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Abstract—The automatic classification of non stationary signals 

is an important practical goal in several domains. An essential 
classification task is to allocate the incoming signal to a group 
associated with the kind of physical phenomena producing it. In this 
paper, we present a modular system composed by three blocs: 1) 
Representation, 2) Dimensionality reduction and 3) Classification. 
The originality of our work consists in the use of a new wavelet 
called "Ben wavelet" in the representation stage. For the 
dimensionality reduction, we propose a new algorithm based on the 
random projection and the principal component analysis. 
 

Keywords—Seismic signals, Ben Wavelet, Dimensionality 
reduction, Artificial neural networks, Classification.  

I. INTRODUCTION 
HE classification of non stationary signals is a difficult 
and much studied problem. On one hand, the non-

stationarity precludes classification in the time or frequency 
domain; on the other hand, nonparametric representations 
such as time-frequency or time-scale representations, while 
suited to non-stationary signals, have high dimension. In order 
to overcome these problems, several works have been 
developed, we note: [1], [2], [3]. 
 

In this paper, we present a modular system for the 
classification of seismic signals. Three blocs compose this 
system (see Fig. 1): Representation, Dimensionality 
reduction, Classification. The advantage of this system is the 
ability to profit from the existent evolutions of each module in 
any time. 
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FIGURE 1: SYSTEM DIAGRAM 
 
The remainder of this paper is structured as follows: first, 

we present the different representations for non-stationary 
signals and we propose a new complex wavelet. We then 
describe our algorithm for the part dimensionality reduction. 
The next paragraph is dedicated to classification by multilayer 
perceptron network. Finally, we discuss the results and the 
conclusions. 

II. NON STATIONARY SIGNALS REPRESENTATIONS 
The choice of the representation is an important parameter 

that it must be chosen carefully in order to increase the 
classification performances. It consists to define a 
representation space permitting the extraction of the pertinent 
information. 

For non-stationary signals, all previous works have 
highlighted that a representation space, where the power, the 
frequency and the time are .present, is an adequate space. We 
can replace the frequency parameter by the scale parameter 
that permits a multiresolution analysis of the signal. 

A. Time and Frequency Representations 
The time representation is the natural form to represent a 

signal deriving from a given phenomena. It is not necessary to 
use any mathematical tool to perform it and we can have some 
information about signal from it. However, it is not adapted 
for the automatic classification.  

The frequency representation is an alternative for the 
temporal representation of looking at a signal. It consists to 
represent the frequency content of the signal via the Fourier 
transform. In the non-stationary signals case, the frequency 
contents and all the statistic properties change with the time. 
Consequently, for the events with weak signal noise ratio, the 
classification based on the Fourier transform can give wrong 
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results. Moreover, this representation limits the generalization 
of the automatic classification system for other classes where 
frequency content is similar.  

B. Time-Frequency Representations 
In order to overcome the limits posed by the temporal and 

the frequency representations, the use of a time-frequency 
representation (TFR) provides localized information in time 
and frequency simultaneously. This representation gives a 
natural description for the non-stationary signals such as the 
seismic signals. Indeed, TFRs characterize signals over a 
time-frequency plane. They thus combine time-domain and 
frequency domain analyses to yield a potentially more 
revealing picture of the temporal localization of a signal's 
spectral components. 

Several TFRs exist in the literature and they can be divided 
in three types [4]: linear, quadratic and non-linear non-
quadratic representations. Moreover, when satisfying some 
properties, these representations can be divided in classes [5]. 
We cite the Cohen class ([6], [7]), the affine class ([4], [8], 
and [9]), the hyperbolic class ([10], [11]) and the power class 
([10], [12]). However, which is the better representation for 
seismic signals between them?. 

Because there is not any universal solution for all signals, 
we must necessary to do a choice based on the mathematical 
properties of the representation and its utility for a given 
signal. In the experimental part, we use the spectrogram to 
represent the seismic signals in the time-frequency space.  

C. Time-Scale Representations 
The techniques based on windowed Fourier transform 

represent inaccurate and inefficient methods of time-
frequency localization, as they impose a fix size of the 
analysis window.  

