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Abstract—This paper presents the automated methods employed 

for extracting craniofacial landmarks in white light images as part of 
a registration framework designed to support three neurosurgical 
procedures. The intraoperative space is characterised by white light 
stereo imaging while the preoperative plan is performed on CT scans. 
The registration aims at aligning these two modalities to provide a 
calibrated environment to enable image-guided solutions. The 
neurosurgical procedures can then be carried out by mapping the 
entry and target points from CT space onto the patient’s space. The 
registration basis adopted consists of natural landmarks (eye corner 
and ear tragus). A 5mm accuracy is deemed sufficient for these three 
procedures and the validity of the selected registration basis in 
achieving this accuracy has been assessed by simulation studies. The 
registration protocol is briefly described, followed by a presentation 
of the automated techniques developed for the extraction of the 
craniofacial features and results obtained from tests on the AR and 
FERET databases. Since the three targeted neurosurgical procedures 
are routinely used for head injury management, the effect of 
bruised/swollen faces on the automated algorithms is assessed. A 
user-interactive method is proposed to deal with such unpredictable 
circumstances. 
 

Keywords—Face Processing, Craniofacial Feature Extraction, 
Preoperative to Intraoperative Registration, Registration Basis. 

I. INTRODUCTION 
EGISTRATION is a general term used to describe the 
alignment of two datasets. A registration basis is chosen 

in both datasets based on which an expression is formulated 
and optimised to obtain the transformation to bring about the 
alignment. An image-to-patient registration basis can be 
broadly classified as either prospective or retrospective [1]. 
The majority of frameless systems adopts a point-based 
registration basis [2]. The use of surgically-implanted 
fiducials and other less invasive techniques such as skin 
markers are not always practical because of their prospective 
nature. A retrospective basis goes a long way to easing the 
organisation of the diagnosis and surgery phases as the patient 
does not have to carry any artificial fiducials while awaiting 
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operation. Anatomical features can be used as a retrospective 
registration basis [3]. Commonly used anatomical features of 
the head include the tragus, medial canthus, lateral canthus 
and nasion [3,4]. Intraoperatively, the required features may 
be found by means of relatively inexpensive stereo white light 
imaging as long as the accuracy requirements are satisfied. 
Related literature for the registration of CT and white light 
modalities are: Colchester et al. [5,6,7] and Grimson et al. [8]  

The main contribution of this paper is the automated 
extraction of craniofacial landmarks in the white light 
modality. Feature extraction is an important task in Face 
Processing and the vast amount of literature available in this 
field provides a whole range of tools that can be applied to 
achieve the desired automated craniofacial feature extraction. 
The details of the registration protocol along with results 
obtained from two simulation studies for assessing the validity 
of the selected craniofacial landmarks (eye corner and ear 
tragus) are presented in [9]. The registration framework 
proposed in [9] includes the placement of the system with 
respect to the patient, which allows us to make certain 
assumptions which greatly simplifies the Face Localisation 
step and the setting of feature fields. 

As for the craniofacial feature extraction, methods 
described in the literature can be broadly classified as grey-
level image processing and statistical processing. The former 
relates to the use of image features such as edges and corners 
and known geometry about the features to be extracted to set 
decision rules for locating the position of the features. The 
statistical approach attempts to locate the features by 
constructing a model of the feature from known samples, 
which are then applied on unknown images. Template 
matching and neural network solutions fall under this 
category. Grey-level techniques have been found to be highly 
dependent on illumination, which is exacerbated by the need 
to set thresholds automatically for unsupervised processing. 

Template matching [10] and neural network solutions 
[11,12] offer the possibility of using large training sets. 
Different templates may even be used for different instances 
of the same feature, e.g. under rotation conditions. The 
location of the feature is then found by cross-correlation of the 
template(s) with the unknown image and a high response 
above a given threshold is chosen as the feature location. 
Construction of the templates/filters has been based on 
normalised image intensities themselves as well as on the use 
of Gabor filter response over a given number of scales and 
orientations [11].  

Extraction of Craniofacial Landmarks for 
Preoperative to Intraoperative Registration 

M. Gooroochurn, D. Kerr, K. Bouazza-Marouf, and M. Vloeberghs 

R 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:3, No:9, 2009

237

 

 

For the automated extraction of the craniofacial features, a 
similar approach has been adopted with neural network 
solutions, in which the network is trained to output a value of 
1 when a feature set corresponding to the desired feature is fed 
to the network, otherwise a value of -1 is the output. Feature 
vectors can similarly be constructed based on image 
intensities and Gabor responses. Algorithms based on Gabor 
masks have been shown to perform better than their 
intensity/gradient counterparts [13]. 

