigned that would allow interventions of 

certain types to be selected. In the first case, the optimal time 

to execute an intervention that alleviates a longitudinal 

unevenness problem cannot be determined by knowing only 

the evolution over time of the cracking of the pavement 

surface. In the second case, the optimal time to execute an 

intervention that improves pavement friction cannot be 

determined by knowing only the evolution over time of the 
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roughness of the road [1]. 

The reasons for insufficient data include the lack of 

sufficient resources to conduct the necessary inspections, e.g. 

to purchase required equipment or to hire an adequate number 

of inspectors, and a perceived negative net benefit, i.e. it is not 

worth the effort to acquire the additional data.  

B. Modeling deterioration and determining optimal 

intervention strategies:  

The modeling of pavement deterioration in pavement 

management systems (PMS) in recent years has predominately 

been with the Markov model [2, 3, 4]. This trend is also 

evident in research on the management of other infrastructure 

objects, such as bridges [4, 5, 6]; and pipelines [7, 8]. Two 

advantages of Markovian models are:   

 • they allow generalization of the deterioration process into 

the transition pattern among condition states, which is suitable 

for representing pavement performance;  

 • they can be used in the absence of historical data, as the 

probability of observing future state depends only on the 

probability of observed condition states at the present. Thus, 

with a minimum of two visual inspections, deterioration 

progress of the pavement can be predicted.  

With the Markov model, the deterioration of road sections 

is described using probabilities of transition between discrete 

condition states. The probabilities of being in each condition 

state in the Markov transition matrix multiplied by the 

predetermined or initial condition state probabilities give an 

overall assessment of pavement condition in respective time 

frames. In developed countries such as Japan, Switzerland and 

the United States of America, the definition of condition states 

(composite pavement indexes) have been standardized to 

facilitate pavement management. For example, the Pavement 

Condition Index (PCI), developed by the United States of 

Army Corps of Engineers [9] or the Management Criteria 

Index (MCI) used in Japan [10]. These composite pavement 

indexes are normally calculated using a deterministic 

relational function between several important pavement 

condition indicators, such as cracking, rut depth and 

roughness. 

PMSs use these deterioration models to determine OISs, 

consisting of the condition state of the road section that is to 

trigger an intervention and the type of intervention to be 

determined. When inaccurate deterioration models exist, the 

future condition state of the road section, i.e. the value of the 

aggregate composite index, can not be accurately estimated, 

and therefore neither can the OISs. 

A potential way to overcome this problem is to estimate the 

transition probabilities using a hidden Markov model (HMM). 

Nam Lethanh and Bryan T. Adey 

A Hidden Markov Model for Modeling Pavement 

Deterioration under Incomplete Monitoring Data 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:6, No:1, 2012

66

 

 

HMMs have been significantly studied and broadly applied in 

the field of image processing and speed recognition [11]. 

There has, however, been very little investigation of the use of 

HMMs in the field of infrastructure management, and the 

research that has been conducted has focused principally on 

the elimination of measurement errors (e.g. [10]). 

To use HMMs to model road deterioration it is necessary to 

assume that road deterioration is a hidden process, i.e. it 

cannot be observed directly, that can be deduced through the 

evolution of an observable process, such as increasing 

roughness. The transition probabilities for the Markov model 

are then estimated using the mathematical relationship 

between the hidden process and the observable process. The 

evolution of the observable process can be determined from 

the analysis of the existing condition data. If the observable 

process can be represented with the exponential distribution, 

as suggested by [12] and assumed in this article, the 

appropriate HMM to be used is an Exponential Hidden 

Markov Models (EHMM). 

The use of HMMs to model road deterioration is explored 

in this article. The article is divided as follows: Section 2 

contains a discussion on the relationship between the observed 

process and the hidden process and an explanation of the 

EHMM. Section 3 and 4 contain the model formulation and 

estimation methodology, respectively. Section 5 contains a 

case study, using information from the national road network 

of Vietnam. Section 6 contains the conclusions of the work 

and gives indication of future research needs.  

