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Abstract—This paper deals with the optimal design of 

two-channel recursive parallelogram quadrature mirror filter (PQMF) 

banks. The analysis and synthesis filters of the PQMF bank are 

composed of two-dimensional (2-D) recursive digital all-pass filters 

(DAFs) with nonsymmetric half-plane (NSHP) support region. The 

design problem can be facilitated by using the 2-D doubly 

complementary half-band (DC-HB) property possessed by the analysis 

and synthesis filters. For finding the coefficients of the 2-D recursive 

NSHP DAFs, we appropriately formulate the design problem to result 

in an optimization problem that can be solved by using a weighted 

least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The 

designed 2-D recursive PQMF bank achieves perfect magnitude 

response and possesses satisfactory phase response without requiring 

extra phase equalizer. Simulation results are also provided for 

illustration and comparison. 

 

Keywords—Parallelogram Quadrature Mirror Filter Bank, Doubly 

Complementary Filter, Nonsymmetric Half-Plane Filter, Weighted 

Least Squares Algorithm, Digital All-Pass Filter. 

I. INTRODUCTION 

WO-DIMENSIONAL (2-D) quadrature mirror filter 

(QMF) banks have been widely considered for high quality 

coding of image and video data at low bit rates and spatial image 

analysis like feature extraction and matching [1], [2]. The 

design problem of 2-D QMF banks with the perfect 

reconstruction (PR) characteristics has been considered in the 

literature [3], [4]. 

A parallel structure using the 2-D recursive NSHP DAF to 

construct the analysis and synthesis filters of a recursive 

two-channel parallelogram QMF (PQMF) bank has been 

presented in [5]. For image processing, the 2-D DC-based 

PQMF bank can avoid transmission nulls [6] without using 

additional delays and satisfy the frequency constraints [7], [8] 

that avoid the aliasing artifacts. However, an extra NSHP DAF 

used as a phase equalizer must be added in the synthesis system 

to eliminate the phase distortion induced by the 2-D recursive 

NSHP DAFs in the analysis and synthesis systems [5]. 

In this paper, we present a novel method for the minimax 

design of two-channel recursive PQMF banks using 2-D 
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recursive NSHP DAFs. The proposed 2-D recursive PQMF 

bank possesses the advantages as those presented by [5], 

namely, (i) the resulting analysis/synthesis filters possess the 

2-D DC properties, i.e., 2-D all-pass complementary and power 

complementary properties, (ii) the proposed 2-D DC-based 

analysis/synthesis filters possess an attractive DC symmetry 

with respect to the half-band frequency (ω1,ω2) = (0,π/2) in the 

upper half plane of the frequency plane, (iii) the proposed 2-D 

DC-based recursive PQMF bank have no magnitude distortion. 

The frequency characteristics totally depend on the phase 

responses of the 2-D recursive NSHP DAFs. However, the 

proposed 2-D recursive PQMF bank avoids the need of extra 

NSHP DAF used as a phase equalizer like [5] to achieve 

satisfactory linear-phase response. Using the stability 

constraints presented by [9] to guarantee the stability of the 2-D 

recursive NSHP DAFs, we then derive a novel objective 

function for minimax phase approximation. The problem of 

minimizing the objective function can be solved by using the 

weighted least-squares algorithm developed in [10] (termed as 

the LLCY algorithm). Simulation results show that the proposed 

design method provides more satisfactory results than the 

method of [5]. 

II. PROBLEM FORMULATION 

A. PQMF Bank with Linear-Phase Response 

The conventional 2-D two-channel PQMF system is shown in 

Fig. 1, where H0(z1,z2) and H1(z1,z2) are the low-pass and 

high-pass analysis filters, respectively, F0(z1,z2) and F1(z1,z2) are 

the low-pass and high-pass synthesis filters, respectively. M 

denotes the decimation/interpolation matrix. The ideal 

frequency specifications for the 2-D two-channel analysis and 

synthesis systems are given in Fig. 2. Setting the synthesis filters 

F0(z1,z2) = H1(z1,－z2), F1(z1,z2) = －H0(z1,－z2), and using the 

mirror-image symmetry about the frequency (ω1,ω2) = (0,π/2), 

we have H1(z1,z2) = H0(z1,－z2) and the input/output relationship 

of the 2-D PQMF bank in the z-transform as follows: 
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for ),,( 21 ωω∀ where g1 and g2 are the system delays of the 

PQMF bank. Designing of PQMF banks with conventional FIR 

or IIR structures for H0(z1,z2) usually induces both magnitude 

and phase distortions. 

