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Abstract—The paper presents an optimization study based on 

genetic algorithms (GA’s) for a radio-frequency applicator used in 
heating dielectric band products. The weakly coupled electro-thermal 
problem is analyzed using 2D-FEM. The design variables in the 
optimization process are: the voltage of a supplementary “guard” 
electrode and six geometric parameters of the applicator. Two 
objective functions are used: temperature uniformity and total active 
power absorbed by the dielectric. Both mono-objective and multi-
objective formulations are implemented in GA optimization. 
 

Keywords—Dielectric heating, genetic algorithms, 
optimization, RF applicators. 

I. INTRODUCTION 
LECTROMAGNETIC fields are used for dielectric 
heating in industrial processes and domestic applications 

since the early 1960’s. Plastics, food, pharmaceutical, textile 
and wood industries are well established sectors in which 
operations such as welding, heating, tempering, defrosting, 
drying, baking, etc. are carried out using radio-frequency (RF) 
or microwave (MW) heating applicators [1]-[2]. 

The dielectric heating process represents a coupled electro-
thermal problem. According to the classification made by 
Kumbhar the coupling of electromagnetic and thermal fields is 
week, due to the large difference in the time constants of the 
two problems [3]. Thus in modeling and simulation 
experiments the two problems are treated sequentially, the 
results of the electric field analysis allowing the determination 
of the source term for the heat diffusion equation, and the 
analysis of the temperature distribution in the load enabling a 
re-evaluation of the physical constants (permittivity, loss 
angle, etc.) which in turn will modify the electric field 
distribution. 

Many applications require a certain heating pattern, most 
frequently a uniform temperature field being desired. 

Several techniques have been proposed as potential 
solutions for temperature field uniformization in the dielectric 
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load. These include moving the dielectric [1], surrounding the 
sample with additional layers that have adequate dielectric 
parameters [4], or using a pulsed feeding signal for the 
applicator, thus allowing for heat diffusion during the “off” 
intervals [5]. 

One direction of the researches concerning the 
determination of a configuration that produces a uniform 
temperature field, both in dielectrics and in semiconductors, is 
the usage of evolutionary computational techniques, namely 
genetic algorithms and evolutionary strategies [4], [7]. These 
stochastic algorithms, inspired from Darwin’s evolutionary 
theory, are suited for solving optimization problems with 
several design variables, with an objective function that 
cannot be expressed in compact analytical form and an 
optimum solution that cannot be anticipated [8]. The coupled 
electromagnetic-thermal problem encountered in RF or MW 
dielectric heating and the associated temperature 
uniformization problem fall in this category. 

In our previous studies several applicators for RF heating of 
lossy dielectrics were analyzed and the usual mechanisms for 
temperature uniformization, such as translation or rotation of 
the load and alternating the heating and cooling stages, were 
investigated [9], [10]. 

This paper addresses optimization based on genetic 
algorithms (GA’s) of a pulsed staggered through applicator 
used for heating lossy dielectric band products. The applicator 
has a supplementary guard electrode, compared to the 
classical configuration. Previous studies using optimization 
based on the hill-climbing method (a variant of the direct 
search method) showed the effect of the guard electrode in 
increasing the temperature uniformity inside the dielectric 
[11]. 

In this paper the finite element method (FEM) is used for 
the analysis of the electric field, and FEM combined with 
finite differences, for time discretization, are used for 
temperature determination. GA optimization is carried out 
using two objectives: maximization of the temperature 
uniformity and of the total absorbed power. The results agree 
with the ones obtained using the classical hill climbing 
method. 
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II. PHYSICAL MODEL OF THE APPLICATOR AND PROBLEM 
FORMULATION 

Dielectric heating of band products uses stray-field 
applicators (electrodes placed on one side of the load), mainly 
for thin products, due to the lower electric fields that they 
produce, and staggered through-field applicators (electrodes 
placed on both sides of the dielectric). Within the latter group 
a special category are pulsed staggered through applicators, 
with several pairs of electrodes placed at equal distances, 
forming a periodic structure along the dielectric band. 

The physical model of a pulsed staggered through RF 
applicator for band products is presented in Fig. 1. The word 
“pulsed” refers to the profile of the active power density in the 
dielectric band, with peak values in the region of the active 
electrodes and low values midway between neighbouring 
pairs of electrodes. The applicator has grounded metal shields 
(V=0). 

