
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3703

Efficient Implementation of Serial and Parallel
Support Vector Machine Training with a

Multi-Parameter Kernel for Large-Scale Data
Mining

Tatjana Eitrich, Bruno Lang

Abstract— This work deals with aspects of support vector learning
for large-scale data mining tasks. Based on a decomposition algorithm
that can be run in serial and parallel mode we introduce a data
transformation that allows for the usage of an expensive generalized
kernel without additional costs. In order to speed up the decompo-
sition algorithm we analyze the problem of working set selection
for large data sets and analyze the influence of the working set
sizes onto the scalability of the parallel decomposition scheme. Our
modifications and settings lead to improvement of support vector
learning performance and thus allow using extensive parameter search
methods to optimize classification accuracy.

Keywords— Support Vector Machines, Shared Memory Parallel
Computing, Large Data

I. INTRODUCTION

DURING the last years data mining tasks have shifted
from small data sets to large-scale problems with a lot of

noise in the data. At the same time industry requires complex
models with well tuned parameters and promising results for
test data.

Support vector machines (SVMs) for classification and
regression are powerful methods of machine learning. They
have been widely studied and applied to hard, but mostly
small classification problems. These so-called kernel methods
have good generalization properties, which means that the
classification function works well on data that have not been
used during the training. However, SVM training methods
suffer from large and noisy data. Important SVM research
issues include

• applicability [1],
• generalization abilities [2],
• convergence properties [3],
• parameter selection methods [4],
• interpretational aspects [5],

and many more.
In addition to these fundamental issues, the ability to handle

problems of ever increasing size is of vital interest because
in many applications the amount of data grows exponentially
[6]. For these problems, SVM training time becomes a major

T. Eitrich is with the Central Institute for Applied Mathematics, Research
Centre Juelich, Germany (e-mail: t.eitrich@fz-juelich.de).

B. Lang is with the Applied Computer Science and Scientific Computing
Group, Department of Mathematics, University of Wuppertal, Germany (e-
mail: lang@math.uni-wuppertal.de).

concern, particularly when applying parameter selection meth-
ods that force the user to perform dozens or hundreds of SVM
trainings. Due to extreme training times complex SVM models
and intelligent parameter tuning have been employed only
rarely, so that users often ended up with suboptimal classifiers
and started to use other parameter free data mining methods
with worse generalization properties.

For these reasons, research on efficient and fast SVM
classification methods has been intensified during the last
years, leading to approaches for

• fast serial training [7],
• efficient parameter selection methods [8],
• fast multi-class learning [9],
• parallel parameter tuning [10],
• parallel validation methods [11], and
• parallel training methods [12].
Issues of parallel support vector machines are comparatively

new. They emerged during the last few years. Really parallel
implementations are rare since most of the parallel algorithms
realize simple farming jobs like parallel cross validation tasks.
Farming reduces overall running time but is not able to
improve the performance of SVM training itself in general.

In our work we now try to combine aspects of efficient
SVM training techniques with parallelization. Based on a
decomposition algorithm that can be run in serial and parallel
mode we discuss modifications of the program flow that lead
to significantly faster SVM training for large data sets, both
in serial and parallel mode.

The paper is organized as follows. In Sect. II we review
basics of binary SVM classification. In Sect. III we describe
our serial and parallel SVM algorithm. Our computing system
as well as the data set used for our experiments are introduced
in Sect. IV. In Sect. V we discuss the influence of kernel
computations onto training time and introduce our approach of
data transformation for efficient usage of the powerful multi-
parameter Gaussian kernel. The issue of optimal working set
selection for SVM training is discussed in Sect. VI.

II. SUPPORT VECTOR MACHINES

Support vector learning [13] is a well known and reliable
data mining method. We consider the problem of supervised
binary classification which means to use a training data set

{(xi, yi) ∈ n × {−1, 1}, i = 1, . . . , l}



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3704

to learn a binary decision function

h(x) = sgn (f(x)) ,

where we define the signum function in a modified form as

sgn(a) =

{
+1, a ≥ 0

−1, a < 0
(a ∈ ).

