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Abstract—The method described in this paper deals with the 

problems of T-wave detection in an ECG. Determining the position 
of a T-wave is complicated due to the low amplitude, the ambiguous 
and changing form of the complex. A wavelet transform approach 
handles these complications therefore a method based on this concept 
was developed.   In this way we developed a detection method that is 
able to detect T-waves with a sensitivity of 93% and a correct-
detection ratio of 93% even with a serious amount of baseline drift 
and noise. 
 

Keywords—ECG, Modulus Maxima Wavelet Transform, 
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I. INTRODUCTION 
HE heart is a hollow muscular organ which through a 
coordinated muscle contraction generates the force to 

circulate blood throughout the body. Each beat of our heart is 
triggered by an electrical impulse from special sinus node 
cells in the right upper heart chamber. The electrical impulse 
travels to other parts of the heart and causes the heart to 
contract. An ECG records these electrical signals. 

The T-wave that is the focus of this study is one of the five 
main waveforms in an electrocardiogram (ECG) and 
corresponds to the repolarization phase of the heartbeat [1]. In 
some pathological conditions the morphology of the T-wave 
may change from beat to beat, the simplest and most easily 
recognizable change being an amplitude change of the wave. 
Manual detection was used to provide a known reference for 
the exploration, so these ECG’s were first annotated 
completely by an experienced cardiologist. In the procedure of 
manual detection a cardiologist reads each ECG and marks the 
beginning and end of every T-wave [1].  
Wavelet analysis provides important information about the 
mathematical morphology of a signal. An important method 
based on wavelet analysis is the Wavelet Transform Modulus 
Maxima (WTMM)-method [2]. Using this method it is 
possible to describe the characteristic elements of a complex 
quasi-periodic signal.  This description can then be used to 
recognize these elements in new signals.  The WTMM-
formalism is also suitable for analyzing multi-dimensional 
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patterns, but the complexity increases fast when dimensions 
are added. A number of publications describe the application 
of the WTMM [3] [4] for characterizing and identifying the 
behaviour of heart signals as recorded on an 
electrocardiogram (ECG). A normal ECG can be decomposed 
in characteristic components, named the P, Q, R, S and T-
wave.  Each of these components has its own typical form and 
behaviour.  The relative shape and position of these 
components relate to the actual condition of the heart such as 
in a state of stress or pathology. 

In Section II, an algorithm based on the WTMM will be 
presented. This algorithm has proven to be very successful in 
detecting T-waves in an ECG-recording. Section III describes 
three parameters on which we are based when we are 
interested in ECG waves detection especially in T-wave 
detection. In Section VI, we explain the adjustments made to 
the algorithm so it can also detect the difficult T-waves. We 
discuss the WTMM method performance in section V. 
Finally, Section VI presents the conclusion. 

II. WAVELET TRANSFORM MODULUS MAXIMA METHOD 
Most  of  the  information  in  a  signal  is  carried  by  its  

irregular structures and its transient phenomena, called 
singularities.  A method that excels in finding and identifying 
these singularities is the Wavelet Transform; because of its 
capability of decomposing a signal into elementary building 
blocks that are well localized in both time and frequency.  
Because of this capability, the Wavelet Transform is capable 
of defining the local regularity of a signal. The  local  
regularity  of  a  function  is  often  measured  with  the  
Lipschitz exponents [5], also called the Hölder exponent. 
We define what we mean by a local maximum of the wavelet 
transform modulus [6]. 
Let ( )Wf x is the wavelet transform of a function f(x) 

•We call a local extremum any point x0 such that ( ( ))d Wf x
dx

has 

a zero crossing at x = x0, when x varies. 
•We call a modulus maximum; any point x0 such 
that 0( ) ( )Wf x Wf x< when x belongs to either a right or left 

neighbourhood of x0, and 0( ) ( )Wf x Wf x≤ when x belongs to 
the other side of the neighbourhood of x0. 
•We call maxima line, any connected curve in the scale space 
x along which all points are modulus maxima. 
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III. T-WAVE DETECTION 
The T-wave which corresponds to the ventricular 

repolarization of the heart has a remarkable behaviour in some 
situations.   This makes this phenomenon hard to detect.  The 
figure bellow illustrates some typical behaviour. 
The first situation is a typical T-wave.   The  wave  displayed  
here  has a  rather  large  amplitude,  so  it  will  not  be  hard  
to  detect,  however  this amplitude  can  decline  to  very  
small  magnitude.  In  this  case  the  standard methods  will  
have  a very  hard time  pointing  out  the  exact location of 
the T-wave.  The second situation has the same problems as 
the first but here the T-wave has inverted itself.  This makes 
detection hard for some methods that do not use the modulus 
of the signal.  In the third situation, we present an ascending 
or descending T- wave. Another problem that can occur with 
all these situations is a bad positioning of the T-wave.   
Sometimes  it  is  situated  to  the  close  to  the  QRS-complex  
or  the P-wave.  This makes it difficult to separate these two 
complexes. 