Based on the robustness of statistical methods, the different 
craniofacial feature extraction functionalities have been 
developed using Neural Networks, with separate nets trained 
for eye corner extraction in the different views. The same 
applies to the extraction of the ear tragus. Grey-level methods 
have been reported widely in the literature for the extraction 
of eye features, but ear feature extraction has been much less 
popular, possibly due to their occlusion by hair and absence in 
frontal view images. The variations in their shape, size and 
reflectance properties from person to person cast doubts over 
the robustness of using grey-level operations for ear detection 
and ear feature extraction. Based on the proven saliency of 
Gabor features, a neural network approach using Gabor filter 
response has been adopted in this work. Comparison between 
the detection rate in using intensity and Gabor features as 
input is presented in Section III. 

The type of neural network used is a Polynomial Neural 
Network (PNN). The discriminatory power of PNN for 
classification problems has been shown by Huang et al. [13] 
for Face Localisation, where it was described to have a better 
performance than a MultiLayer Perceptron (MLP). PNN 
combines the input vector by finding product combinations 
between the input vector elements and thus expands the input 
feature set. The concomitant expansion in dimensionality is 
compensated by Principal Component Analysis (PCA) 
whereby the dataset is mapped to a lower dimensional space. 

Section III describes the setting of the landmarks fields 
based on statistical measures of the craniofacial landmarks, 
generation of Gabor feature vectors for a given 
neighbourhood, their reduction into a lower dimensionality 
feature set using PCA, which is then used for training a PNN. 
The trained neural networks are ultimately applied for feature 
detection and localisation. 

A. Research Context 
The three neurosurgical procedures for which this 

registration technique is developed pertain to emergency 
medicine. These neurosurgical procedures are: Intracranial 
Pressure (ICP) monitoring, External Ventricular Drainage 
(EVD) and Chronic Subdural Haematoma (CSDH). ICP 
monitoring is used to measure the pressure of Cerebrospinal 
Fluid (CSF) inside the cranial vault, based on which the next 
course of treatment is decided. EVD is the procedure adopted 
to drain off excess CSF when the level of pressure measured 
is higher than a given threshold. CSDH is the occurrence of a 
blood clot between the Dura Mater and the brain surface 
which exerts undue pressure over the latter. Evacuation of the 

haematoma is the aim of this procedure, achieved by 
channelling a catheter into the haematoma capsule and either 
allowing the blood clot to drain off on its own or irrigating it 
with saline solution  

To this end, this framework has been set up using machine 
vision tools to provide treatment as fast as possible within the 
accuracy limits allowed. The design methodology adopted has 
been to use proven Machine Vision tools of low complexity 
coupled with more advanced methods when improvements are 
needed. This design paradigm lends itself to more robust 
solutions, especially for practical systems.  For example, the 
simple Direct Linear Transformation (DLT) method without 
error correction has been used for calibration and 
reconstruction purposes as it yields a linear solution; error 
correction can be added at a later stage to improve accuracy. 

The preoperative space is characterised by a 3D CT surface 
rendered model of the patient’s head, constructed from CT 
scans. On the other hand, the intraoperative pose is 
reconstructed from stereo camera views taken from frontal 
and profile positions with respect to the patient as well as 
from a third position intermediate between the frontal and 
profile positions. Pairing of the craniofacial landmarks in the 
stereo views allows their 3D reconstruction in the white light 
modality and ultimately the correspondence of the landmarks 
in the two modalities is used to align the two spaces. The entry 
and target points specified by a neurosurgeon can then be 
mapped onto the patient’s head inside the Operation Room 
based on the resulting transformation. 

Tests to carry out the proposed registration technique have 
not been possible to date due to the lengthiness of clinical 
trials and the associated high costs. [9] presents simulation 
studies to assess the validity of employing the selected 
craniofacial features as registration basis for achieving 
registration errors less than 5mm. The next section describes 
the placement of the camera system with respect to the patient, 
following which the automated extraction of the craniofacial 
landmarks is presented. 

II. REGISTRATION PROTOCOL: SYSTEM PLACEMENT 
To ensure accurate reconstruction of scene points by 

Photogrammetry, the object being measured should lie within 
the calibrated space [14]. Due to the spatial constraints laid by 
the position of the calibrated space onto the image planes in 
the different views, the extents of this calibrated space are 
utilised to position the camera system with respect to the 
patient. The extents of the calibrated space depend on the size 
of the calibration object employed, which in turn is chosen so 
that the object to be measured lies completely within that 
space. A possible method to locate the patient’s head within 
the calibrated space is to use datum lines over the frontal and 
profile views. These datum lines are permanently marked on 
the frontal and profile displays and get overlaid over the 
patient’s head in those views. The datum lines can then be 
used by the operator to position the camera system with 
respect to the patient.  
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The extreme position for the boundary of the calibrated 
space as observed in the profile view is made to match with 
the nose tip. This ensures that the patient is properly placed 
with respect to the frontal view in terms of the camera 
working distance. Additionally, having a central vertical line 
in the frontal view, which is aligned with the patient’s nose 
centre and the middle of the two eyes, locates the patient 
correctly in the profile view. An additional horizontal line in 
the frontal view which is aligned to the eye corners sets the 
patient’s head location with respect to the vertical axis of the 
camera image planes. Fig. 1 illustrates these datum lines in the 
frontal and profile views. Graduations on the horizontal line in 
the frontal view can be used to constrain the yaw movement 
of the head, whereas making the same horizontal line pass 
through the eye corners as much as possible constrain the roll 
of head. 
 