 
Fig. 1 Physical model of the applicator 

 
If the length of the applicator is much larger than the 

distance H between the shields and the distance D between 
successive pairs of electrodes, the analysis of the electric and 
thermal fields can be reduced to a 2D problem corresponding 
to the domain ],0[],0[ HD × . 

The cuasi-stationary electric field problem may be analyzed 
solving the Laplace equation: 

],0[,],0[,0)),(( HyDxyxV ∈∈=∇⋅∇ ε  (1) 
satisfied by the electric potential V(x,y), with the boundary 
conditions: 
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The analysis of the temperature evolution in time is realized 
by solving the equation of heat diffusion: 

0),()),,(( =+∇∇+
∂
∂

− yxptyxT
t
Tc vp λρ  (3) 

where ),,( tyxT  is the temperature, λ is the thermal 
conductivity, ρ –density and cp specific heat of the dielectric. 
The source term in (3) is represented by the active power 
density pv(x,y): 

2tgεπ2),( Efyxpv δ=  (4) 
where f is the frequency of the applied voltages V0 and V1, ε 
and tgδ are the dielectric permittivity and loss angle, 
respectively. All the physical constants of the dielectric are 
temperature dependent. 
In this paper the heating uniformity in the dielectric band is 
appreciated by the function: 
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where tmax is the heating time. 
Previous studies of this applicator showed that the 

optimization algorithm using only F1 as an objective function 
tends to give designs that have small levels of the total 
absorbed power. Thus a second indicator of the applicator 
performance was introduced, namely the total active power 
absorbed by the dielectric band: 

∫ ∫∫∫∫ ===
D g

vv v dytyxpdxdvpPF
0 0

max2 ),,( . (6) 

In the optimization process F1 must reach a minimum 
(ideally F1=1) and F2 must reach a maximum. 

III. OPTIMIZATION USING GENETIC ALGORITHM AND FEM 
GA’s represent a non-conventional stochastic optimization 

method that performs an iterative search for a global 
extremum of an objective function. The algorithm operates on 
a population of potential problem solutions using selection, 
crossover and mutation procedures. Each individual (potential 
solution) in the population is represented by a chromosome, 
which is a concatenation of genes, each gene encoding a 
design variable. The encoding can be binary (using bit strings) 
or real (using floating point representation of real numbers). 

The main stages of the fundamental GA are: 
- at t=0, an initial population, P0(t)=P(0) of Nind individuals 

is created in the allowed search space; 
- the objective function is evaluated for each individual; 
- a selection procedure based on the fitness of each 

chromosome is applied to P(t) resulting a subpopulation P’(t); 
the crossover and mutation procedures are applied to P’(t) 
leading to a modified subpopulation P”(t). The next 
generation is formed by the population )("))(')(( tPtPtP U− ; 

- the generational evolutive process continues until a 
stopping condition is reached. 

In this study the design variables used in the optimization of 
the applicator in Fig. 1 and their corresponding search 
intervals are: 

H – distance between the shields, H ]5.0,2.0[∈ m; 
D – distance between successive pairs of active electrodes, 

D ]1.0,03.0[∈ m; 
- d1 vertical distance between two electrodes of opposite 
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polarity, d1 ]1.0,015.0[∈ m; 
- d2 distance between the guard electrode and the dielectric 

band, d2 ]05.0,002.0[∈ m; 
- d width of the guard electrode , d ]01.0,001.0[∈ m; 
- dg width of the guard electrode, dg ]01.0,001.0[∈ m; 
- V1 potential of the guard electrode, V1 ]0,[ 0V−∈ V. 
The search space for the design variables ensures that each 

potential solution satisfies the condition Emax<15kV/cm, 
where Emax is the maximum value of the electric field, in order 
to avoid arching inside the applicator. 

At each iteration, an analysis of the electric field and of the 
temperature field, based on 2D FEM and using first order 
triangular elements is performed for each individual. 

The temperature dependence of the parameters ε and tgδ for 
the dielectric, considered to be high density white 
polyvinylchloride, were previously determined in the 
laboratory for the frequency f=13.56MHz of the generator. 
The range of values for the temperature T ]110,24[∈ °C were: 
εr ]34.4,81.3[∈  and tgδ ]14.0,07.0[∈  respectively. A linear 
interpolation was performed in order to determine the values 
of the physical constants for other temperatures than those 
used in the experiments. The temperature dependence of the 
parameters ρ, cp, λ for PVC and the surrounding air were 
taken from literature [12]. 