                

               
Fig. 1 various T-waves 

 

A. Choice and implementation of the mother wavelet: 
The mother wavelet used in this study is the first derivative 

of the Gaussian function. Other possibilities, like the second 
derivative (Mexican Hat) were examined but did not offer any 
advantages. In most studies concerning ECG detection [3][4], 
the wavelet transform is implemented using a composition of 
a low pass and a high pass filter.  

This study however, used an implementation based on the 
continuous wavelet transform of a discrete-time signal, as 
discussed in the article of Provaznik [7]. 

B. Onset/Offset detection: 
The T-wave is hard to detect in some cases because of its 

low amplitude and its changeable state. By using the WTMM, 
it is possible to detect certain characteristic points in the 
wavelet transform. These points can then be used to develop 
decision rules that help detect the T-wave. Applying this 
method to detect onsets gives certain problems. The biggest 
problem is the influence of the QRS-complex.  

When looking at a wavelet transform of a PQRST-complex 
at higher scales it is obvious that the effect of the QRS-
complex has not sufficiently faded in the environment of the 
T-wave onset. This makes searching for characteristic points 
concerning the onset very hard. Using low scale transforms 
does not really improve the reliability, as the amplitude of the 
onset is not sufficiently larger than the amplitude of frequently 
appearing noise. 
The problem with the QRS-complex does not concern the 
offset and therefore it is detectable with a good reliability 
when there is not a high amount of noise. The onset/offset are 
normally characterised by a modulus maximum that occurs 
before/after the T-wave that exceeds a certain threshold. 

C. Choice of scales 
The use of non-dyadic scales can be useful for detecting 

low amplitude complexes. In this paper we use scale 10 for T-
wave detection. This scale appeared to give better results that 
23 or 24. This choice was made because 23was too sensitive to 
noise. 24 on the other hand, did not divide the complexes in 
the transformation and therefore restricts good detection.  

IV. ADJUSTMENTS OF THE WTMM FOR T-WAVE DETECTION 
The method described in the previous section and in the 

article by Li et al. [3] is also suitable for detecting T-waves 
after making some adjustments. 
A normal T-wave and its transform clearly display a modulus 
maxima pair with opposite signs. The T-wave is found at the 
zero-crossing between the two modulus maxima.    
 Figure 3 shows an alternative T-waves, it indicates that not 
all T-waves can be detected by searching for a modulus 
maxima pair. In some cases, there is an only one modulus 
maximum available. By using the method described below, it 
is possible to detect most T-wave variations.  
    Although this method has a lot in common with the 
standard WTMM method, the modifications will be described 
step by step:  
 
 
 
 
 
 
 
 
 

 
 

Fig. 2 Adjustments made for T-wave detection 

The T-wave’s energy is mainly preserved between the 
scales 23 and 24. Therefore it was more appropriate to turn 
away from the dyadic scales and to choose the scale 10 for the 
WT. The next step consists of the search for modulus maxima. 
At scale 10 we analyzer a signal and search for modulus 
maxima larger than a threshold Tλ .  

(a) positive T-wave (b) negative T-wave

(c) ascending T-wave    (d) biphasic T-wave 

Choice of scale 10 

Modulus maxima larger than 
a threshold Tλ  

The location & 
 Character of the T-wave 
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This threshold is determined by using the root mean square 
(RMS) of the signal between two R-peaks. J.P Martinez [4] 
found that 0.25T RMSλ = is suitable for detecting most of the 
T-peaks. When there are two or more modulus maxima with 
the same sign, the largest one is selected. After finding one or 
more modulus maxima, it is possible to determine the location 
and character of the T-wave. The first situation occurs when 
there is a modulus maxima pair with opposite signs. This 
indicates a small hill when the signs are +/- and a small 
inverted hill when the signs are -/+. When there is only one 
modulus maxima present, the + sign indicates a T-wave that 
consists only in a ascending. When the sign is -, we see a T-
wave formed by an descending. 

V. THE WTMM METHOD PERFORMANCE 
 We will discuss certain parts of signals chosen from MIT-

BIH Arrhythmia Database that will regularly lead to failure of 
a correct detection due to frequently appearing difficulties in 
T-wave detection. 
1) Low amplitude: Most methods require frequently adapted 

thresholds in order to detect a low amplitude T-wave. In 
most cases these thresholds are used to distinguish the 
wave from the noise. Figure 3 shows the capability of the 
WTMM based method. By using scales that contain most 
part of the energy of the T-wave it is possible to acquire a 
precise detection. 
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Fig. 3 Low amplitude (220.dat) 

 
2) Noise: The WTMM approach used in this paper uses the 

Gaussian wavelet as mother wavelet. A large advantage 
of this choice is the “smoothing” property this wavelet 
offers. The higher the scale, the smoother the 
transformation. This results in a method that is very 
robust to noise.  
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Fig. 4 Noise (122.dat) 