B. Digital All-Pass Based PQMF Bank 

First, we use the widely considered decimation/interpolation 

matrix M = 







 −

20

11 . Then, a new two-channel recursive 

PQMF bank is constructed by setting the analysis filters 

H0(z1,z2) and H1(z1,z2) of Fig. 1 as follows: 
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where Ai(z1,z2), for i = 1, 2, are two 2-D DAFs with transform 

function given by 
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where the denominator polynomial Di(z1,z2) of the 

(Mi×Ni)th-order DAF Ai(z1,z2) with nonsymmetric half-plane 

(NSHP) support regions for its coefficients is given by 
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where 
iℜ represents the 2-D NSHP region on the 2-D (m,n) 

plane. We note from (3) and (4) that 

 

1  ),(),( 2121

10 =+ ωωωω jjjj
eeHeeH ,      for ),,( 21 ωω∀  

1 ),(),(
2

1

2

0
2121 =+ ωωωω jjjj

eeHeeH , for ),,( 21 ωω∀  (6) 

 

Hence, H0(z1,z2) and H1(z1,z2) simultaneously satisfy the 

all-pass complementary and power complementary properties, 

i.e., H0(z1,z2) and H1(z1,z2) form a 2-D doubly-complementary 

(DC) filter pair. The H0(z1,z2) and H1(z1,z2) of Fig. 1 are replaced 

by (3) to form a new 2-D DC-based recursive PQMF bank of 

Fig. 3. From (1) and (3), we can show that the proposed 2-D 

two-channel PQMF bank has the transfer function given by 
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Equation (7) reveals that the 2-D two-channel recursive 

PQMF bank possesses a magnitude response without distortion. 

C. Frequency Characteristics of 2-D DC Analysis Filters 

The frequency response of (4) with phase response 

),( 21 ωωθ i
can be expressed by 
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is the phase of Di(z1,z2). Substituting (8) into (3), we have 
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We note from (10) that the magnitude and phase responses of 
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0
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Moreover, we have from (11) that 
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for i =1, 2. (12) shows that ),( 21 ωωφi
 can be determined by 

),( 21 ωωθm
 and ),( 21 ωωθp

. Hence, the desired response 

),( 21, ωωφ di
 can be obtained from (12) by specifying the desired 

),( 21 ωωθm
 and ),( 21 ωωθ p

. Since H1(z1,z2) = H0(z1,－z2), we 
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The attractive properties indicate that ),( 21

0

ωω jj
eeH possesses 

the DC symmetry with respect to the half-band frequency 

(ω1,ω2) = (0,π/2) in the upper half of the 2-D frequency plane. 

Moreover, (13) reveals that if |),(| 21

0

ωω jj
eeH equals zero in the 

stop-band, then |),(| 21

0

ωω jj
eeH  equals one in the pass-band, and 

vice versa. Therefore, we only need to approximate the 

pass-band or stop-band response when designing H0(z1,z2). 

These advantages reduce the amount of numerical computation 

required for design and implementation.  

D.  Minimax Design Formulation 

From (7) and (8), we note that the frequency response of the 

proposed 2-D PQMF bank is given by 
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Let the desired group delays of (14) be g1 = M1 + M2 and g2 = 

N1 + N2 +1 in the ω1 and ω2 axes, respectively. According to 

(10), and (14), the phase responses for the 2-D recursive DAFs 

A1(z1,z2) and A2(z1,z2) must satisfy the following constraints: 
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where Ωp and Ωs denote the pass-band and stop-band of 

),( 21

0

ωω jj
eeH , respectively. Hence, the desired phase responses 

for the 2-D DAFs A1(z1,z2) and A2(z1,z2) can be set to 
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The desired phase responses for D1(z1,z2) and D2(z1,z2) can be 

obtained from (9) and (16) as follows: 
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respectively. From (17), we note that 
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From (14), we observe that the proposed 2-D recursive 