The real-valued nonlinear classification function f is defined
as [14]

f(x) =

l∑
i=1

yiαiK(xi, x) + b. (1)

The kernel function K [15], which can be interpreted as a
local measure of similarity between training points, is used to
avoid a so-called feature mapping of the data and to construct a
nonlinear classifier based on a simple linear learning approach.
In this work we analyze the so-called Gaussian kernel, which
is very popular. A definition of this kernel will be given in
Sect. V.

The problem specific classification parameters α ∈ l and
b ∈ of (1) are given implicitly through the training data and
some SVM specific learning parameters [16]. These learning
parameters, e.g. the kernel type and its parameter(s), have
to be set before training and can be adjusted via parameter
optimization [10].

It is well known [14] that the optimal vector α∗ can be
computed via the solution of the dual quadratic program (QP)

min
∈ l

g(α) :=
1

2
αT Hα −

l∑
i=1

αi (2)

with

H ∈ l×l , Hij = yiK(xi, xj)yj (1 ≤ i, j ≤ l),

constrained to

αT y = 0, 0 ≤ αi ≤ C (i = 1, . . . , l).

The parameter C > 0 is important for a natural weighting
between the competing goals of training error minimization
and generalization. For details we refer to the work [14] and
the tutorial [17].

The computation of the threshold b∗ is based on the so-
called Karush–Kuhn–Tucker conditions [14] for the primal
form of the problem (2). Given the unique and global dual
solution α∗ (the vector of Lagrange multipliers) it is easy to
show that

0 = α∗

i · [yi · f(xi) + ξ∗i − 1] , 0 = ξ∗i · (α∗

i − C)

hold for all i = 1, . . . , l. The slack vector ξ ∈ l
+ , originally

defined in the primal problem, results from the soft margin
approach of SVM learning [14] which is used in most of the
available software packages to allow for training errors [18]–
[20]. Since we solve the dual problem, the slack values are
unknown. Therefore we have to use the so called nonbound
support vectors to compute b∗. A nonbound support vector
xi is characterized by α∗

i ∈ (0, C). See [14] for detailed

information on slack variables, support vectors and bounds.
Using (1) we derive

0 = α∗

i

⎡
⎣yi

⎛
⎝ l∑

j=1

α∗

jyjK(xi, xj) + b∗

⎞
⎠ + ξi − 1

⎤
⎦ .

for all training points and thus

b∗ = yi −
l∑

j=1

α∗

jyjK(xi, xj)

for all nonbound support vectors xi.
Note that (2) is a quadratic optimization problem with a

dense matrix H . For large data the solution of this problem—
the so called training stage—is very expensive. In the fol-
lowing section we shortly describe our efficient SVM training
method.

III. EFFICIENT SERIAL AND PARALLEL SVM TRAINING

This work is based on the SVM training method described
in [21]. We briefly review the most important features of the
serial and parallel implementations.

We are working with the well known decomposition scheme
[22] for the solution of (2). This scheme is summarized in
Fig. 1. It repeatedly performs the following four steps.

1) Select l̂ “active” variables from the l free variables
αi, the so-called working set. In our implementation
the working set is made up from points violating the
Karush–Kuhr–Tucker conditions; see [16] for more de-
tails.

2) Restrict the optimization in (2) to the active variables
and fix the remaining ones. Prepare the submatrix
Hactive ∈ l̂×l̂ for the restricted problem and the
submatrix Hmixed ∈ (l−l̂)×l̂ for the stopping criterion.

3) Check for convergence. The solution of (2) is found if
step 1 yields an empty working set.

4) Solve the restricted problem.

create new
working set solve new QP

subproblem

update kernel matrices
for QP problem and
stopping criterion

start SVM
training

stop SVM
training

check
convergence

Fig. 1. Decomposition scheme for SVM training.

