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A Study of the Change of Damping Coefficient 
Regarding Minimum Displacement 
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Abstract—This research proposes the change of damping 
coefficient regarding minimum displacement. From the mass with 
external forced and damper problem, when is the constant external 
forced transmitted to the understructure in the difference angle 
between 30 and 60 degrees. This force generates the vibration as 
general known; however, the objective of this problem is to have 
minimum displacement.  As the angle is changed and the goal is the 
same; therefore, the damper of the system must be varied while 
keeping constant spring stiffness.  The problem is solved by using 
nonlinear programming and the suitable changing of the damping 
coefficient is provided. 

Keywords— Damping coefficient, Optimal control, Minimum 
Displacement and Vibration

I. INTRODUCTION

Most of the dynamic systems and advanced mobile 
machines nowadays are designed so that they are either 
optimized on their energy consumption or on their greatest 
smoothness of motion, [3].  Consequently, the trajectory 
planning and designs of these systems are done exclusively 
through many approaches such as the minimum energy and 
minimum jerk, [4].  Nevertheless, in some applications, the 
system is needed to work very smoothly in order to avoid 
damaging the specimen that the mechanical system is handling 
while consuming least amount of energy at the same time.  In 
other words, we may want to minimize the jerk of the 
movement of such a system as to give it the smoothest motion 
as well as optimize that system in the energy consumption 
issue.

The general format of the dynamic problems is consisting 
of the equation of motion, the initial conditions, and the 
boundary conditions.  The area of interest in this paper will 
involve the problems with two-point-boundary-value 
conditions.  Each of the problems may contain many possible 
solutions depending on the objective of application.   
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Obviously, the mechanical system that aims to run at lowest 
cost of energy will be designed to have the lowest actuator 
inputs during the motion.  This is basically the optimization 
problem of the dynamic systems.  Research shows that many 
of the researchers pay a lot of their attention on the 
minimization of energy while many tend to seek for the 
smoothness of the system.  Therefore, this research paper aims 
to consider a spring-mass-damper system with defined 
external force and to minimize the displacement in the time 
interval between two given points. 

II. PROBLEM STATEMENT

Dynamic systems can be described as the first order 
derivative function of state as 

nituuxxfx mnii ,...,1     );,,...,,...,( 11          (1) 

where , andnRx mRu t  are state, control input, and time 
respectively, [5].  The problem of interest is to find the states 
x(t) and control inputs u(t) that make our system operates 
according to the desired objective of minimum energy or 
minimum jerk.  Note that this paper is focusing on the system 
with fixed end time and fixed end points.  Therefore, states 
and control inputs that serve the necessary condition must also 
be able to bring the system from initial conditions x(t0) at 
initial time t0 to the end point x(tf) at time tf.

The optimization problem of minimum energy will take the 
form of  
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where ui is the control input, which can be force or torque 
applied to the system, and mi ,...,1 . J is the cost function of 
the energy consumed by the system from initial time t0 to end 
time tf.

III. NECESSARY CONDITION

 In this paper, we use the calculus of variations in solving for 
the extremal solutions of the dynamic system, [1].  
Representing the control input with u, the principle of calculus 
of variations helps us solve the optimization problem by 
finding the time history of the control input that would 
minimize the cost function of the form 
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where

ftnxxt ),...,,( 1 ,                                (4) 

is the cost based on the final time and the final states of the 
system, and  

dtuuxxtL
f
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t
mn ),...,,,...,,( 11 ,                    (5) 

is an integral cost dependent on the time history of the state 
and control variables.  Since the cost of the final states would 
be equal in all feasible time histories of the control input; 
therefore, the first term of (3) is omitted. 
 To find the extremum of the function, the dynamic 
equations are augmented via Lagrange Multipliers to the cost 
functional as follow: 
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Where  
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and )(ti  are Lagrange multipliers.  Consequently, (6) 
becomes: 
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 Since the problem with fixed end time and end points are 
considered, initial time t0, end time tf, initial state x(t0), and 
final state x(tf) must be set prior to solving the problem.  The 
differentiable functions are dependent on the boundary 
condition of x(t0)= x0, x(tf)= xf , u(t0)= u0 and u(tf)= uf  where 
time used falls in the interval .fi ttt
 Let function  be represented as a 
functional 
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Let  be incremented by , u(t0) be incremented by 
, and still satisfy the boundary conditions, then 
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 Applying Taylor’s Series to (10), disregard the higher order 
terms, and apply it to the problem results in 
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 Since 
itft jxhjxh |  | = 0 and 