PQMF bank ),( 21 ωω jj
eeT possesses the following desired 

frequency characteristics if the desired condition given by (18) 

is satisfied 
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From (13) and (18), we can see that the design problem for 

the proposed 2-D recursive PQMF bank is finding the real 

coefficients di(m,n) of Ai(z1,z2) such that the following two 

constraints can be approximately met in the minimax sense: 
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For a practical design, the ideal frequency band splitting for 

2-D PQMF banks with sampling pattern given by M is shown by 

Fig. 4, where ωp and ωq are two band edge frequencies. As to the 

stability of Ai(z1,z2), the stability constraints guaranteeing the 

stability of Ai(z1,z2) are summarized as follows [9]: (i) θi(ω1,ω2) 

is monotonically decreasing along ω1 axis and θi(π,ω2) = θi(0,ω2)

－ Miπ
 

for － π≦ ω2≦ π; (ii) θi(ω1,ω2) is monotonically 

decreasing along ω2 axis and θi(ω1,π) = θi(ω1,0)－Niπ
 
for －

π≦ ω1≦ π. For simplicity, by specifying the desired phase 

response ),( 21, ωωφ di
 to satisfy the stability constraints, we can 

neglect the stability problem and focus on the approximation 

problem given by (20) only. As a result, we can formulate the 

minimax design problem as follows: 
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where |x|∞ denotes the Chebyshev norm of x, α is the relative 

weight between the two peak error terms, and Wp(ω1,ω2) is a 

preset weighting function with value one in ΩS and zero in ΩP. 

III. PROPOSED DESIGN METHOD  

A. Frequency Sampling and Approximation Scheme 

Using the property of tan
-1

(x) + tan
-1

(y) = tan
-1

{(x+y)/(1-xy)}, 

we rewrite the first constraint of (20) for ),,( 21 ωω∀  as follows:  
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where di(0,0) = 1 for simplicity, d = [d1(1,0), d1(2,0),…, d2(1,0), 

d2(2,0),…]
T

 is the (M1 +(2M1+1)  2/1N +M2+(2M2+1)  2/2N ) 

×1 coefficient vector, where the superscript T denotes the 

transpose operation. And 
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Minimizing (22) is equivalent to minimizing the following 

term 
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since the inverse tangent function is a monotonic function. The 

second constraint of (20) can be rewritten as 
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Utilizing the LLCY algorithm of [10], we reformulate the 

minimization problem of (21) as follows: 
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where Wls1(ω1,ω2) and Wls2(ω1,ω2) are two required 

least-squares weighting functions. Let the frequency pair 

(ω1r,ω2r) represent the rth uniformly sampled frequency grid 

point in the interested frequency band. And 1≦  r ≦  R, where R 

represents the total number of uniformly sampled frequency 

grid points. The design process of the proposed method is then 

performed on the R frequency grid points. If the number R of 

grid points is sufficiently large, the obtained best approximation 

solution of the objective function based on the grid points will 

be close to the best solution found based on (26). This 

conclusion can be justified by the theorem due to Cheney [11, 

Chapter 3]. We utilize a linearization scheme to approximate 

the related errors of (22) and (25) due to a perturbation in the 

filter coefficient vector d in the linear subspace spanned by the 

gradient matrix associated with Aprx1(d,ω1r,ω2r) and 

Aprx2(d,ω1r,ω2r). As a result, the approximation for minimizing 

(21) can be formulated as finding the increments δdk =[δd1k(1,0), 

δd1k(2,0), …, δd2k(1,0), δd2k(2,0)…]
T
 of the filter coefficient 

vectors d at the kth iteration such that  

 

|Aprx1(dk,ω1r,ω2r) + δdk
T▽ Aprx1(dk,ω1r,ω2r)|∞ + αWp(ω1r,ω2r)| 

Aprx2(dk,ω1r,ω2r) + δdk
T▽ Aprx2(dk,ω1r,ω2r)|∞     (27) 