The idea of splitting the quadratic problem into active and
inactive parts iteratively is not new [23]. One feature that
makes this approach particularly attractive for SVM training
is the flexibility concerning the size l̂. Large values of l̂ place
high demands on memory because l̂ columns of H (i.e., l̂ · l



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3705

entries) must be stored. In the extreme case l̂ = l, the whole
matrix H is required. On the other hand, choosing l̂ < l may
lead to kernel values being re-computed several times when a
variable αi switches between the “inactive” and “active” states.
Therefore most SVM software packages avoid recomputation
of the columns of H . They implement caching of kernel values
to speed up training time. For example, [20] uses the well-
known least-recently-used cache strategy. Unfortunately, the
caching strategies are difficult and system dependent.

For complex learning models on large data a huge amount
of time is consumed by the kernel function evaluations in the
decomposition step, where the kernel matrices are updated in
every iteration. It is known [21] that training time is a function
of the working set size l̂ that acts as a mediator between the
alternating work in the outer decomposition loop and the inner
solver. Large working sets slow down the solution of each
quadratic subproblem, whereas small working sets lead to a
large number of decomposition iterations until convergence is
reached, which means that a lot of kernel function evaluations
take place.

The SVM training time also depends on the efficiency of the
algorithm that solves the subproblems. We use the generalized
variable projection method introduced in [24] as an inner
solver.

Usually small working sets have been used to avoid ex-
pensive subproblems [25]. However, our powerful computing
systems now allow for very large working sets. Thus we have
to determine the optimal value for l̂ that minimizes the sum
of times for inner solver computations and decomposition
workload.

One way to improve the performance of SVM training is
parallelization. Our parallel SVM training method does not
implement a simple farming approach, but a real parallel flow.
It is based on the observation [21] that typically more than
90% of the overall time is spent in the kernel evaluations and
in the matrix–vector and vector–vector operations of the inner
solver; for very large data sets this fraction is even higher.
We decided to address these computational bottlenecks with a
shared memory parallelization, using OpenMP work sharing
for the kernel computations and relying on the parallelized
numerical linear algebra kernels available in the ESSLSMP
library for the compute-intensive parts of the inner solver.
Fig. 2 shows the parallel parts (shaded) of the decomposition
scheme.

However, in order to achieve optimum performance, the
parallelization should be complemented with techniques that
reduce the learning time also in the serial case. In Sect. V and
VI we will discuss our approaches for faster SVM training
and their results.

IV. CHARACTERISTICS OF DATA AND COMPUTING

SYSTEM

For all tests reported here we used the so-called adult data
set from [26], which is the data set with the largest number of
training instances in the database. The task for this set is to
predict whether someone’s income exceeds a certain threshold.
Thus we have a binary classification problem. The number

create new
working set solve new QP

subproblem

update kernel matrices
for QP problem and
stopping criterion

start SVM
training

stop SVM
training

check
convergence

ESSLSMP

OpenMP

Fig. 2. Extension of the serial algorithm for parallel SVM training.

of training points is 32561. Out of the 14 attributes, 6 are
continuous, and 8 are discrete. There are plenty of missing
values for the discrete attributes. These were replaced with
either the value that occurred most frequently for the particular
attribute or with a new value, if the number of missing values
for the attribute was very high.

The adult data set was also used in [27], but only for 16000
training points. There, a new parallel MPI based SVM learning
method for distributed memory systems has been described.
We used nearly all points for the training, i.e., 30000.

Our serial and parallel experiments were made on the
Juelich Multi Processor (JUMP) at Research Centre Juelich
[28]. JUMP is a distributed shared memory parallel computer
consisting of 41 frames (nodes). Each node contains 32 IBM
Power4+ processors running at 1.7 GHz, and 128 GB shared
main memory. All in all the 1312 processors have an aggregate
peak performance of 8.9 TFlop/s. We have tested on a single
node of JUMP. Test results are given in the following two
sections.

V. EFFICIENT KERNEL EVALUATIONS

As we discussed in Sect. I the training of support vector
machines on large data is a challenging problem [25], [29].
A vast amount of time is always consumed by the expensive
kernel function evaluations [21], no matter which kernel type
is used.