ku
L' = 0, the last two terms of 

(11) become zero.  In order that the cost functional of jerk in 
(8) can be solved for minimal solution, the condition that 
make 0'J  at arbitrary variation of  and  are needed.  

From (11), obviously the mentioned conditions are as follow: 

jxh kuh
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and
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for j = 1, …, n and k = 1, …, m.
 Equations (12) and (13) are the necessary conditions that 
will lead to solve for Lagrange multipliers )(tj , and control 
inputs uk(t).  Alternatively, we can use the derived relationship 
below to solve for the unknowns necessary conditions: 
For
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Necessary conditions are (14) and 
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As of above the necessary conditions are in the form of 
differential and algebraic equations which are known as 
two-point boundary valued problem, [2]. 

                             (19) 

IV. EXAMPLE

An analysis of vibration system in general must include 
effects of friction or damping to account for its true motion, 
otherwise, the solutions obtained with negligence to these 
effects would only describe the system’s motion. 

Fig. 1 shows a sample spring-mass-damper system with 
external forced and the system is assumed to move only along 
the vertical direction and supported by one spring and one 
damper. 

( )c t k

1m

60

30

F

Fig. 1 Damped System with external forced

1cx 1kx
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F

Fig. 2 Free Body Diagram

Assume system weights 20,000 kg is supported by one 
spring and one damper. The constant forced is 500 kg. The 
spring stiffness (k) is 2,000 kg m .

From the second law of Newton, it can be rewritten as 

        1 1F m x                                    (17) 

Let
            1sinF U                                   (18) 

therefore,

1 1 1- -U cx kx mx1

1

and an equation of motion becomes: 

1 1 1mx cx kx U                       (20) 

To have minimum displacement, the displacement square 
is selected as an integrand in order to assure about global 
minimum. The problem statement is to find damping 
coefficient as a function of time during 00t  to 1.0ft
such that
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with given two – point boundary values as 
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The initial and terminal condition on function  are 
necessarily to pin down the solution and we are looking for 
the general class of functions which will fulfill the transition 
equation (or Euler equation). 

x(t)

Minimum principle is used in optimal control theory in 
order to find the best possible control for taking a dynamic 
system from one state to another. By applying minimum 
principle, then: 

2
1 1 1 1 1 1(20, 000 ( ) 2, 000 - )L x x c t x x U   (24) 

Consider an infinitely-lived agent choosing a control 
variable from Eq. (24). The Euler equation from conventional 
from  

2
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becomes 
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Therefore, the necessary conditions can be derived as 
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Eqs. (22), (23), (26) and (27) are solved together as Two-
Point-Boundary-Value problem by transforming them to 
parameter optimization problem (nonlinear programming 
problem) [6].  The solutions from varying the angle of force 
that applied to the system as 30, 35, 40, 45, 50, 55 and 60 
degrees are shown in Fig. 3-9, respectively. 
 From the solution, it can be seen quite obvious that 
displacements of each problem are quite small in magnitude 
and the damping coefficient increases versus time due to that 
minimum displacement since the system has only damper to 
reduce the vibration.  This solution can be applied to the 
system with mechanical design on how to control the damping 
coefficient versus time.  
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Fig. 3 30 degrees solution for displacement, rate of displacement and 
damping coefficient with respect to time interval from 0 to 0.1 
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Fig. 4 35 degrees solution for displacement, rate of displacement and 
damping coefficient with respect to time interval from 0 to 0.1 
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Fig. 5 40 degrees solution for displacement, rate of displacement and 
damping coefficient with respect to time interval from 0 to 0.1 
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Fig. 6 45 degrees solution for displacement, rate of displacement and 
damping coefficient with respect to time interval from 0 to 0.1 

second

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

2

4
x 10-7

time

50
 d

eg
re

e

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-5

0

5
x 10-5

time

50
 d

eg
re

e

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1.5

2

2.5

time

50
 d

eg
re

e

x1

x1
(1)

c(t)