 
Fig. 1 Datum Lines for Initial Camera Set-up 

 
The next section describes the Machine Vision tools 

inherited from Face Processing literature to aid in the 
automated extraction of the selected craniofacial features. 
Implementing any automated tool, especially in a critical 
application like robotic surgery, necessitates robustness and 
consistency of operation. Section IV introduces concepts that 
can be used to cope with failures of the automated extraction. 

III. CRANIOFACIAL LANDMARK EXTRACTION 
In a general framework for Face Processing, the following 

sequences of tasks are normally followed: Face Localisation, 
Facial Feature Extraction and Face Recognition [15]. The 
third task is not applicable in the context of this registration 
framework. However, Face Localisation and Feature 
Extraction are steps needed to derive the feature set for the 
white light modality. The system placement method described 
above resolves most of the Face Localisation problem by 
using the expertise of the operator in localising a human face 
and placing the camera system so that the datum lines marked 
over the display overlays onto images of the patient in a pre-
defined manner. The extraction of the eye corners in the 
frontal view can thus be performed along the horizontal line, 
starting from the intersection of the horizontal and vertical 
lines. Setting of the feature fields for the eye corners and the 
ear tragus in the different views has been done based on Face 
Statistics, as detailed next. 

A. Face Statistics for Setting Feature Fields 
With the placement strategy discussed in Section II, 

important inferences can be made about the location of the 
face and for setting the fields for the eye corners and ear 
tragus. This section presents simple statistics that can be 
employed to set these field windows grossly. These statistics 
were derived from test images of local volunteer subjects (Fig. 
2). 

 

 
Fig. 2 Sample Images taken at University 

 
The images were taken with cameras placed at frontal, 

profile and intermediate positions (see Fig. 5). Statistical 
parameters for specific distance ratios between features in the 
different views are calculated next. This is made possible by 
the negligible variation of the scale of the images due to the 
common protocol used for the camera system placement for 
all the subjects. The distances shown in Fig. 3 have been used 
to compute the ratios. 

 

 
Fig. 3 Distance measures used to compute ratios 

 
Distance a has been used as the reference in the different 

ratios since it can be quickly inferred from the datum lines in 
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the frontal view. These ratios were computed from 30 image 
sets similar to those shown in Fig. 2.  

Table I summarises the results obtained for the 30 datasets 
by giving the means and standard deviations for the different 
ratios.  

 
TABLE I  

STATISTICS OF RATIOS 
RATIOS MEAN STANDARD 

DEVIATION 
b/a 2.52 0.17 

c/a 1.11 0.28 

(c+d)/a 3.41 0.41 

e/a 0.65 0.28 

(e+f)/a 0.89 0.19 

 
Since the horizontal datum lines in the frontal and profile 

images are made to pass more or less over the eye corners, the 
approximate vertical position of the eye corners are defined in 
all the views. The horizontal positions of the outer eye corners 
in the frontal view are set based on the ratio b/a. Ratio c/a can 
be used to set the horizontal position of the outer eye corner in 
the profile view. The ear tragus in the profile view is 
undefined in the horizontal and vertical dimensions, so ratios 
(c+d)/a and e/a are used in a similar way to set the area of 
interest (AOI) for the ear tragus with respect to the vertical 
nose line and the horizontal datum line. The AOI for these 
fields can be set by taking three standard deviations on either 
side of the mean (to encompass more than 99% of the 
expected values). 

As described later, a 31x31 window size is used to scan the 
AOI for detecting the features. In collecting the training set, 
the feature to be detected was placed at the centre of the 
31x31 window. Since the ratios derived above give the spatial 
distribution of the features, half of the 31x31 window size is 
added around the AOI obtained from the ratios to make sure 
the features are not missed. AOIs obtained by applying these 
ratios and compensating for the size of the scanning window 
for the outer eye corners in the frontal view and ear tragus in 
the profile view are shown in Fig. 4 for two sample images. 

 

 

Fig. 4 Setting gross feature field 
 
Fig. 5 shows the 3-camera configuration employed for 

capturing the different views of the patient’s head. The three 

cameras are arranged over a circle’s quadrant so that the 
working distances are equal. In this way, the regions defined 
in any two views are constrained to lie in a given region of the 
third view. With the vertical position set to be equal in all the 
views, this allows us to set similar AOIs for the ear tragus and 
the outer eye corner in the intermediate view as well. 