In this section we present our new approach of efficient
kernel evaluations that includes the usage of a multi-parameter
kernel.

The usual Gaussian kernel [30]

K(x, z) = exp

(
−‖x− z‖2

2σ2

)
, (3)

which is used in many data analysis tools, includes a single
division operation for each kernel function evaluation. σ > 0
is the constant width of the kernel. This parameter is central
for SVM learning with the Gaussian kernel. It has to be chosen
carefully to avoid overfitting effects.

The division operation in (3) can be replaced with a less
expensive multiplication by setting

σ̃ =
1

2 · σ2



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3706

once already before SVM training and evaluating the kernel
as

K(x, z) = exp
(−σ̃‖x − z‖2

)
. (4)

This simple modification is not possible for the generalized,
multi-parameter Gaussian kernel [16]

KM(x, z) = exp

(
−

n∑
k=1

(xk − zk)2

2σ2
k

)
. (5)

This kernel assigns a different width σk ≥ 0 for each feature
k (k = 1, . . . , n). For unbalanced data sets this kernel can
lead to significantly better SVMs than the standard kernel;
cf. [10]. Unfortunately the n divisions make this kernel rather
expensive and thus responsible for long SVM training times.
Therefore it is used only rarely [10].

It is possible to avoid all parameter-dependent operations
inside the kernel function. To this end we first rewrite the
kernel (3) as

K(x, z) = exp

(
−

n∑
k=1

(
xk − zk√

2σ

)2
)

.

Thus, an initial scaling of the training points according to

t(x) :=
x√
2σ

(6)

allows the standard kernel to be evaluated as

K(x, z) = exp
(−‖t(x) − t(z)‖2

)
. (7)

Similarly, the scaling

t̃(x) :=

(
x1√
2σ1

, . . . ,
xn√
2σn

)
, (8)

leads to

KM(x, z) = exp
(−‖t̃(x) − t̃(z)‖2

)
. (9)

Note that in this formulation the generalized and the standard
kernel differ only in the initial transformation of the data. The
transformation step has to be done before SVM training and
is independent of l̂ and other settings of the decomposition
method.

We will now assess the savings induced by our approach,
first with respect to the number of divisions and then to overall
learning time.

For a training set with l instances and n attributes the
number of divisions in the initial transformation is simply
given by the number of entries in the original data matrix,
that is,

dT = l · n.

For our implementation of the decomposition algorithm the
number of divisions in the standard kernel function evaluations
is given by

dE = D · l · l̂,
where D is the number of decomposition steps and l̂ is the
working set size. For the generalized kernel, dE is higher by
a factor of n.

Since our approach replaces the divisions of the kernel
evaluations with those of the data transformation, the overall
number of divisions is reduced by a factor of dE/dT . In Table
I we show these ratios for the adult data set. We computed the
number dE for the (standard) kernel evaluations and different
working set sizes. Note that for all tests we have

dT = 30000 · 14 = 420000.

TABLE I

RATIO OF THE NUMBERS OF DIVISIONS IN THE APPROACHES (3) AND (7).

l̂ D dE dE/dT

5000 37 5550 · 106 13200

10000 16 4800 · 106 11400

15000 10 4500 · 106 10700

20000 5 3000 · 106 7100

25000 2 1500 · 106 3600

30000 1 900 · 106 2100

The data indicate that the savings are highest for small
values of l̂. However, a large factor does not automatically
minimize the overall time. We will analyze overall running
time for different working set sizes in the next section.

Now we consider the execution time for different ways
of kernel computations. We measure the time that is spent
to transform the data as well as the time used to solve
the quadratic optimization problem, i.e., the ensuing training,
which includes the kernel computations. We consider the
following five variants for kernel evaluation:

K1 : standard kernel (3) with one division,
K2 : standard kernel (4) with one multiplication,
K3 : multi-parameter kernel (5) with n divisions,
K4 : standard kernel (7) with pre-scaling, and
K5 : multi-parameter kernel (9) with pre-scaling.