A direct way to overcome the problems with a fixed 
window size is to use a time-scale representation (TSR). As 
the TFRs, the TSRs can be divided in linear and quadratic 
representations. For the linear case, we find the wavelets and 
for the quadratic case, the affine class is the most important 
class of the covariant TFRs ([4], [8], and [9]).  

For the continuous wavelet transform, there are two popular 
functions: the Mexican hat wavelet and the Morlet wavelet 
[13]. The first is a real function and because it is the second 
derivative of the Gaussian function, it is most adapted to 
detect discontinuities in signals. The second wavelet is 
complex valued, enabling one to extract information about the 
amplitude and phase of the signal being analyzed [14]. 

For the non-stationary signals, in order to profit of the 
intrinsic properties of the Mexican hat wavelet and Morlet 
wavelet, we consider the new complex wavelet called the Ben 
wavelet [15] (see Fig. 2 for the time representation of the 
three wavelets): 
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FIGURE 2: REAL PART (SOLID LINES) AND IMAGINARY PART (DASHED LINES) 
OF THE MORLET W AVELET, THE MEXICAN HAT WAVELET AND THE 

BEN WAVELT RESPECTIVELY 
For representing the non-stationary signals in time-scale 

space, we use the scalogram of this wavelet. The scalogram is 
defined as the squared magnitude of the wavelet transform of 
the signal considered (see the Fig. 3 for the scalogram of an 
earthquake using the three wavelets).  

 
 

FIGURE 3: TIME REPRESENTATION OF AN EARTHQUAKE AND THE 
CORRESPONDING T SCALOGRAMS FOR MORLET, MEXICAN HAT AND BEN 

WAVELETS RESPECTIVELY 
 

III. DIMENSIONALITY REDUCTION 
The bidimensional representations of seismic signals by 

TFRs and TSRs give high dimensional images. For a system 
of automatic classification, in order to eliminate the problems 
due to high dimensional data such as the curse of 
dimensionality [16], the dimensionality stage must be 
integrated in the system.  

For the case of seismic signals, the dimension of the 
bidimensional representations is variable in the temporal axe 
because the length of time of the seismic events is variable. In 
the precedents works, in order to obtain images with the same 
length, the method used consists to clip the signal. But it is 
possible to loose the pertinent information in the ignored part. 
To overcome this problem, we use a new algorithm based on 
the combination of the random projection (RP) and principal 
component analysis (PCA). 
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A. Random Projection 
In RP, the original d-dimensional data is projected to a k-

dimensional (k<<d) subspace through the origin, using a 
random k×d matrix R whose columns have unit lengths. Using 
matrix notations where Xd×N is the original set of N d-
dimensional observations, 

Nddk
RP

Nk XRX ××× =                                                           (2) 
is the projection of the data onto a lower k-dimensional 
subspace. The key idea of random mapping arises from the 
Johnson-Lindenstrauss lemma [17]: If points in a vector space 
are projected onto a randomly selected subspace of suitable 
high dimension, then the distances between the points are 
approximately preserved. 

RP is computationally very simple: forming the random 
matrix R and projecting the d×N data matrix into k dimensions 
is of order O(dkN). 

B. Principal Component Analysis 
PCA is a widely used dimensionality reduction technique in 

data analysis. Its popularity comes from two important 
properties. First, it is the optimal (in terms of mean squared 
error) linear scheme for compressing a set of high dimensional 
vectors into a set of lower dimensional vectors and 
reconstructing ([18], [19]). Second, the model parameters can 
be computed directly from the data. Indeed, dimensionality 
reduction by PCA consists of projecting data onto a subspace 
spanned by the most important eigenvectors: 

Nd
T

kd
PCA

Nk XEX ××× =                                                           (3) 

where the T
kdE × is the transpose of the d×k matrix kdE ×  that 

contains the k eigenvectors corresponding to the k largest 
eigenvalues of the data covariance matrix. 

PCA computationally very expensive compared to RP. The 
computational complexity of estimating the PCA is 
O(d2N)+O(d3). 

C. Algorithm 
• Step1: Normalization of the TFR or TSR images, 
• Step2: Reduction of dimensionality of each image by 

random projection, 
• Step3: Calculus of the power mean for each 

frequency or scale level, 
• Step4: Feature extraction by principal component 

analysis. 
Because the PCA is computationally expensive, applying 

RP before PCA in this algorithm, permit to overcome the 
problems posed by the PCA. 