 

 
Fig. 5 Camera Geometry Constraints 

 
The next tasks presented are the precise localisation of the 

outer and inner eye corners in the frontal view and ear tragus 
in the profile view. The precise localisation has been 
developed on smaller windows compared to the AOIs 
obtained using the ratios, especially relative to the window 
obtained for the ear tragus which had a large variability 
between the subjects. Methods to constrain the search region 
from the AOIs will be sought so that the techniques developed 
next are applied over a smaller region. 

B. Eye Corner Extraction 
With the AOIs  for the inner and outer eye corners set based 

on the geometrical constraint of the initial placement of the 
camera system with respect to the patient, the next task is to 
locate the inner eye corners in this window followed by the 
outer eye corners. Since eye corners are salient features of the 
face, it is no doubt that a vast amount of literature exists 
related to this task. The seminal method in this respect [16] 
relied on grey-level processing to extract edges from the face 
area and using integral projections to locate the eye region. 
Similar methods have since been used to locate the eye centres 
as the latter appear as dark areas with respect to the eye sclera 
and thus a valley is obtained in the integral projections. 
Extraction of the eye corners using filter masks, once the eye 
field has been precisely localised, is proposed in [11] where a 
5x5 filter is constructed for the inner eye corner and a 7x7 
filter is used for the outer eye corner. These filters are 
obtained by averaging the response of Gabor filters over two 
scales and eight orientations. Colour-based segmentation [17] 
has also been applied for this task in which the eye region is 
first segmented from the eye field followed by finding the 
extremities of that region, which are assigned to the inner and 
outer eye corners. Use of Gabor features over grey-level and 
gradient values has been shown over recent years to yield 
more robust performance for either detection or recognition 
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and the recent trend has seen a clear inclination for the former. 
The approach adopted for the eye extraction (and ear 

extraction) is a combined detection and localisation 
methodology in which a high response from the classifier 
signifies both the presence of an eye and the location of the 
eye corner. Gabor features are used to form the feature vector 
for training the classifier. The 2D-Gabor filter can be 
represented in the normalised form as proposed by [18]: 
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Where x and y are the spatial dimensions. The Gabor filter 

is a complex sinusoidal plane wave modulated by a Gaussian 
envelope, the frequency of which can be varied by the 
parameter f. Fig. 6 shows an example of a Gabor filter’s real 
part. γ and η are the standard deviations of the Gaussian 
envelope along the two spatial dimensions. Angle θ sets the 
orientation of the filter. The Gabor filter has been shown to 
provide the minimum uncertainty in time and frequency 
domains [19]. Furthermore, its association with the response 
of the visual cortical cells [20] lends more support to its use as 
a feature extractor as it is a constant drive of Machine Vision 
to mimic the capabilities of the visual system. 

 

 
Fig. 6 Example of Real part of Gabor filter  

 
With the flexibility of the Gabor filter to sweep a wide 

range of orientations, 8 orientations are normally chosen to 
cover a full revolution and 5 scales to vary the frequency. The 
scales are normally chosen to be multiples of 2 so as to keep 
the frequency bandwidth to 1 octave. So it is common in 
Machine Vision applications to use 40 masks for feature 
extraction. The frequencies and orientations are then given by: 

8,...,2,1,
8

2*)1(

5,...,2,1,
2 1

max

=
−

=

== −

mm

k
f

f

m

kk

πθ
                   (2) 

 
However, the full set of 8 orientations and 5 scales have not 

been used in building the feature set for the craniofacial 

extraction; only two scales and four orientations have been 
used for the results presented. The maximum frequency 
employed was 0.25 per pixel so that wavelengths of 4 and 8 
pixels were obtained for the two scales. The minimum 
wavelength of 4 pixels is set to satisfy the minimum 
wavelength of 2 pixels given by the Nyquist criterion. The 
four orientations chosen were 0, 45, 90 and 135 degrees. From 
the response of the Gabor masks over the two scales and four 
orientations, illumination invariance is achieved by dividing 
the responses by the root mean square value of the magnitudes 
of the responses over all the scales and orientations used. If 
Gk,m represents the response at scale k and orientation m at a 
given location (x, y), then the normalisation step for 
illumination correction can be expressed as follows [21]: 
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Alternatively, Huang et al [13] performed illumination 

correction by subtracting a best-fit intensity plane from the 
image. The size of each of the matrix Gk,m depends on the 
neighbourhood around the location chosen. For the inner and 
outer eye corners extraction, a 31x31 region centred at the eye 
corner, was selected in face images. Gabor kernels were 
generated for frequencies of 0.25 and 0.125 per pixel with 
unity values for γ and η and orientations of 0, 45, 90 and 135 
degrees. These Gabor kernels were convolved with the 31x31 
eye corner windows from which the central 15x15 region was 
selected to form the Gabor feature vector. 8 such 15x15 Gabor 
response matrices were obtained over the two scales and four 
orientations applied. These were normalised using Equation 
(3) and arranged into a column vector, from which the feature 
vector to train the PNN is derived as described later. The 
Gabor response, being complex, offers the possibility to use 
both the phase and magnitude to form the feature vector.  