The duration of the heating process was considered to be 
tmax=60s and the time step used in solving the electro-thermal 
problem was 10s. 

The values of the other parameters used in numerical 
simulations were: V0=2000V, g=4mm, cpair=1003 J/(kg·K), 
ρair=1.204 kg/m3, cpPVC=934 J/(kg·K), ρPVC=1250 kg/m3, 
λair=0.027 W/(m·K), λPVC=0.164 W/(m·K), T0=24°C (ambient 
temperature).  

IV. RESULTS AND DISCUSSIONS 
The first experiments were carried out considering a 

simplified mono-objective formulation of the optimization 
problem. The minimization of F1 is performed by means of a 
genetic algorithm based on floating point chromosomal 
encoding. The generational algorithm works on Nind 
individuals that directly encode, as float values, all seven 
decision variables. The initial population is randomly 
generated within the permitted search space. The distances H, 
D, d1, d2, d and dg are forced to satisfy some supplementary 
constraints, i.e. they may encode only multiples of 1mm. 
These requirements allow an adequate implementation of the 
device and ensure the compatibility with the finite element 
method applied for the computation of the electric field. The 
stochastic universal sampling method is used in order to fill in 
the recombination pool, and the intermediary arithmetic 
crossover is applied in order to produce the offspring. Small 
random variations of the genetic material are generated using 
uniform mutation. The genetic operators are reconfigured in 
order to produce offspring that satisfy the imposed constraints. 
The resulted offspring and the individuals of the current 

population compete for survival according to a deterministic 
fitness based insertion. The experiments consider a population 
of 16 individuals, evolving over 10 generations, a 
recombination pool with 8 parents, the probability of 
crossover 0.7 and the probability of mutation 0.2. The best 
solution achieved during the evolutionary loop (line 1 in Table 
I) is characterized by a very good objective F1 value (close to 
the boundary), but an unsatisfactory corresponding F2 value, 
as the algorithm did not improve the performances of the 
individuals toward that objective direction. 

If the problem is formulated as a multi-objective 
optimization, the case of competitive objectives is addressed, 
meaning that each objective function has different optimal 
points. In that situation the problem admits an infinite set of 
Pareto-optimal solutions, each one indicating a different 
accepted compromise between the competitive objectives. A 
solution is Pareto-optimal if no improvement could be 
obtained subject to an objective direction without reducing the 
performances toward another objective direction.  

As a consequence, the optimization algorithm has to 
describe the entire Pareto-optimal front, by searching for 
points situated on the Pareto-optimal front and by preserving 
an adequate diversity of the population. If no information 
about the solutions is available, usually a posteriori 
aggregation between the decision mechanism and the search 
procedure is preferred. In that context, the optimization 
algorithm has to obtain a population able to describe the shape 
of the entire Pareto-optimal front, as a basis for a later 
selection. 

The advantages of the genetic procedures within the 
framework of multi-objective optimizations are mainly related 
to the fact that they work on a population of solutions. 
Consequently, one can expect that, during a single run, the 
algorithm will be able to find a set of solutions with an 
acceptable degree of diversity. In the case of single-point 
algorithms, different convenient solutions are difficult to 
obtain in sequential runs, because the diversity of the results 
cannot be simply controlled by setting appropriate values of 
the algorithm parameters. 

In order to solve the multi-objective optimization problem, 
two different strategies were considered. The first approach is 
based on a priori articulation between the decision mechanism 
and the search procedure. In fact, the objectives are 
aggregated into a single one using predefined weights and the 
resulted mono-objective optimization problem is solved by 
means of the genetic procedure described above. In that case, 
the population-based features of the genetic algorithm are not 
advantageously exploited. At each run, the algorithm could 
only search the solutions towards the directions indicated by 
the specified weights and the final population could only 
illustrate the shape of the Pareto-front inside a small region. If 
negative weights are considered, the algorithm will provide 
the maximization of the corresponding objective function and 
if positive weights are used, minimization is addressed. Thus a 
new objective function was evaluated using the relation 
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21 FFF βα += . (7) 

The performances of the algorithm were tested for three 
different sets of the weights {α,β}: A = {1, -0.01}, B = {1, -
0.001}, C = {1, -0.0001}. 