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:12, 2009

1626

ACKNOWLEDGMENTFig. 7 50 degrees solution for displacement, rate of displacement and 
damping coefficient with respect to time interval from 0 to 0.1 

second This work was supported in part by the Defence 
Technology Institute (Public Organization), Bangkok, 
Thailand.  The financial support is gratefully acknowledged.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

2

4
x 10-7

time

55
 d

eg
re

e

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-5

0

5
x 10-5

time

55
 d

eg
re

e

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1.5

2

2.5

time

55
 d

eg
re

e

x1

x1
(1)

c(t)

REFERENCES

[1] S.K. Agrawal and B.C. Fabien, Optimization of Dynamic Systems.
Boston: Kluwer Academic Publishers, 1999. 

[2] HG. Bock, “Numerical Solution of Nonlinear Multipoint Boundary 
Value Problems with Application to Optimal  Control,” ZAMM, pp. 58, 
1978.

[3] JJ. Craig, Introduction to Robotic: Mechanics and Control. Addision-
Wesley Publishing Company, 1986. 

[4] WS. Mark, Robot Dynamics and Control. University of Illinois at 
Urbana-Champaign, 1989. 

[5] TR. Kane and DA. Levinson, Dynamics: Theory and Applications. 
McGraw-Hill Inc, 1985. 

[6] T. Veeraklaew, Extensions of Optimization Theory and New 
Computational Approaches for Higher-order Dynamic Systems 
[Dissertation]. The University of Delaware, 2000. 

Colonel Tawiwat Veeraklaew received the Ph.D. degree in 
mechanical engineering from University of Delaware, 
Newark, DE, USA in 2000.  He is a Platform and Material 
Senior Researcher at Defence Technology Institute (Public 
Organization), Bangkok, Thailand and supervises the 
Platform and Material Laboratory.  He has published more 
than 30 both in conference and journal articles.  His current 

research interests are in the area of controlled mechanical systems, dynamic 
optimization and special software hardware design.

Fig. 8 55 degrees solution for displacement, rate of displacement and 
damping coefficient with respect to time interval from 0 to 0.1 

second

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

1

2
x 10-7

time

60
 d

eg
re

e

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

0

1
x 10-5

time

60
 d

eg
re

e

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2

2.5

3

time

60
 d

eg
re

e

x1

x1
(1)

c(t)

Lt.Auttapoom Loungthongkam received the bachelor’s 
degree in Marine Engineering from The Royal Thai Naval 
Academy, Thailand in 2001. He is Platform and material 
Researcher at Defence Technology Institute (Public 
Organization), Bangkok, Thailand and research the 
platform and material Laboratory.  

Mr. narongkorn Dernlugkam received the bachelor’s 
degree in Electrical Engineering from The Khon Kaen 
University, Khon Kaen, Thailand in 1999. He is Platform 
and material Researcher at Defence Technology Institute 
(Public Organization), Bangkok, Thailand and research the 
platform and material Laboratory.  Fig. 9 60 degrees solution for displacement, rate of displacement and 

damping coefficient with respect to time interval from 0 to 0.1 
second

V. CONCLUSION

A conclusion can be made here that the idea of finding 
damping coefficient as a function of time in order to minimize 
the displacement of a dynamic system can be applied to such a 
system such as automobile, artillery cannon, etc.  A good 
example is artillery cannon that might have to fire shells as 
many in a period of time.  During that short time interval 
between the launched and launching shells, the displacement 
or system vibration must be vanished in time to make sure that 
the next shell will stay on the target.  However, as state above 
that controlling this damping coefficient versus time is open 
problem to the future work. 