II. OBSERVED AND HIDDEN PROCESSES 

A road immediately after it is built is normally considered 

to be in perfect condition and over time, to deteriorate. The 

condition of the road can be described in different ways, for 

example discrete condition states may be used, ( =1, )i i IL , 

where condition state 1 may be considered perfect or like 

perfect and I alarming, i.e. the condition state where it is 

simply no longer acceptable and an intervention is to be 

executed. These condition states are often described with 

attributes, or indicators, e.g. the amount of cracked surface 

area (m
2
). Although these indicators do represent the real 

condition they are only an indicator of the real condition. The 

relationship between the values of an indicator and the 

physical condition is depicted in Fig. 1. In Fig. 1 the values of 

the indicators increase over time and the physical condition 

described by condition states is shown. 

If a Markov model of deterioration is to be used, transition 

probabilities need to be estimated, requiring data on the 

evolution of the values of the condition indicators over time. 

In many cases, however, this data is insufficient, to accurately 

estimate the transition probabilities, introducing significant 

uncertainty into the deterioration model, and therefore in the 

optimality of the theoretically OIS. 

If data on all required condition indicators over time is not 

available, or can not be collected, it is possible to approximate 

the transition probabilities of the deterioration process using 

the data of an single condition indicator over time and limited 

data used to construct Markov transition probability, 

exploiting the correlation between the indicator for which data 

is available and the deterioration process. In this case, a 

Markov model can be used to model the evolution the 

condition indicator for which data exists, i.e. the observable 

process, and the deterioration process, i.e. the hidden process. 

An illustration of the relationship between the observable and 

the hidden process is given in Fig. 2, where the transitions 

between condition states ( = , =1, , )l

r
g t i i IL  of the road 

section l at respective times ( =1, , )l

r
t r TL  can be deduced 

from the values of the condition indicator that correspond to 

each condition state ( )l

r
h t . Knowing the condition state 

transitions over time, the transition probabilities ij
π , to be 

used in a Markov model of deterioration can be estimated.  

 
Fig. 1 Relationship between road section condition and a condition 

indicator 

III. THE MODEL 

A. Transition probabilities 

The model used in this paper to approximate the transition 

probabilities of the EHMM is an extension of the Maximum-

likelihood estimation method proposed by [4]. The explicit 

mathematical formula for estimating Markov transition 

probability ij
π  is given in Eq. (1). A short description of the 

model's formulation is given in the Appendix.  
11

= = = 1

( ) = exp( ),
j jk

ij m m
k

k i m i m km k m k

z z
θ θ

π θ
θ θ θ θ

−−

+

−
− −

∑∏ ∏  (1) 

In Eq. (1), the condition states of the road section are 

described by indexes , , ,i j k m , ( )i k m j≤ ≤ ≤ . The condition 

states i  and j  are the priori and posteriori condition states, 

respectively, m  and k  are variables to allow appropriate 

consideration of condition states between i  and j , θ  is the 

deterioration rate, or hazard rate, from respective condition 

state i  , i.e. the rate at which an object goes from condition 

state i  to worse condition states, z  is time interval between 

two inspections. Statistically, the hazard rate θ  can be 

expressed in the multiplicative form = xθ β⋅  (refer to Eq. 

(23) in the Appendix). Where x  is a vector of characteristic 

variables (traffic volume, change in pavement thickness, 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:6, No:1, 2012

67

 

 

temperature, etc) that affect the deterioration process, and β  

is to be estimated given information on the evolution of 

condition states and the characteristic variables. 

 

 
Fig. 2 Illustration of hidden Markov process 

 

B. Exponential Hidden Markov model 

In the EHMM, it is assumed that the Markov transition 

probabilities ij
π  are used to model the hidden deterioration 

process, and the available data is the values of a condition 

indicator. The occurrence of the values of the condition 

indicator can be represented as the random variable ( )h t , with 

t  being time. 

The probability distribution of ( )h t  is considered to be 

dependent on the condition state ( ) = (1, , )g t i IL  at time t . 