The best achieved solutions are indicated in Table I (lines 2, 
3 and 4, respectively). As expected, the best individual, 
subject to the minimization of F1, is closest to the solution 
achieved in case C, which uses the lowest absolute value of 
the F2 weight. Also, the maximum value of F2 is obtained in 
case A, when the maximization of F2 gets the highest 
significance. Fig. 2 and Fig.3 illustrate the performances of 
the individuals included in the final populations achieved for 
the mono-objective approach (subject to the minimization of 
F1) and for the multi-objective approach solved by means of 
objective aggregation. All cases are included in Fig. 2 and a 
zoom is provided in Fig. 3 (case A excluded). In Fig. 2 all 
individuals are represented with ‘.’and the best solutions with 
‘◄’, while in Fig. 3 the individuals are represented as follows: 
case B with“*’, case C with ‘.’, mono-objective approach with 
‘+’ and best solutions with ‘◄’. Because very important 
changes of the F2 weights were considered, the populations 
obtained in the last generation describe quite different regions 
of the Pareto-front, but not completely disjoint ones. This 
result indicates that it would be difficult to control the 
diversity of the best solutions obtained in successive runs, by 
means of the F2 weight. 

 
TABLE I 

EXPERIMENTAL RESULTS 

No Optimization 
method F1 F2 

Best individual D, H, d1, d2, d, 
dg, [m], V1 [V] 

1. Mono-objective 
approach  
- minimization 
of F1 

1.0002 1.545 0.0340, 0.3510, 0.0980, 
0.0350, 0.0030, 0.0020, 

- 499.817 

2. Multi-objective 
approach – 
aggregation, 
case A 

1.3085 72.32 0.0680, 0.3320, 0.0260, 
0.0030, 0.0090, 0.0040, 

- 1744.6 

3. Multi-objective 
approach – 
aggregation, 
case B 

1.0009 3.6511 0.0320, 0.2080 , 0.0720, 
0.0320, 0.0050, 0.0050, 

-1330 

4. Multi-objective 
approach – 
aggregation, 
case C 

1.0030 3.71 0.0430, 0.3320, 0.0770, 
0.0350, 0.0070, 0.0050, 

-518.3630 

5. Multi-objective 
approach – Deb 
algorithm, case 
A 

1.0021* 3.095* 0.0450, 0.4180, 0.0730, 
0.0360, 0.0010, 0.0050, 

-1356.4 

6. Multi-objective 
approach – Deb 
algorithm, case 
B 

1.00062* 3.046* 0.0460, 0.3210, 0.0960, 
0.0400, 0.0050, 0.0050, 

-1362.1 

 
The second multi-objective approach implements the Deb 

elitist algorithm for providing an efficient search within the 
admissible space. The optimization method considers an a 
posteriori articulation between the decision mechanism and 
the search procedure. The search algorithm considers a 

ranking based selection, which exploits the results of a Pareto-
dominance analysis. Within the context of the present multi-
objective optimization problem, an individual X dominates an 
individual Y if F1(X)<=F1(Y) and F2(X)>=F2(Y). One can 
consider that X strongly dominates Y if F1(X)<F1(Y) and 
F2(X)>F2(Y). The dominance is a partially ordered 
relationship. Considering two arbitrary individuals X and Y, 
one of the following cases could occur: i) X dominates Y; ii) 
Y dominates X; iii) X does not dominate Y and Y does not 
dominate X. 

The Deb algorithm selects the individuals by determining a 
sequence of non-dominated fronts of different orders. Firstly, 
it finds the best non-dominated front, including the individuals 
that are not dominated by any other chromosomes of the 
population and it selects this whole front. Then, it removes the 
best non-dominated individuals from the population and it 
finds the second non-dominated front, including the 
individuals that are not dominated by any other chromosomes 
of the reduced population and it selects this whole front. The 
procedure continues until the selection pool is filled. If the last 
non-dominated front is larger then the set of available places, 
the crowding sort procedure is applied. This procedure 
computes the crowding distances subject to the objective 
space. The crowding distance of individual X indicates the 
maximum radius of the sphere (having the center in X) which 
does not contain other individuals of the front. The crowding 
technique permits the survival of the solutions with large 
crowding distances, in order to preserve an adequate diversity 
of the population. Usually, this selection is applied for 
insertion. At each generation, an extended population of Nind 
parents and Nind offspring is temporarily created. The 
algorithm selects Nind individuals, that are copied into the 
recombination pool and produces a new set of Nind offspring, 
by means of crossover and mutation. 