 

is minimized for all (ω1r,ω2r), where the subscript k denotes the 

results obtained at the kth iteration, ▽ Aprx1(dk,ω1r,ω2r) and 

▽ Aprx2(dk,ω1r,ω2r) are the gradient vectors of 

Aprx1(dk,ω1r,ω2r) and Aprx2(dk,ω1r,ω2r) with respect to the 

filter coefficient vector dk, respectively, and are given by 

 

▽ Aprx1(dk,ω1r,ω2r) = [ ψ1(ω1r,ω2r,1) ψ1(ω1r,ω2r,2) …. ]
T
, 

▽ Aprx2(dk,ω1r,ω2r) = [ ψ2(ω1r,ω2r,1) ψ2(ω1r,ω2r,2) …. ]
T
, (28) 

 

where ψ1(ω1r,ω2r,j) = ∂ Aprx1(dk,ω1r,ω2r)/ ∂ dk(j) is the jth 

gradient component of Aprx1(dk,ω1r,ω2r), ψ2(ω1r,ω2r,j) = 

∂ Aprx2(dk,ω1r,ω2r)/ ∂ dk(j) is the jth gradient component of 

Aprx2(dk,ω1r,ω2r), and dk(j) is the jth entry of the coefficient 

vector dk obtained at the kth iteration. Accordingly, we have an 

approximate minimization problem for (26) as follows: 
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WpWls2(U2δdk – s2),                                     (29) 

 

where Ui is a R×(M1+(2M1+1)  2/1N +M2+(2M2+1)  2/2N )
 

matrix with the (l,n)th entry given by Ui(l,n) = ψi(ω1l,ω2l,n) , 1 ≤ 

l ≤ R, 1 ≤ n ≤ (M1+(2M1+1)  2/1N +M2+(2M2+1)  2/2N ), si is a 

R×1 column vector with the lth entry given by si(l) = – 

Aprxi(dk,ω1l,ω2l), 1 ≤ l ≤ R, Wlsi = diag{Wlsi(ω11,ω21), 

Wlsi(ω12,ω22), ….., Wlsi(ω1R,ω2R)} denotes the R × R diagonal 

matrix containing the required least-squares weighting function 

calculated at (ω1r,ω2r), r = 1, 2, …, R, of the R frequency grid 

points, for i = 1,2, and Wp represents the R × R diagonal matrix 

containing the preset weighting function with value one at 

(ω1r,ω2r) in ΩS and zero at (ω1r,ω2r) in ΩP. The optimal solution 

for minimizing the objective function J of (29) is given by 

 

δdk = [Re{(U1
T
Wls1U1+αU2

T
WpWls2U2)}]

-1
×Re{(U1

T
Wls1s1+α 

U2
T
WpWls2s2)},                                                                    (30) 

 

where Re{x} denotes the real part of x. The suitable 

least-squares weighting function Wlsi(ω1r,ω2r), r = 1, 2, …, R, i 

=1, 2, required in (30) for producing a quasi-equiripple design 

can be obtained by utilizing the LLCY algorithm of [10]. 

B. Iterative Design Procedure  

Step 1: Initiation: 

<1.1> Determine the design parameters: the orders Mi and Ni, i 

= 1, 2, the relative weight α, band edge frequencies ωp and ωq.  

<1.2> Set the zero vector as an initial guess for the vector d. 

<1.3> Set the iteration number k = 0. 

Step 2: Perform a test for stopping the iteration process: 

<2.1> Compute Vk = |Aprx1(dk,ω1,ω2)|∞ + α|Aprx2(dk,ω1,ω2)|∞.  

<2.2> Terminate the design process and take the coefficient 

vector dk as the designed filter coefficient vector if |Vk – 

Vk+1|/|Vk| ≦  ε, where ε is a preset small positive real number. 

Otherwise, go to Step 3 to perform an inner iterative process for 

finding the best increment δdk of the filter coefficient vector dk. 

Step 3: Calculate the increment δdk of dk at the kth iteration from 

(30) according to the LLCY iterative algorithm as follows: 

<3.1> Set the initial weighting matrix Wlsi to the R × R identity 

matrix I and an inner iteration index p = 0. 