The probability of the condition indicator having a specific 

value ( ) =h t n , given ( ) =g t i  at time t , is assumed to follow 

an exponential probability distribution (Eq. (2)),  

= [ ( ) = | ( ) = ] = ( ),
in i i

Prob h t n g t i exp tγ λ λ−  (2) 

where n  is the value of the condition indicator at time t  and 

i
λ  is the rate parameter (or parameter of distribution) 

associated with condition state i . In another words, it is the 

rate of leaving condition state i . 

Eq. (2) is also constrained in that the summation of all 

possible probabilities 
in

γ  must equal to 1 (
=1

= 1
N

in
n

γ∫ ), where 

N  is the worst possible value of the condition indicator. 

The conditional probability distribution of ( )h t  with respect 

to condition state i  can then be determined using the joint 

probability distribution function of condition state and value 

of condition indicator.  

[ ( ) = ] = [ ( ) = | ( ) = ] [ ( ) = ]Prob h t n Prob h t n g t i Prob g t i  (3) 

                 
= ,in iγ ρ

 
 

where 
i

ρ  is a conditional state probability of the object being 

in state i . 
i

ρ  can be defined by as , , 1
=

i t i t ij
ρ ρ π− . 

Since the values of condition indicators are affected by both 

deterioration and the improvement resulting from 

interventions, the likelihood function to be used to determine 

the values of the condition indicator is:  

{ ( ) = } =L h t n , , ,
1 1 1 1

=1 =1 =1 =2
1 2

.
I I I T

i i n i i i n
t t t t

i i i t
T

ρ γ π γ
−

∑∑ ∑ ∏L  (4) 

Given the exponential distribution representing the relation 

between the condition states and the value of the condition 

indicator in Eq. (2), Eq. (4) can be re-written as:  

1 1
=1 =1 =1

1 2

{ ( ) = } = ( 1)
I I I

i i

i i i
T

L h t n expρ λ−∑∑ ∑L
,

1
=2

( )
T

i i i
t t t

t

exp tπ λ
−

⋅ −∏  (5) 

Similar types of expressions for Eqs. (4) and (5) can be 

found in recent literature [13, 14, 15].  

IV. METHODOLOGY 

In order to explain the methodology it is convenient to 

introduce the following terminology. Observed values of the 

condition indicator for a road section l  in a road network with 

L  sections over time are denoted as  ( = 1, , )
l l

t
t Tτ L , with 

)lT  as the number of inspections for the road section l . The 

hazard rate of a road section l  is influenced by the changes in 

the values of characteristic variables, such as traffic volume, 

thickness of overlay, and weather, etc, which can be referred 

to Eq. (23) in the Appendix., is referred to as 
lθ . 

In order to use the observed data it is also necessary to 

introduce the following two dummies variables:  

1 ( ) =
=

0

l

tl

i

if g t i

otherwise
δ





 (6) 

and  

1 ( 1) = ( ) =
=

0

l l

tl

ij

if g t i and g t j

otherwise
δ

 −



 (7) 

By using these dummy variables and taking the natural 

logarithm of both sides of the likelihood function in Eq. (5) 

with respect to the complete set of data, i.e. all information 

related to the observed and hidden processes, the following 

complete likelihood function can be obtained:   

1 ,

=1 =1 =1 =1 =1 =1 =1

ln =

ln( ) ln .
L I I I T I T

l l tl l tl t l

i i ij ij i i t

l i i j t i t

L

nδ ρ δ π δ λ
  

+ −  
  

∑ ∑ ∑∑ ∑ ∑∑
 (8) 

The values of the parameters in the set = ( , , )ρ π λΘ  are 

then estimated by determining the optimal solution to Eq. (8), 

i.e. the most likely values of the hidden process knowing the 

values of the observable process. 

This is done using the Maximum-likelihood estimation 

(MLE) method, a popular statistical method used to fit 

statistical models to observed data, and the Baum-Welch 

algorithm, a particular case of expectation-maximum (EM) 

algorithm [16, 17], which is suitable for determining optimal 

solutions for hidden Markov models when there is incomplete 

data. Using the Baum-Welch algorithm the likelihood in Eq. 