Face samples from the AR database [22] were employed for 
tests on the eye corners extraction. The face samples have 
been taken to give a realistic variation of facial state 
commonly occurring in an uncontrolled environment, such as 
face occlusion, emotions and illumination changes. Occlusion 
of facial features and emotions has not been considered in the 
tests carried out. However, illumination changes have been 
taken into account as changes in light level inside the 
Operating Room should be tolerated to a certain extent. The 
AR database offers four images of interest in this respect for a 
given subject. These are: 

1. Normal lighting 
2. Higher illumination from the left side of the face 
3. Higher illumination from the right side of the face 
4. Higher than normal illumination over the whole of the 

face 
These variations in lighting were used to test the robustness 

of the algorithm to changes in lighting. One hundred samples 
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of size 31x31, with the outer eye corner located at the centre, 
were collected from these images.  A 1800-element vector 
was thus generated for each image sample (15x15 central 
pixels of 31x31 window over 2 scales and 4 orientations) from 
the normalised Gabor magnitude response. These samples 
were used to generate the feature vectors for the true positive 
training set for the neural network for which outputs of +1 
were set. Additionally, samples where the outer eye corners 
were not in the central position of the 31x31 window were 
collected; regions like the eyebrows and cheek/hair line were 
also included as the windows for the eyes are set with a fair 
degree of tolerance and these facial features may come in the 
field. Outputs of -1 were set for these samples. A PNN was 
used as the classifier for the feature detection and localisation 
based on its robust discrimination by using product 
combinations of the input feature vector in addition to the 
input vector itself. A single hidden layer network architecture 
is employed with one neuron in the output layer. 

 

 
Fig. 7 PNN Architecture 

 
The overall transformation of the network can be expressed 

as: 
)).,(*( bzzzWTQ T +=                        (4) 

 
where T is the activation function, W is the input weight 
matrix, b is the bias, z is the input vector and from it, the 
product combinations z.zT is derived, which contains all the 
product combinations between the input vector elements. The 
output of the network is Q. The dimensional expansion in 
finding product combinations of the input vector makes it 
computationally intensive to directly use the 1800 elements of 
the Gabor feature vector as input since it would increase the 
number of dimensions to 1800*1800 + 1800. So the feature 
set obtained for the positive samples are first mapped to a 
lower dimensional basis using Principal Component Analysis 
(PCA). The output of PCA is a set of eigenvectors and 
eigenvalues, from which the contribution of each eigenvector 
as a basis for the representation of the dataset can be gauged 
by its corresponding eigenvalue. Although the selection of the 
number of dimensions to retain in the dataset is arbitrary, the 
minimum number of dimensions was determined from the 
eigenvalue spectrum by finding the eigenvalue number at 
which the sum of eigenvalues arranged in descending order, 
starting from the lowest and summing towards the largest, 
equals the highest eigenvalue.  

With the possibility to use both the magnitude and phase of 
the Gabor response to form the feature vector, input vectors of 
size 1800 and 3600 can be constructed. However, from 
dimensional reduction by PCA, the combined magnitude and 
phase case led to a generally high lower limit for the number 
of dimensions, making networks based on them difficult to 
train as they require a much larger training set. Based on these 
observations, the magnitude of the Gabor response was used 
for further tests. The dataset is then mapped onto the reduced 
dimensional space and the product combinations are computed 
to act as the input for the PNN. Additionally, a further input is 
computed based on the mapped (z) and original (X) datasets 
by finding the following distance measure:  

 
  ∑∑ −−= 22)( zXXD       (5) 

 
This distance measure is added to the input feature vector. 

The resultant feature set was used to train the PNN. This 
procedure was followed both for the outer and inner right eye 
corners. The first test performed was for the outer eye corner 
for normal and high illumination images. The criterion for 
successful localisation was set within a 3 pixel margin of the 
eye corner. A hundred positive samples taken from four 
images of twenty-five subjects were collected for the normal 
and high illumination scenarios. For subsequent testing, the 
trained neural network was applied on 300 sample images of 
subjects not included in the training set, giving a detection rate 
of 94%. The method of illumination correction used in this 
case was subtraction of an intensity plane of best-fit. Fig. 8 
shows some output samples for the outer eye extraction. 