In Table II we show the training time (in seconds) of our
support vector machine for these kernels. We performed the
tests for a working set size of 10000 to show the amount of
time that can be saved. Since the number of kernel evaluations
depends on the working set size, too, the effects can vary. We
will analyze the influence of the working set size onto the
overall training time in the next section.

TABLE II

INFLUENCE OF THE KERNEL EVALUATION METHOD ONTO THE OVERALL

TRAINING TIME.

pre-scaling training
K1 – 1529.2
K2 – 1452.7
K3 – 2412.3
K4 0.01 1122.3
K5 0.02 1122.3

From Table II we conclude the following:

• Replacing the division with a multiplication gives only a
minor improvement on our machine [28].

• For our example the initial data transformation reduces
the overall training time by 30% for the standard kernel
and by more than 50% for the generalized kernel.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3707

• The preceding discussion suggests that the training time
results for K4 and K5 should be equal, which indeed is
true. This means that the multi-parameter kernel essen-
tially comes for free—except for the fact that it involves
more learning parameters, which must be set before the
training.

• The time for the initial transformation is negligible. It
might be reduced even further with an easy-to-implement
parallel version.

VI. OPTIMAL WORKING SET SIZE

In this section we analyze the influence of the working set
size l̂ on the number of decomposition steps, D, the number
of kernel evaluations, E, and the training time. In [21] we
observed that for a data set with 10000 points and working
set sizes between 1000 and 7000 points there were nearly
no differences between the training times. The situation is
different for the much larger adult data set with its 30000
points.

In Table III we summarize the test results we achieved for
serial SVM training. All tests were performed with the kernel
(9), which is the most efficient one. The training times do
not include the transformation times, which are negligible and
do not depend on l̂. Computation times are given in seconds
as before. In addition to medium-sized working sets we also
consider very small and extremely large working sets.

TABLE III

NUMBER OF DECOMPOSITION STEPS AND OF KERNEL EVALUATIONS, AND

TRAINING TIMES FOR DIFFERENT WORKING SET SIZES.

l̂ D E time
50 5831 8.747 · 109 1869.3

100 2828 8.484 · 109 1779.6
500 497 7.455 · 109 1618.1

1000 238 7.140 · 109 1508.2
2000 113 6.780 · 109 1449.6
5000 37 5.550 · 109 1212.1

10000 16 4.800 · 109 1108.0
15000 10 4.500 · 109 1099.1
20000 5 3.000 · 109 780.2
25000 2 1.500 · 109 430.4
30000 1 0.900 · 109 267.8

Comparing the graphs for E and the time in Fig. 3 confirms
the dominating effect of the kernel evaluations on the training
time. From the serial experiments we conclude that the largest
possible working set minimizes the training time.

Now we consider the problem of working set selection for
parallel SVM training. For the parallel mode we try to find
out whether for a fixed number of threads the same number l̂
also leads to the minimal consumption of time or not. Since
our decomposition algorithm consists of two parallelized parts
that show different behavior for varying working set sizes we
cannot predict the effects for the parallel algorithm easily.
However, some aspects are already known. The efficiency
of the parallel numerical linear algebra kernels (ESSLSMP
routines on the JUMP) is low for small working set sizes since
the problem sizes within the QP solver solely correspond to
the working set size and not to the overall problem size l. The

0
1
2
3
4
5
6
7
8
9

kernel evaluations (in billions)

200
400
600
800

1000
1200
1400
1600
1800
2000

0 5000 10000 15000 20000 25000 30000

working set size

training time (in seconds)

Fig. 3. Number of kernel evaluations and training time for different values
of l̂.

definition of “small” is somewhat vague and depends on the
computing system to be used as well as the number of threads,
but of course a value l̂ = 1000 is not sufficient for satisfactory
speedups of ESSLSMP routines.

In Table IV we show results of parallel SVM training for
two large working set sizes and different numbers of threads.
For l̂ = 15000 the speedups tend to be slightly larger than for
the extreme case l̂ = l. This is due to the fact that for l̂ =
30000 the influence of sequential parts of the code is higher.
For example, since the number of decomposition steps—and
therefore of kernel matrix updates—is only one, the relative
contribution of this perfectly scalable routine is smaller.