<3.2> Compute the WLS solution δdk from (30). Set δdk
(p)

 = 

δdk, where the superscript p denotes the δdk obtained at the pth 

iteration during the inner iteration process. 
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<3.3> Compute the error functions e1k
(p)

(ω1,ω2) = (U1δdk
(p)

 – s1) 

and e2k
(p)

(ω1,ω2) = (U2δdk
(p)

 – s2). 

<3.4> Let Gi
(p)

(J) = |eik
(p)

(ω1J,ω2J)|, where Gi
(p)

(J) > 

|eik
(p)

(ω1(J+1),ω2(J+1))| and Gi
(p)

(J) > | eik
(p)

(ω1(J-1),ω2(J-1))|. If 

|max{Gi
(p)

(J)} – max{Gi
(p-1)

(J)}|/max{Gi
(p-1)

(J)} ≦  ηi, where 

each ηi is a preset small real number, the WLS solution δdk
 
is 

used for obtaining the optimal solution of d, This ends the inner 

iterative process. Then, go to Step 4. Otherwise, go to <3.5>. 

<3.5> Update the least-squares weighting function Wlsi(ω) 

according to the systematical approach as described in [10] and 

set the iteration index p = p + 1. Then, go to <3.2>. 

Step 4: Update the filter coefficient vector as follows: 

<4.1> Use the obtained optimal solution δdk to find the best 

increment such that the following term is minimized. 

|Aprx1(dk+βδdk,ω1,ω2)|∞+α|Aprx2(dk+βδdk,ω1,ω2)|∞, all β ≧  0. 

<4.2> Utilize the simplex algorithm of [12] to perform the line 

search for finding the best value of β. Let the best β be βk.  

<4.3> Update the filter coefficient vector according to  

d(k+1) = dk + βkδdk.                                                                                                                   

<4.4> Set k = k + 1 and go to Step 2. 

IV. SIMULATION RESULTS 

We present simulation results for illustration and 

comparison. The performance of the designed 2-D recursive 

PQMF bank is evaluated in terms of the minimum stop-band 

attenuation (MSA) of H0(z1,z2), the pass-band magnitude 

mean-squared error (PMSE) of H0(z1,z2), the stop-band 

magnitude mean-squared error (SMSE) of H0(z1,z2), the 

maximum variation in phase response (MVPRi) of ),( 21 ωω jj
i eeD  

in the pass-band, and the peak phase error (PPE) of the designed 

PQMF bank ),( 21 ωω jj
eeT . They are defined as follows: 

 

( )( )( )21

s21

,log 20max MSA 010
),(

ωω

ωω

jj
eeH

Ω∈
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( )
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21,00

Ω),(
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p21

ωωωω

ωω
d

jj
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=
∈
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),()},(arg{max MVPR 21
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21
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ωω id

jj

ii eeD
P

−=
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       (radian) 

2211
),(

)},(arg{max PPE 21
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jj ++= ωω
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              (radian)  

 

Example: Using the same magnitude characteristic as that of 

[5], we set the band edge frequencies ωp = ωq = 0.8π. 

Accordingly, the desired magnitude response of H0(z1,z2) 

possesses the symmetry with respect to the frequency (0, 0.5π). 

Therefore, about half of the coefficients can be set to zero and 

only uniformly sampled pass-band frequency grid points are 

considered during the design procedure. The 2-D DC filters 

H0(z1,z2) and H1(z1,z2) are obtained by setting M1 = M2 = 6 and 

N1 = N2 = 8. Then, the ideal group delays are g1 = M1 + M2 = 12 

and g2 = N1 + N2 +1 = 17. We design the 2-D NSHP DAF 

Ai(z1,z2) whose denominator phase )},(arg{ 21 ωω jj

i eeD  with the 

desired passband phase response ),( 21, ωωφ di
 obtained by 

substituting θm,d(ω1,ω2) = 0 and θp,d(ω1,ω2) = – (M1+M2) ω1/2 – 

(N1+N2+1) ω2/2 into (12). The resulting ),( 21, ωωφ di
 are given by 

 