 

 
Fig. 8 Examples of Outer Eye Corners Results 

 
It is worth mentioning that similar tests on the same training 

and testing datasets with a 15x15 intensity window yielded a 
detection rate of 86%. Comparing the performance, it was 
obvious that the Gabor features achieved better results. 
Moreover, it was evident during testing on face samples, not 
included in the training set, that the bright images performed 
poorer compared to normally lit ones, despite the presence of 
bright samples in the training set. Thus the next tests 
performed for the inner eye corner were based only on face 
samples taken under normal lighting conditions. These 
amounts to two per subjects in the AR database [22] giving 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:3, No:9, 2009

242

 

 

fifty samples for training for the same 25 subjects used 
previously. Although lighting conditions will not be 
controlled during the surgery, global image statistics derived 
from a histogram can be effectively used to control the 
aperture of the cameras to prevent overly bright or dark 
images. The histograms of the eye windows for the brightly lit 
images were largely saturated, and this was the reason for 
trying the tests for the inner eye corner over the normally-lit 
images. The tolerance of the network to changes in brightness 
and contrast will be assessed at a later stage by applying 
histogram sliding and contrast stretching to the normally lit 
eye windows to progressively increase and decrease the 
contrast and brightness and assess the resulting network 
performance. This should enable setting of ranges over which 
the network can operate properly. 

For the tests with the inner eye corner, illumination 
invariance was achieved by the method proposed in [21] 
where the response matrix is divided by the root mean square 
value of the whole responses over the different scales and 
orientations as given in Equation (3). When tested over 150 
subjects not used as part of the training set, 149 successes 
were recorded (based on the same criterion as for outer eye 
corner). The only case where the algorithm was deemed to 
have failed was when the PNN response was below 0.5 
although the position was correct. This can be corrected by 
training this particular instance as a false negative, but the aim 
of the experiment was to find how well the classifier 
generalises over data not used during training. Fig. 9 shows 
output samples for inner eye corner extraction.  

 

 
Fig. 9 Examples of Inner Eye Corner Extraction Results 

 

C. Ear Tragus Extraction 
The same methodology was adopted for ear tragus 

extraction, with the use of the PNN as a classifier and Gabor 
masks for feature extraction. Normalisation was achieved by 
dividing by the root mean square of the Gabor responses. 
However, during the training set collection, it became evident 
that the ear structure varies considerably more from subject to 
subject than the eye corner. The variation occurs in size, shape 
and complexion of skin. Again the same basis for lighting 
correction by using global image statistics was adopted, so 
that changes within the range of white saturation and black 
level clipping was considered, and any situation found to lie 
outside this range can be corrected during image capture by 

adjusting the camera aperture. With the variation in the size of 
the ear structure, scaling was used to make sure the chosen 
31x31 window size contained the ear tragus, the anti-tragus 
and the valley linking these two (Fig. 10).  

 

 
Fig. 10 General outside ear anatomy and desired ear structure to 

appear in 31x31 window [23] 
 

Scales of 1, 0.9, 0.8, 0.7 and 0.6 were used during 
collection of the training set; for a given image, the scale at 
which the 31x31 window contained the desired ear structures 
was saved as a training sample. Samples where this structure 
did not appear were also collected and used as false positives 
in the training set. The FERET database [23] was used for the 
ear tragus extraction as views are available around the 
subject’s head at an angle of 45 degrees as well as profile 
images. With the complexity of the ear tragus, the training of 
the neural network was done in phases, as it was evident that 
ear shape would have a significant impact on the detection 
rate. The first training was done on 100 images, followed by 
tests on 90 samples not used during training. A detection rate 
of 76% was achieved under a similar criterion of 3 pixels 
margin from the true position. The false negatives were 
collected and added to the training set for the next training 
phase. At this point, PCA was again carried out because the 
basis vector and the mean had to be updated. The PNN was 
trained again on the new training set and the false positives 
collected during subsequent testing. In the second testing 
phase, the newly trained neural network was tested over 181 
face samples not used for training, out of which 169 were 
successful (93% detection rate). The improvement in detection 
rate can be attributed to the inclusion of more shape variations 
of the ear in the training samples. Further inclusion of false 
negatives and training over more samples is expected to 
further improve the accuracy. Fig. 11 shows output samples for 
the ear extraction. 

The use of several scales means that the responses have to 
be merged to define a single location for the ear tragus since 
only one ear tragus was searched for in a given image. The 
highest response over the different scales is chosen to be the 
one defining the location of the ear tragus. 
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Fig. 11 Examples of Ear Tragus Extraction Results 

 

D. Photogrammetry for Craniofacial Feature 
Reconstruction 

Using the three camera system depicted in Fig. 5 implies 
that the ear tragus can be reconstructed fully from the profile 
and intermediate views and the inner and outer corner for one 
of the eyes can be reconstructed fully from the frontal and 
intermediate/profile views. The other eye is seen in only the 
frontal view and of itself, this is insufficient to reconstruct the 
3D coordinates. Assuming a coordinate system with the 
frontal image plane giving the X-Z dimensions and the profile 
image plane giving the Y-Z dimensions, using a technique 
similar to Ansari et al. [17], the missing Y-coordinates for the 
eye corners on the hidden side of the face can be found in the 
image plane coordinate by symmetry. In this way, the 3D 
coordinates of the two eyes’ inner and outer corners and one 
ear tragus can be obtained. The ear tragus on the hidden side 
of the head cannot be found since it does not appear in any of 
the views. With at least three of these five landmarks, it would 
be theoretically possible to perform rigid-body reconstruction. 
However, based on their distribution, it is inappropriate to use 
only the facial features; the ear tragus should be added in the 
registration basis to ensure wide enough coverage of the 
feature points. 