TABLE IV

SPEEDUP VALUES FOR TWO DIFFERENT WORKING SET SIZES.

l̂ = 15000 l̂ = 30000

time speedup time speedup
serial 1108.0 – 267.8 –
2 threads 535.6 2.1 144.6 1.9
3 threads 345.1 3.2 106.9 2.5
4 threads 263.4 4.2 78.6 3.4
5 threads 223.2 5.0 66.8 4.0
6 threads 231.9 4.8 56.8 4.7
7 threads 220.7 5.0 48.8 5.5
8 threads 229.7 4.8 49.9 5.4

Our shared memory parallelization yields satisfactory
speedups for small numbers of processors, but it does not
scale to high numbers of processors. Indeed, the speedups did
not exceed 5 and 5.5, and these were obtained with 5 and 7
processors. Note that the SVM training involves at most level-
2 numerical linear algebra kernels, which can make only very
limited use of the processors’ caches. Therefore the number
of data accesses increases with the number of threads, until
the maximum bandwidth of the memory is reached.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:11, 2007

3708

The restriction of our shared memory parallelization to
small numbers of processors is, however, not a severe lim-
itation. If large numbers of processors are available, then
two additional levels of parallelism may be exploited with
the message passing paradigm: The k-fold cross validation,
which requires training of k SVMs on different data, is easily
parallelized with a farming approach, and a parallel optimizer
can be used to determine adequate settings for the learning
parameters, such as C and the σi.

The setting l̂ = 30000 and 7 threads led to the minimal
training time. Since the data transformation needed 0.02
seconds, the overall time for the generalized kernel is also
48.8 seconds. Comparing this value with the 2412.3 seconds
given in Table II we observe that combining the pre-scaling, an
optimal working set size, and a moderate degree of parallelism
may result in an overall speedup of almost 50.

Based on the results in Sect. V and the Tables III and IV we
propose the following settings for efficient training of support
vector machines:

• a priori transformation of the training data according to
(6) or (8),

• implementation of the modified kernel (7) and (9) respec-
tively,

• choice of working sets as large as the available memory
allows, and

• usage of an appropriate number of threads for parallel
training; 6 may be a reasonable upper bound, cf. Table IV.

VII. CONCLUSIONS AND FUTURE WORK

We proposed techniques for the efficient serial and parallel
training of support vector machines for large data sets. We
introduced a data transformation that reduced training time
for the adult data set. In combination with the choice of a
reasonable working set size the improvement of support vector
learning performance can be substantial.

In the future we plan to combine our parallel support vector
learning algorithm with efficient parameter optimization meth-
ods [10]. This combination would lead to a fully automated
approach for fast and reliable support vector learning for the
classification of large data sets.

ACKNOWLEDGEMENTS

We would like to thank the ZAM team at Juelich for
technical support.

REFERENCES

[1] T. Joachims, “Text categorization with support vector machines: learning
with many relevant features,” in Proceedings of ECML-98. Chemnitz:
Springer, 1998, pp. 137–142.

[2] V. N. Vapnik, Statistical learning theory. New York: John Wiley &
Sons, 1998.

[3] C.-J. Lin, “On the convergence of the decomposition method for support
vector machines,” IEEE Transactions on Neural Networks, vol. 12, no. 6,
pp. 1288–1298, 2001.

[4] M. Momma and K. P. Bennett, “A pattern search method for model
selection of support vector regression,” in Proc. of the 2nd SIAM Int.
Conf. on Data Mining, Arlington, 2002. SIAM, 2002.

[5] H. Nunez, C. Angulo, and A. Catala, “Support vector machines
with symbolic interpretation,” VII Simpsio Brasileiro de Redes
Neurais - Recife, PE, Brasil, pp. 142–147, 2002. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/SBRN.2002.1181456

[6] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik,
“Parallel support vector machines: the cascade SVM,” in Advances in
Neural Information Processing Systems 17. Cambridge, MA: MIT
Press, 2005, pp. 521–528.