(8) can be simplified as:  

{ } { }= ( ) = | ( ) = ( ) =
c

L Prob g t i h t n Prob h t n⋅  (9) 

The maximization of Eq. (9) is done by performing the EM 

algorithm (A detailed explanation for the M-step and E-step in 

the EM algorithm can be found in [16, 18]). The steps of E-M 

algorithm is outlined in Table I.  
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TABLE I 

OUTLINE OF EM-ALGORITHM 

1.  Set the initial values for = ( , , )ρ π λΘ   

2.  Start the LOOP,  

3. Do the E-step to estimate the values of the dummy variables t

i
δ  

and t

ijδ  given the initial values of Θ , 

4.  Do the M-step to compute the values of Θ  by maximizing the 

likelihood function Eq. (9)  

5.  Check the convergent condition for the values of Θ ,  

  a. if not satisfied, the iteration goes back to step 2,  

  b. if satisfied, stop the iteration  

V.  EXAMPLE 

A. Problem 

The feasibility and usefulness of the proposed EHMM is 

demonstrated in this section using inspection data on 6’510 

asphalt concrete road sections of 1 kmm in length in Vietnam. 

Two nationalwide inspections were carried out in 2001 and 

2004. A significant amount of data on roughness was 

recorded, while only a relatively small amount of data on 

other, percentage of surface cracking, an number of potholes 

was recorded (Table II). As no composite index was used to 

indicate the condition of the pavement, we define a composite 

condition index (CCS). The value of the CCS is estimated 

using the weighted values of the international roughness index 

(IRI) and the percentage of the surface area with horizontal, 

longitudina or alligator crack, as shown in:  

= ,
16 100

r c

r c
CCS w w⋅ + ⋅  (10) 

where 

r - the international roughness index ( /mm km ) 

c - the surface area with horizontal, longitudinal or alligator 

cracks ( % ) 

w - weighting factors, where = 1
r c

w w+ . 

In Eq. (10), the denominators 16 (mm/m) and 100 (%) are 

the ultimate values of the IRI and the percentage of surface 

area that is cracked that can be measured. 

The CCS used in this work, is introduced to obtain a 

superior approximation of the true physical condition of road 

section than that provided alone by the IRI. The building of 

the CCS on the IRI and the percentage of cracked surface area 

of the pavement is strongly supported by the empirical studies, 

where it is been demonstrated that there is weak correlation 

between the evolution of the IRI and the percentage of cracked 

surface area [19]. The condition of the road section was 

defined using the 5 discrete condition states shown in Table 

III. 
TABLE II 

OVERVIEW OF DATA 

Condition 

indicator 

Measurement Unit Number of data 

Roughness International roughness 

index 

mm/m 6’510 6’510 

Cracking of 

surface area 

Horizontal, longitudinal, 

and alligator crack 

% 1’237 1’237 

Potholes  numbers No No 

 

 

 

TABLE III 

NOTATIONS OF CONDITION STATES 

Condition states Equivalent CCS Remark 

1   [0-0.2]   Very good 

2   (0.2-0.4]   Good 

3   (0.4-0.6]   Fair 

4   (0.6-0.8]   Poor 

5   0.8   Very poor 

 

B. Model 

1)Transition probabilities using the multi-stage exponential 

Markov hazard model: The transition probabilities of the 

Markov model used to model the evolution of the CCS were 

first estimated using the 1’237 records where data on both 

roughness and surface cracking was available (Table I). Using 

the model proposed by [4] and the traffic volume and the 

pavement thickness as covariates, i.e. two significant factors 

influencing the deterioration process, the values of the β 

parameter of the multi-stage exponential Markov model, were 

determined (Table IV). The values of the hazard rates θi for 

each condition state i were estimated using Eq. (23) in the 

Appendix. Statistically, the values of the unknown parameter 

β and their corresponding t-values infer that traffic volume has 

more impact on the deterioration speed than surface thickness, 

where a road section is in condition state 2. Once a road 

section is in condition state 3 and 4, however, surface 

thickness has more impact on the deterioration speed than 

traffic volume. 
TABLE IV 

VALUES OF THE PARAMETERS β  IN THE MULTI-STAGE EXPONENTIAL  

MARKOV MODEL 

Condition 

states 

Absolute 

βi,1 

Thicknes

s βi,2 

Traffic volume 

βi,3 

Hazard 

rate θi 

1 0.305 - - 0.305 

 (26.027)    