IV. USER-INTERACTION IN REGISTRATION FRAMEWORK 
Since the proposed registration framework will be operated 

in a medical environment, as part of head injury management, 
it is imperative to ensure a robust operation of the developed 
algorithms. The validation of lighting adequacy is a way to 
achieve proper brightness and contrast in the camera images 
captured and this has been shown to yield better detection. 
This section introduces concepts that will be applied in the 
framework to ensure robustness during the running of the 
procedure as far as the registration is concerned. 

A. Refining &Validating the Automated Response 
Although the goal of using image-guided solutions for the 

three neurosurgical procedures is to make them as widely 
accessible as possible, the benefits of the system, although 
compelling as an outcome in the management of head injuries, 

do not guarantee its uptake by the medical community. The 
integration of the proposed concept within the medical setup 
to act as a powerful medical tool is an important factor in its 
uptake. The system is asked to give confidence to the operator 
by providing clear indications about its present and future 
course of action. Once the system is correctly put into position 
with respect to the patient, automated extraction of the 
craniofacial features is undertaken. The successful extraction 
of the craniofacial features leads to overlaying the results onto 
the CT scans in a manner that clearly shows the matching of 
the landmarks in the two modalities. 

At this point, the operator is asked to validate whether the 
overlapping has been correctly performed, and with it, the 
registration link between CT and the patient. In the event the 
user sees any discrepancy in the mapping, he/she can 
intervene to either move the landmark(s) found by the system 
to position(s) thought to be more appropriate. In this way, the 
onus to understand and implement all the steps correctly by 
himself/herself is taken away from the user as the system 
works in synergy with the operator. 

Situations where the system cannot detect the craniofacial 
features in one or more of the views will make it impossible to 
reconstruct the 3D coordinates of these landmarks. This 
failure can arise for several reasons, one being evidently the 
inability to design Machine Vision systems that operate 100% 
in all circumstances. Linked to this aspect of Machine Vision 
systems is the ability to cope with new types of datasets, e.g. a 
new ear shape may lead to unpredictable performance from 
the ear tragus detector. Another difficult scenario that can be 
encountered in the management of head injuries are damaged 
or swollen parts of the face. Although more research needs to 
be carried out in this respect with particular attention to 
anatomy and the correspondence to what is seen in CT scans 
and camera images, the next section gives some insight about 
how injuries to the face can be dealt with. 

B. Non-Invasive Contact Fiducial for Landmark 
Localisation 

The benefit of not using artificial fiducials as registration 
basis is unequivocal; better organisation of diagnosis and 
surgery is achieved by a markerless registration basis. Within 
the framework of the targeted emergency procedures, a 
markerless basis would reduce the need for additional surgery 
and extra scanning of the patient with fiducials implanted. The 
ability to rely on the automated mode while providing for an 
alternative way to perform the registration in the event the 
automated functionality fails stem again from the relatively 
low accuracy needed for the particular task at hand as 
compared to other precise neurosurgical procedures. 

Although still at the conceptual stage, a possible solution 
proposed for managing injuries to the head/face is a handheld 
rod with a spherical end having good contrast from its 
surroundings so that it can be easily picked up by the cameras. 
This contrast can be achieved by having an LED in the 
spherical end. The operator places the sphere in contact with 
the eye corner or the ear tragus, which is segmented and 
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paired in the stereo views. This should be possible in a robust 
and repeatable manner. The user would rely on this contact-
based method either if he/she is not satisfied with the point 
given by the system or the system could not detect a point at 
all. Upon successful reconstruction of the features and 
registration with the CT space, the resulting mapping is again 
displayed to the user by overlapping the two modalities. The 
user is asked to validate the registration before the subsequent 
image-guided steps can start. 

V. DISCUSSION 
The general theme of this paper has been the generation of 

a markerless registration basis for capturing and modelling the 
patient’s pose intraoperatively. Although different methods of 
performing preoperative to intraoperative registration exist, a 
registration protocol has been conceived, aimed at employing 
relatively low cost equipment for the registration 
requirements. Use of sophisticated and costly techniques of 
registration such as opto-tracking systems and laser range 
scanners has been avoided in implementing the registration 
protocol since the main objective of the project is to design a 
system which can be used by local hospitals. This is a key 
factor to make the targeted neurosurgical procedures as widely 
accessible as possible.  