[7] V. Ruggiero and L. Zanni, “On the efficiency of splitting and projection
methods for large strictly convex quadratic programs,” Applied Opti-
mization, pp. 401–413, 1999.

[8] S. S. Keerthi, “Efficient tuning of SVM hyperparameters using ra-
dius/margin bound and iterative algorithms,” IEEE Transactions on
Neural Networks, vol. 13, pp. 1225–1229, 2002.

[9] R. Collobert, S. Bengio, and Y. Bengio, “A parallel mixture of SVMs
for very large scale problems,” Neural Computation, vol. 14, no. 5, pp.
1105–1114, 2002.

[10] T. Eitrich and B. Lang, “Parallel tuning of support vector machine
learning parameters for large and unbalanced data sets,” in CompLife
2005 Symposium, Konstanz, ser. LNCS, vol. 3695. Springer, 2005, pp.
253–264.

[11] S. Celis and D. R. Musicant, “Weka-parallel: machine learning in
parallel,” Carleton College, CS TR 2002b, 2002.

[12] J.-X. Dong, A. Krzyzak, and C. Y. Suen, “A fast parallel optimization for
training support vector machines,” in Proc. of 3rd Int. Conf. on Machine
Learning and Data Mining, 2003, pp. 96–105.

[13] V. N. Vapnik, The nature of statistical learning theory. New York:
Springer, 1995.

[14] B. Schölkopf and A. J. Smola, Learning with kernels. Cambridge, MA:
MIT Press, 2002.

[15] R. Herbrich, Learning kernel classifiers: theory and algorithms. Cam-
bridge, MA, USA: MIT Press, 2001.

[16] T. Eitrich and B. Lang, “Efficient optimization of support vector machine
learning parameters for unbalanced datasets,” Journal of Computational
and Applied Mathematics, 2005, in press.

[17] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp.
121–167, 1998.

[18] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001.

[19] R. Collobert and S. Bengio, “SVMTorch: a support vector machine for
large-scale regression and classification problems,” Journal of Machine
Learning Research, vol. 1, pp. 143–160, 2001. [Online]. Available:
http://www.idiap.ch/learning/SVMTorch.html

[20] T. Joachims, “SVM-light support vector machine,” Webpage, 2002.
[21] T. Eitrich and B. Lang, “Shared memory parallel support vector ma-

chine learning,” Research Centre Jülich, Preprint FZJ-ZAM-IB-2005-11,
September 2005, submitted for publication.

[22] P. Laskov, “Feasible direction decomposition algorithms for training
support vector machines,” Machine Learning, vol. 46, no. 1-3, pp. 315–
349, 2002.

[23] S. Leyffer, “The return of the active set method,” 2005, to apper.
[24] T. Serafini, G. Zanghirati, and L. Zanni, “Gradient projection methods

for quadratic programs and applications in training support vector
machines,” Optimization Methods and Software, vol. 20, no. 2-3, pp.
353–378, 2005.

[25] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods — Support
Vector Learning. Cambridge, MA: MIT Press, 1999, pp. 185–208.

[26] S. Hettich, C. L. Blake, and C. J. Merz, UCI
repository of machine learning databases, 1998,
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[27] G. Zanghirati and L. Zanni, “A parallel solver for large quadratic
programs in training support vector machines,” Parallel Computing,
vol. 29, no. 4, pp. 535–551, 2003.

[28] U. Detert, Introduction to the JUMP architecture, 2004. [Online].
Available: http://jumpdoc.fz-juelich.de

[29] T. Joachims, “Making large-scale SVM learning practical,” in Advances
in Kernel Methods – Support Vector Learning. MIT Press, 1998, pp.
169–185.

[30] N. Cristianini and J. Shawe-Taylor, An introduction to support vector
machines and other kernel-based learning methods. Cambridge, UK:
Cambridge University Press, 2000.