2 0.179 0.499 1.057 0.489 

 (2.655) (2.443) (2.417)  

3 - 2.646 - 0.894 

  (9.629)   

4 - 1.808 - 0.611 

  (6.542)   

Using Eq. (1) and the data collected for the 1’237 road 

sections with data on the roughness and cracking, the expected 

Markov transition probabilities were obtained (Table V). In 

addition, the distribution of condition states over time is drawn 

in Fig. 3. 
TABLE V 

MARKOV TRANSITION PROBABILITIES ESTIMATED USING THE MULTI-STAGE 

EXPONENTIAL MARKOV MODEL 

Condition 

states 

1 2 3 4 5 

1 0.737 0.205 0.043 0.013 0.002 

2 0 0.613 0.247 0.113 0.027 

3 0 0 0.409 0.423 0.168 

4 0 0 0 0.543 0.457 

5 0 0 0 0 1 
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Fig. 3 Distribution of condition states on 1’237 road sections using 

the multi-stage exponential Markov model 

 

 2) Initial parameter values for the exponential hidden 

Markov model (EHMM): The transition probabilities of the 

Markov model of the hidden process were determined using 

the EHMM model and the roughness and cracking data for all 

6’510 road sections. The initial condition state probabilities of 

all road sections were assumed to be ρ=(1,0,0,0,0)., i.e. all 

road sections were in a like new condition at the time of 

construction. The hazard rates and Markov transition 

probabilities determined using the data from 1’237 road 

sections were used as initial values. 

In order to use the transition probabilities of the observable 

process to model the hidden process, i.e. in the EHMM model, 

it was necessary to determine the initial values of the 

exponential rate parameter λi for each condition state i of the 

hidden process. These values are estimated by mapping the 

roughness measurement to each condition state used to 

describe the deterioration process, using the MLE approach 

(Eq. (11)). It is noted that the use of prior knowledge in the 

form of expert opinions can also be used to determine λi. 

Under such case, the values of λi are considered as constants. 

This approach was not used in this study. 

,

=1

1
=

n

i i e

en
η η∑  (11) 

Where, 
i

η is the observed value and 
i

η  is its mean. 

The rate parameter iλ  can then be defined as: 

1
=i

i

λ
η

 (12) 

For the specific problem investigated , the values of the rate 

parameters were determined to be iλ =(0.500, 0.200, 0.143, 

0.111, 0.077). 

C. Results of the EHMM 

Using the EHMM model, programed in R-language, and the 

initial values of the parameters of the model, the new values of 

the hazard rate were determined 
i

θ =(0.287, 0.344, 0.841, 

0.551)., i.e. the speed at which the CCS leaves each of the 

defined condition state. Substituting these new values into Eq. 

(1), the new Markov transition probabilities are obtained 

(Table VI). The distribution of residuals of our estimation, i.e. 

the value representing unexplained variation after fitting the 

data to regression model or in other words the difference 

between the observed value and the value determined using 

the regression model has a normal distribution, with a nice bell 

shape (Fig. 4). And their sum-around the mean is 0, indicating 

that the regression model is appropriate for the data [20]. 
 

TABLE VI 

MARKOV TRANSITION PROBABILITIES ESTIMATED USING THE EHMM BASED 

ON THE INFORMATION FROM ALL 6’510 ROAD SECTIONS 

Condition 

states 

1 2 3 4 5 

1 0.745 0.211 0.033 0.009 0.002 

2 0 0.709 0.192 0.082 0.017 

3 0 0 0.431 0.421 0.148 

4 0 0 0 0.576 0.424 

5 0 0 0 0 1 

 

 

The expected distribution of condition states over time, i.e. 

the mean value determined from the EHMM for all 6’510 road 

sections is almost linear from condition state 1 to 3, with 

almost equal amounts of time spent in each condition state 1 

and 2. However, there is a sharp decrease of pavement quality 

when its condition reaches to condition state 3. The average 

time for the road section to stay in condition state 3 and 4 is 

about 2 years. As a result, it takes on average 9.5 years for a 

typical road section to go from new to condition state 5 (Fig. 