Unfortunately, because the finite element method (called 
for field computation during the evaluation stage) is an 
important time-consumer, all experiments consider a small 
population, evolving during a reduced number of generations. 
As a consequence, it is expected that the final population will 
also include several inconvenient solutions, placed quite far 
from the Pareto optimal front. 

The algorithm is applied with flying or fixed goal values. 
These goal values delimit a preferred region for the 
individuals. That means the individuals placed inside the 
region dominate the individuals placed outside the region. 
Case A considers flying goals that are adjusted at each 
generation, based on the performances of the parents: the 
permitted region is 10% larger than the region occupied by the 
parents in the objective space. Case B works with fixed goals: 
[1 10] for F1 and [0 100] for F2, allowing the survival of 
offspring having significantly different performances than 
their parents.  

The best solution indicated in Table I (lines 5 and 6, 
respectively) represents the solution included in the final 
population having minimum F1 value, but the decision 
algorithm can also select another solution. For instance, for 
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case B, on can select an individual characterized by 
F1=1.0002, F2=3.2096 or F1=1.10122, F2=8.1505, etc. In a 
single run, the algorithm was able to produce quite diverse 
solutions (Fig. 3). The dispersion is better in case B, but 
because the algorithm works on a reduced set of individuals, 
during a reduced number of generations, some of the solutions 
could be dominated by individuals produced by other 
optimization approaches. However, as illustrated in Fig. 3, 
almost all the solutions produced by the Deb algorithm 
dominate those obtained with the aggregation based multi-
objective approach. 

 
 

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
-70

-60

-50

-40

-30

-20

-10

0

F1

-F
2

MO aggregation method versus minimisation of F1

 
Fig. 2 Final population plot within the objective space for 

aggregation-based multi-objective optimization 
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Fig. 3 Aggregation-based multi-objective optimization: the final 

population plot within the objective space – zoom (case A excluded) 

Fig. 4 and Fig. 5 plot the temperature profile in the 
dielectric after 60 s of field exposure for cases 2 and 3 in 
Table I, respectively, which achieve higher levels of absorbed 
power, and thus a higher heating rate. As may be seen, the 
temperature non-uniformity is rather high in case 2, but the 
higher value of V1 and the smaller distance between the active 
electrodes ensure an acceptable heating rate (mean(T)-
T0)=12.8°C/min.). The configuration obtained in case 3 
ensures a very good temperature uniformity, along the 
dielectric band, but the heating rate is small. 

It may be also observed that any modification of the design 

variables acts in opposite directions on the two objective 
functions, eg. smaller values of d1, d2 and D or higher values 
of V1 increase the level of absorbed power, but decrease the 
temperature uniformity, making the choice of the most 
acceptable design somewhat difficult. 

Fig. 6 presents the temperature profile in the dielectric load 
after 60s of field exposure for the design corresponding to line 
2 in Table I, but without a guard electrode. In this case 
F1=1.59, F2=25.88 W and the heating rate is 5.4°C/min. 
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Fig. 4 Temperature in the dielectric after 60 s heating 

corresponding to case 2 in Table I 
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Fig. 5 Temperature in the dielectric after 60 s heating 

corresponding to case 3 in Table I 
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Fig. 6 Temperature in the dielectric after 60 s heating 

corresponding to case 2 in Table I – configuration without guard 
electrode 

 

V. CONCLUSION 
The use of a guard electrode in a pulsed staggered through 

applicator for RF dielectric heating, whose position and 
voltage are adequately chosen, enhances the temperature 
uniformity in the load. 

GA optimization using real encoding of the design variables 
(six geometric parameters and the guard electrode voltage) 
leads to very good designs regarding the level of temperature 
uniformity ( a non-uniformity of 10-5 for the best solution). 
GA optimization using two objective functions, the 
temperature uniformity and the total active power absorbed by 
the dielectric, leads to very good solutions regarding the 
former criterion, but to pourer results regarding the power 
absorption and the heating rate. 

The solution proposed for temperature uniformization in 
band dielectric products is simple to implement and can 
indeed achieve an almost uniform heating. If the heating rate 
is an important criterion, then the solution of shifting the 
dielectric band must be taken into account. 
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