IV.  CLASSIFICATION 
Multilayer Perceptron networks (MLP) are artificial neural 

networks formed of cells simulating the low level functions of 
neurons. MLP networks are very useful for classification of 
input signals where the signals cannot be defined 
mathematically. Further, MLP networks have redundant 
networking and are very robust, providing a mathematical 

flexibility not available to algorithms based classifiers. 
Seismic signals can mathematically be defined as chaotic 

signals and therefore suited for artificial neural networks 
classifiers. MLP network responds to an input by producing 
an output. This is a result of the transmission of the input 
through the network of neurons linked by weights. The output 
of the MLP network is a combination of outputs of each of the 
neurons in the output stage of the MLP. 

Before the MLP can be used for classification, it has to be 
trained during the time when it learns of the input/output 
relationship for training vector set. During the training cycle, 
MLP is given sets of input patterns and corresponding target 
outputs representing the training vector.  

V. EXPERIMENTAL RESULTS 
In order to demonstrate the performances of our system, we 

consider two applications: the first concerns the discrimination 
between local earthquakes and chemical explosions and the 
second application concerns the classification of leaks in 
water distribution pipes. 

A. Classification of seismic signals 
To discriminate between local earthquakes and chemical 

explosions, we used a data set of 90 events (45 local 
earthquakes and 45 explosions) detected by the same station 
and transmitted to the geophysics laboratory of the National 
Center for Scientific and technical research in Morocco. These 
data are used to perform the training set (30 local earthquake 
and 30 explosions) and the test set (15 local earthquakes and 
15 explosions). 

For the artificial neural network, we used a MLP network 
with architecture of 20-7-2 (i.e. 20 input nodes, 7 hidden 

nodes and 2 output nodes). This network was trained with the 
scaled conjugate gradient algorithm. The learning rate, after a 
series of trial and error processes, was set to η=0.001.  

We obtain using this model in average [20]: 
 

TABLE II 
LEAK SIGNAL CLASSIFICATION SET UP 

Cycle Iron Pipe PVC Pipe 
Total 

Learning 13 21 34 
Testing 8 13 21 
Total 21 34 55 

TABLE I 
EXPERIMENTAL RESULTS 

Representation Percentage of 
correct classification 

Scalogram of Mexican  hat wavelet 82.50% 

Scalogram of Morlet wavelet 86.25% 

Scalogram of modified Mexican hat wavelet 88.75% 

Spectrogram 85.% 
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The network architecture was chosen after a series of trial 

and error processes. This means that the obtained 
performances are not optimal in classification. Indeed, for a 
network with a weak number of hidden layers, it is not 
possible to reach the optimal performances and for a network 
with high number of hidden layers, it has not performances in 

generalization. For this application, with architecture of 20-1-
2 or 20-50-2, we obtain bad results. For solving this problem, 
we can use incremental neural networks or to combine several 
systems with different architectures. 

B. Classification of leaks signals 
For leaks signals, we consider a data set of 34 signals for 

the training set and 21 for the test as explained in the table 2: 
 

 
And for the MLP architecture we use architecture of 30-5-2 
(mean 30 input nodes, 5 hidden nodes and 2 output nodes). 
The learning rate was set to η=0.001.  

We obtain using this model in average using the Ben 
wavelet in the representation stage [21]: 
 
 

We note the low recognition rate for plastic pipes compared 
to iron pipes. It can be due to following reasons: 

• leaks signal set for iron pipes is insufficient to build 
reliable pattern, 

• several leaks are happened in confusion zones,  
• Recognition rate is lower for plastic pipes; it is true, 

because of its characteristics concerning acoustic 
wave propagation: signal attenuation, low speed of 
sound, etc. 

• External noisy sources, generally leak seeker have to 
choose convenient time to listen to pipes.  

 

VI. CONCLUSION 
In this paper, we tested the performance of a new system 

well adapted to automatic discrimination of non-stationary 
signals and can be used for other similar situations. The 
principal advantage of this system is its modularity that 
permits to use different methods for each module.  

Two new results were proposed. The first is a new wavelet 
well adapted to oscillatory signals with possible 
discontinuities. The second is a new algorithm for 
dimensionality reduction for high dimensional signals with 
different lengths. 
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