5). This speed of deterioration is fast if compared to asphalt 

concrete road sections in developed countries like Japan or 

Switzerland where similar deterioration might be expected that 

take 25 years, but it more or less what is expected in Vietnam. 

This fast deterioration is most likely attributable to the lower 

quality of construction of the road sections, combined with the 

heavy annual traffic volume and prevalent soft sub-soil 

conditions [21]. 

 
Fig. 5 Distribution of condition states on 6’510 road section using the 

EHMM model 

 

Fig. 4 Distribution of residuals 
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In addition to the estimation of model on 6’510 data of road 

sections, we create another database consisting of 5’273 road 

sections (6’510-1’237), where having only information of 

roughness, while there is no information on cracking. The 

mean value of rate parameter is iλ =(0.312, 0.164, 0.121, 

0.091, 0.067), which results in the hazard rate 
i

θ =(0.288, 

0.355, 0.845, 0.586). The Markov transition probabilities 

matrix for the case of 5’273 road sections is shown in Table 

VII. 
TABLE VII 

MARKOV TRANSITION PROBABILITIES ESTIMATED USING THE EHMM BASED 

ON THE INFORMATION FROM ALL 5’273 ROAD SECTIONS 

Condition 

states 

1 2 3 4 5 

1 0.750 0.209 0.031 0.009 0.001 

2 0 0.701 0.197 0.083 0.019 

3 0 0 0.430 0.414 0.156 

4 0 0 0 0.557 0.443 

5 0 0 0 0 1 

 

Comparing the condition state distributions estimated using 

the multi-stage exponential Markov model on the 1’237 road 

sections and the EHMM model on the 5’273 and 6’510 road 

sections (Fig. 3, Fig. 6, and Fig. 5, respectively), it can be see 

that the deterioration predicted using the EHMM model is 

slightly longer than that predicted using the the multi-stage 

exponential hazard model. The two models also predict 

different distribution of condition states over time. In addition, 

deterioration curves representing estimation results of model 

on three databases are shown in Fig. 7, Where the EHMM 

predicts a faster initial deterioration and slower final 

deterioration than the multi-stage exponential hazard model. 

Although it is believed that the result produced using the 

EHMM is more accurate than that produced using the multi-

stage exponential hazard model more research, on a large data 

set is required to prove it. 

 

 
Fig. 7 Performance curves 

VI. CONCLUSION 

In this paper the potential use of the exponential hidden 

Markov model to predict the deterioration of road sections 

when incomplete inspection data is available is demonstrated. 

It was demonstrated for the case where the values of an overall 

performance indicator, built from two indicators, is required to 

determine the optimal intervention strategy, but only the 

complete values of one of the indicators is complete. Only an 

incomplete set is available for the other performance indicator. 

The evolution of the overall performance indicator is 

described as an exponential distribution, and is considered to 

be hidden. The hidden Markov model was then used to 

estimate the evolution over time of the overall performance 

indicator from the incomplete data. Data collected on the 

Vietnamese national road network was used in the case study.  

APPENDIX 

MATHEMATICAL FORMULATION OF THE MULTI-STAGE 

EXPONENTIAL MARKOV MODEL 

From condition data from two temporally 

consecutive inspections t  and 1t + , the Markov transition 

probability can be described as follows:  

[ ( 1) = | ( ) = ] = .ij
Prob g t j g t i π+  (13) 

Markov transition probability matrix can be written in the 

following form:  
11 1

= ,

0

I

II

π π

π

 
 

Π  
 
 

L

M O M

L

 (14) 

where  

=

0 ( , = 1, , )   

= 0 ( > )