Additionally, the retrospective nature of using natural 
landmarks as the registration basis decouples the organisation 
stages of preoperative CT scanning for diagnosis and the 
surgical intervention itself as the patient does not have to carry 
the fiducials between these two stages. Further benefits 
include reduced pain for the patient, no risk of infection from 
the placement of the fiducials and within the purview of 
emergency head injury management, it gives the optimal time-
to-treatment. 

Selection of a given registration basis puts certain 
constraints on the registration framework in terms of the 
achievable accuracy whereas the method adopted to extract 
the features determines the type of equipment required 
intraoperatively. Registration of  CT and white light images 
using anatomical landmarks has previously been undertaken 
by reconstructing 3D surfaces from point clouds, but at the 
cost of expensive equipment and lengthy protocols. Other 
techniques using pixel values of the whole image in the two 
modalities avoid segmentation of features and by using more 
information, achieves more robustness. But the computational 
load is often high for these techniques and the modalities need 
to be roughly aligned for them to converge to the correct 
solution. The three neurosurgical procedures do not require 
very high accuracy, thus leading the way to simpler equipment 
and algorithms. 

However, segmentation of features, especially by 
automated techniques, remains a challenge in Machine Vision 
applications and the uncertainty it carries with respect to 
intensity variations in the raw sensor data casts doubts on the 
reliability of setting threshold levels for segmentation 
automatically. This uncertainty makes semi-automated 

techniques for gross positioning a preferred option, where the 
user is allowed to intervene and set global constraints in the 
solution, e.g. by defining a region of interest for a feature to 
lie instead of allowing the algorithm to search exhaustively 
over the whole image. The subsequent refinement of the 
registration is then achieved by using more information-rich 
methods such as intensity-based methods.  

The same methodology is implemented in the proposed 
framework, with the use of automated extraction of 
craniofacial landmarks by a neural network approach. 
However, the refinement of the solution has not been 
considered at this stage as simulation studies [9] show that the 
5mm accuracy aimed at can be achieved solely by a feature-
based approach. Further work in a clinical set-up will help 
validate this hypothesis and pave the way to improvements if 
deemed necessary. The validation of the landmark extraction 
is performed by the user on the end result, that is, on the 
mapping of the stereo views onto the CT head model. It 
cannot be ascertained that the landmark extraction algorithms 
will succeed in all cases,. Nonetheless, using the validation of 
the result at the output stage of the registration brings both 
confidence and robustness in using the system. 

Neural network solutions for similar tasks have been shown 
to achieve high levels of performance, especially when trained 
over a large dataset. So the same can be expected for the 
craniofacial landmark extraction as more samples of eyes and 
ears are trained into the system, especially for the ear as they 
were found to have large variations in shape and size. In this 
regard, an automated paradigm as a first course of action is 
justified as compared to one based solely on manual 
extraction; a high detection rate means that most of the time 
the system will automatically extract the features and perform 
the registration correctly. Moreover, the automated extraction 
mode is believed to bring more synergy between the user and 
the system. 

VI. CONCLUSION 
The automated extraction of craniofacial landmarks in 

white light modality as a component of a registration 
framework for preoperative CT to intraoperative white light 
images has been described. This registration methodology has 
been devised to support three neurosurgical procedures that 
are emergency in nature. Simulation of the registration 
framework gave errors within the required 5mm accuracy. 
Clinical tests of the protocol will give definite measure of the 
adequacy of the framework and lead the way for any further 
improvements needed.   

Central to the extraction of the landmarks in the white 
modality is an automated approach for which a neural network 
solution has been illustrated. An automated approach to this 
task is considered an important ingredient in the successful 
uptake of the system in the medical set-up as it brings synergy 
between the user and the system. The automated extraction 
algorithms presented employed a Polynomial Neural Network 
(PNN) classifier with Gabor features as input. A detection rate 
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of 94% was obtained for the outer eye corner for tests on the 
AR database with frontal view samples containing images 
with normal and bright illumination. A 99% detection rate was 
obtained for the inner eye corner when the same subjects were 
used, excluding the brightly-illuminated cases.  The influence 
of images with intensity distributions close to the dark and 
bright extremes of the dynamic range were found to be 
detrimental to the generalisation of the classifier. Hence a 
histogram-based method for adjusting the aperture of the 
cameras is envisaged. 

Extraction of the ear tragus proved to be more complex due 
to the size and shape variations among subjects. Progressive 
training and testing yielded a detection rate of 93%. The 
detection rates for the landmarks in general are expected to 
improve further as more samples are included in the training 
set, thus reducing the frequency of automated incorrect 
registrations, and correspondingly reduced user interaction at 
the registration level. PNNs will be similarly developed for 
eye corner extraction in the profile and intermediate views and 
ear tragus extraction in the intermediate view. 

Validation of the registration between the preoperative and 
intraoperative spaces by the user is an important component of 
the framework to bring robustness and confidence in the 
system and allows to cope with the unsuccessful automated 
registrations. Finally, methods to deal with these eventualities 
have been presented. 
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