Ω∈−

Ω∈
=

S212

P212
211d
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  ),(for              4,/  
  ),(

ωωπω
ωωω

ωωφ
 



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Ω∈+−

Ω∈−
=

S212

P212
212d

  ),(for   4,/4/

  ),(for              4,/
  ),(

ωωπω
ωωω

ωωφ
       (31) 

 

Since ),( 21, ωωφ di
 of (31) are two functions of ω2 only and 

satisfy the stability conditions, we can omit the stability issue 

and focus the design problem shown by (21). Moreover, the 

designed analysis/synthesis filters can achieve approximately 

linear-phase responses in the pass-band because of the ideal 

phase specification given by θp,d(ω1,ω2) = –(M1+M2) ω1/2 – 

(N1+N2+1) ω2/2. The parameters used for this design are chosen 

by experiment and given as follows: η1 = η2  = 1.0×10
-4

, α = 5, 

and ε = 1×10
-3

. The spacing between two adjacent frequency 

grid points is the same as that used by [5] and set to 2π/64. 

Significant design results are shown in Table I for comparison. 

The magnitude responses of the analysis filters are depicted in 

Fig. 5 and the resulting phase error of Ai(z1,z2) is depicted in Fig. 

6. The resulting phase error of the designed 2-D recursive 

PQMF bank is shown in Fig. 7. From Table I, we observe that 

the proposed method can design the filter coefficients for the 

2-D NSHP DAFs Ai(z1,z2), for i = 1, 2 simultaneously and 

provide a 2-D recursive PQMF bank with frequency responses 

better than those of [5]. 

V.  CONCLUSION 

This paper has presented a novel technique for the minimax 

design of two-channel recursive parallelogram quadrature 

mirror filter (PQMF) banks. The proposed analysis/synthesis 

filters possess a 2-D doubly complementary (DC) property. The 

PQMF bank can achieve the nearly linear-phase response 

without magnitude distortion, the aliasing artifacts, and an extra 

phase equalizer. Using the weighted least-squares (WLS) 

algorithm, the proposed PQMF bank can be efficiently designed. 

The design results show that the proposed method provides 

more satisfactory design than the existing techniques.  
 

TABLE I 

THE SIGNIFICANT DESIGN RESULTS 

 
Proposed 

Method 

Method of 

[5] 

MSA(dB) 28.1350 23.2292 

PMSE 9.3093×10-8 7.3647×10-7 

SMSE 4.5983×10-4 1.2800×10-3 

MVPR1 3.9142×10-2 5.9370×10−2 

MVPR2 2.3284×10-2 1.8531×10−2 

PPE 0.0826 0.1386 

Number of Independent Coefficients 58,58 45,45,22 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:7, 2014

1122

 

 

 1 2( , )z zΧ

 

1 2
( , )z z

∧

Χ

 0 1 2( , )z zΗ  0 1 2( , )z zＦ

 1 1 2( , )z zＦ 1 1 2( , )z zΗ

 

(a) Analysis Bank                                    (b) Synthesis Bank 

Fig. 1 The conventional two-channel PQMF bank 

 

Fig. 2 The Ideal Frequency Band-Splitting for 2-D PQMF bank 

Pass-band region: Shadow area. Stop-band region: White area 
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(a) Analysis Bank 
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(b) Synthesis Bank 

Fig. 3 The proposed Analysis/Synthesis banks 

 

 

Fig. 4 The ideal frequency band splitting. 
pΩ : gray shadow area.  

sΩ : 

dark shadow area. The white area represents the transition region 

 

(a)  Perspective plot of ),( 21

0

ωω jj
eeH  

 

(b) Perspective plot of ),( 21

1

ωω jj
eeH  

 

(c)  Contour plot of ),( 21

0

ωω jj
eeH  (the solid lines: the band edges). 

Fig. 5 Magnitude responses of analysis filters 

 

(a) i = 1 
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(b) i = 2 

Fig. 6 Phase errors ),()},(arg{ 21
21 ωωφωω

id

jj

i eeD −  for i = 1, 2 

 

Fig. 7 Phase error ))},(arg{ 2211
21 ωωωω

ggeeT
jj ++  
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