= 1                       

ij

ij

I
ij

j i

i j I

when i j

π

π

π

≥

∑

L

 
(15) 

The time that an object is expected to stay in condition state 

i  is assumed to be a stochastic variable, with the probability 

density function ( )
i i

f ζ  and distribution function ( )
i i

F ζ . The 

conditional probability, to which condition state i  at time 
i

y  

reaches condition state 1i +  at 
i i

y + ∆ , can be expressed as 

hazard function ( )
i i i

y yλ ∆ :  

Fig. 6  Distribution of condition states on 5’273 road section using 

the EHMM model 
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( )
( ) = ,

( )

i i i
i i i

i i

f y y
y y

F y
λ

∆
∆

%
 (16) 

where ( ) =1 ( )
i i i i

F y F y−%  is referred as the survival function 

of the object in condition state i  during the time interval from 

= 0
i

y  to i
y . 

Since it is assumed that the deterioration process satisfies 

the Markov property and the hazard function is independent of 

the time instance 
i

y  the hazard rate is constant and positive:  

( ) = .
i i iyλ θ  (17) 

The time that an object is in condition state i  longer than 

the time instance 
i

y , is referred as the value of the survival 

function ( )
i i

F y%  and can be expressed in the exponential form 

as:  

( ) = exp( ).
i i i i

F y yθ−%  (18) 

When the i
y  equals z  of the inspection period i

z  between 

[ , 1)t t +  , the value of the survival function is identical to the 

transition probability 
iiπ , therefore:  

( | ) = { | }
i i i i

F t z t Prob t z tζ ζ ζ+ ≥ ≥ + ≥%  (19) 

                       

exp{ ( )}
= = exp( ),

exp( )

i
i

i

t z
z

t

θ
θ

θ

− +
−

−  
 

[ ( 1) = | ( ) = ] = exp( ).
i

Prob g t i g t i zθ+ − (20) 

By defining the subsequent conditional probability of 

condition state j  to i , with respect to the actual interval time 

z  of inspection, a general mathematical formula for 

estimating the Markov transition probability can be defined:  

( ) = [ ( 1) = | ( ) = ]ij
z Prob h t j h t iπ +  (21) 

                               

1

= = ,

= exp( ),
j k

m
k

k i m i k m k

z
θ

θ
θ θ

−

≠

−
−

∑∏
  
 

 

 

  

 where  
1

= ,

exp( )
k

m

k

m i k m k

z
θ

θ
θ θ

−

≠

−
−

∏  (21-a) 

                          
11

= = 1

= exp( ),
jk

m m
k

m i m km k m k

z
θ θ

θ
θ θ θ θ

−−

+

−
− −

∏ ∏
       

 

 

and  
1

=

1

= 1

= 1 ( = )

= 1 ( = )

k

m

m i m k

j

m

m k m k

k i

k j

θ

θ θ

θ

θ θ

−

−

+


 −


 −

∏

∏
 (21-b) 

( = 1, , 1; = 1, , ).i I j i I− +L L
 

 

Transition probability from condition state i  to absorbing 

condition state I  is eventually defined in the following 

equation:  
1

=

( ) = 1 ( ) ( = 1, , 1).
I

iI ij

j i

z z i Iπ π
−

− −∑ L  (22) 

The likelihood function of hazard rate i
θ  can be expressed 

in multiplicative form with characteristic variable x and 

unknown parameter 
'

i
β .  

= ( ) = .
'

i i i
x xθ θ β  (23) 

The remaining time of the object in condition state i  

( )
i

RMD x  is then given by the survival probability of 

condition state i  over continuous time.  

0
( ) = ( | ( ))i i i i iRMD x F y x dyθ

∞

∫ %  (24) 

               
0

1
= exp{ ( ) } = .i i i '

i

x y dy
x

θ
β

∞

−∫
 

 

The average time of the object in condition state  (> 1)j  

can be defined by the summation of the times over the range 

of condition states counted from = 1i :  

=1

1
( ) = ,

j

j '
i i

ET x
xβ

∑  (25) 

where j
ET  stands for average time of the object being in 

condition state j .  
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