3) Baseline drift: The WTMM-based method only considers 
variations of the signal that has a certain resemblance 
with the T-wave. Therefore, it is insensitive to baseline 
drift. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
800

850

900

950

1000

1050

1100

1150

--
--
--
 

--
--
--
 

--
--
--
 

--
--
--
 

<-
--
-T

 

<-
--
-T

 

<-
--
-T

 

<-
--
-T

 

--
--
--
 

--
--
--
 

--
--
--
 --

--
--
 

Time (s)

A
m

pl
itu

de
 (µ

v)

 
Fig. 5 Baseline drift (121.dat) 

 
4) Ambiguous waves: As most standard methods, the 

WTMM-based method uses certain decision rules to 
distinguish different kinds of T-waves. The difference 
with the other methods lies in the fact that the rules are 
applied to the transformation instead of to the pure signal. 
The transformation gives a clearer view of the signals 
information and therefore it is better suited for decision 
rules. 
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Fig. 6 Ambiguous waves (214.dat) 

 
The datasets are signals coming from the MIT-BIH 

Arrhythmia Database [8]. However not every long signal 
contains large amounts of useful information.  When there is 
no change in a wave through-out the whole signal, it is not 
useful to analyse every peak.  Therefore, only the parts which 
define the ECG will be discussed. The performance of the 
methods will be tested by using several cases with certain 
difficulties. Every case will be described first; next the 
performance will be measured by certain parameters: 

 
• Number of True Positive detections (TP) 
• Number of False Positive detections (FP) 
• Number of True Negative detections (TN) 
• Number of False Negative detections (FN) 
• Total number of peaks (Total Peak) 
• Percentage of detected T-waves (Se) 
• Percentage of detected non visible T-waves (Sp) 
• Ratio of correct detections (RCD) 
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1) Case 1: This case contains a signal with a clear T-wave.   
The noise consists of some small artifacts.  The behaviour 
is rather unstable as the signal tends to climb for a while 
and to descend at the end. This  short  signal  offers  easy  
to  detect  T-waves  at  the  start  (first  10 beats).  At the 
end of the signal, the alternative method is confused 
because of the climb and therefore detects some incorrect 
T-waves. The WTMM based method only misses one and 
therefore is better suited for this kind of unstable signal. 
 

 

 

 

 

 

 
 

Fig. 7 case 1 performance  

2) In the last hour, the T-wave starts manifesting itself and 
becomes positive.     
There is also some high frequency noise between every 
two consecutive R-peaks. As most of the detection 
methods [9], the alternative method searches for a T-wave 
that consists in an ascending and a descending.  Therefore 
this method was unable to detect any wave in the first 
part.  The second part was more suited and so the method 
proclaimed a high detection ratio.  The WTMM- based  
method  has  no  problem  with  detecting  the  T-waves  
in  the  first  or second part. 

 

 

 

 

 

 
 
 

Fig. 8 case 2 performance 

 

 

 

3) Case 3: This case offers a signal with a clear T-wave and 
no noise. This is the most successful case that was tested 
because of the pureness of this case.  The part that is used 
for analysis only has some small artifacts that are not able 
to disrupt the WTMM-based method.  The alternative 
method is more sensitive to these artifacts, but is still very 
reliable. 

 

 

 

 

 

 
 

Fig. 9 case 3 performance 

4) Case 4: The last case consists of a signal with a high 
amplitude S-wave and an ambiguous T-wave.  The noise 
is limited to some high frequency disturbance. This  case  
offers  a  T-wave  that  manifests  itself  on  an  other  
wave, which confuses the alternative method and 
therefore it sometimes registers.  
 
 

 

 

 

 

 
 
 

Fig. 9 case 4 performance 

VI. CONCLUSION 
We have presented and validated in this paper an ECG-

detection method which detects T-waves using the WTMM 
approach and a collection of decision rules. The method has 
been validated using several ECG-recordings with a wide 
variety of T-wave morphologies from MIT-BIH arrhythmia 
database. Some of these cases contained easily detectable T-
waves, other were more complex due to the amount of noise 
or baseline-drift. Cases with a simple T-wave and a limited 
amount of noise result in errorless detection.  

None of the more complex cases result in a correct-
detection ratio below 93% or sensitivity under 93%, except for 
the last case that is specifically designed to test the 
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weaknesses of this method. These results have been compared 
with one conventional derivative-based approach and have 
shown that the developed method provides a reliable and 
accurate detection of the T-wave complex, which is able to 
outperform the reference algorithm and has a fault-detection 
percentage well within the acceptable range.  

The superior performance is a result of the WTMM 
approach, which is able to decrease the effect of noise without 
reducing the T-wave information. It is robust to measurement 
noise, to T-wave morphological variations and to baseline 
wander. This WTMM based method also gives the 
opportunity to study low amplitude complexes by using 
different scales, and therefore, it is suited for T-wave 
detection. 
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