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A completed adaptive de-mixing algorithm on
Stiefel manifold for ICA

Jianwei Wu

Abstract—Based on the one-bit-matching principle and by turning
the de-mixing matrix into an orthogonal matrix via certain normal-
ization, Ma et al proposed a one-bit-matching learning algorithm on
the Stiefel manifold for independent component analysis [8]. But
this algorithm is not adaptive. In this paper, an algorithm which can
extract kurtosis and its sign of each independent source component
directly from observation data is firstly introduced. With the algorithm
, the one-bit-matching learning algorithm is revised, so that it can
make the blind separation on the Stiefel manifold implemented
completely in the adaptive mode in the framework of natural gradient.

Keywords—Independent component analysis; kurtosis; Stiefel
manifold; super-Gaussians or sub-Gaussians

I. INTRODUCTION

ONE of the main problems in independent component
analysis (ICA) is to recover independent sources which

have been mixed by an unknown channel. Generally, the
noiseless linear model of ICA problem is assumed as

x = As, (1)

where A is an n × n mixing matrix, s is an original source
vector which has n independent components and x is an n×1
observation vector.

ICA problem has been studied in the literature for many
years with a number of results. For the detailed review, readers
can refer to monographes [1, 2]. As well known, any decent
learning algorithm, such as the natural or relative gradient one
[3, 4], can work only in the cases that the components of
s are all either super-Gaussians or sub-Gaussians. In order
to separate observation data mixed with both super- and
sub-Gaussian components, Lee et al. proposed the extended
infomax algorithm [5]. This approach is to switch between
the super- and sub-Gaussian model depending on the sign of a
switching moment, which tests the stability of the solution [4],
and it only requires the estimation of one binary parameter per
source for each step of the algorithm. Moreover, for the general
ICA problem, based on experiments, Xu et al. summarized
the one-bit-matching principle [6] which states that ”all the
sources can be separated as long as there is a one-to-one same-
sign-correspondence between the kurtosis signs of all source
pdf’s and the kurtosis signs of all model pdf’s.” Although
the proof of the conjecture has not been obtained on some
general assumptions, a large number of experiments show its
correctness.

On the other hand, if the observed x and the output
y are pre-whiten or normalized during each phase of the
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learning process, the de-mixing matrix W should be an or-
thogonal matrix. So on the Stiefel manifold, by introducing
the general Gaussian distribution, Choi et al. proposed the
flexible independent component analysis algorithm [7]. The
algorithm can recover sources from their linear mixtures in
the way of adaptive model matching without any prior knowl-
edge of source distributions. Moreover, based on the one-
bit-matching conjecture, Ma et al. gave the one-bit-matching
learning algorithm on the Stiefel manifold in the framework
of natural gradient [8]. This algorithm is simple in the form.
But the number of super-Gaussian sources must be known
before the algorithm is carried out. Obviously, the algorithm
is not adaptive for the case which super- and sub-Gaussian
components coexist in an unknown mode. In this paper, for
noiseless observation data, we propose an algorithm which
can directly estimate kurtosis’ signs of components in original
sources from whitening observation data before any de-mixing
operation is carried out. By the estimation algorithm, we
can recognize the number of the super- or sub-Gaussian
components from noiseless observation data, and adaptively
separate mixed sources with both the super- and sub-Gaussian
components on condition that the number of super-Gaussion
sources is unknown in the framework of natural gradient on
the Stiefel manifold.

II. THE IDENTIFICATION OF THE KURTOSIS OR ITS SIGN
FOR SOURCE COMPONENTS

The kurtosis of a random variable Y(assuming E(Y) = 0)
is defined as

κ4 = E(Y)4 − 3(E(Y2))2. (2)

In this section, based on the fourth order blind identification
[9], a theorem which expresses the kurtosis of independent
source components with eigenvalues of some relative matrices
is given as follows. By the theorem, an algorithm of directly
exacting kurtosis signs from the noiseless observed data is then
presented.

Theorem 1. Suppose that the observation data are

x = As, (3)

where A is an n×n nonsingular mixing matrix, s is an n× 1
source vector. The whitening matrix is B, and let U = BA,
v = BAs = Us, v̄ = v − E(v), then

E(v̄v̄T ) = Udiag(λ1, λ2, . . . , λn)UT , (4)

E(|̄s|2v̄v̄T ) = Udiag(μ1, μ2, . . . , μn)UT , (5)
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TABLE I
MISTAKE IDENTIFICATION TIMES IN 20 OPERATIONS FOR EACH DATA

GROUP.

data group 100 200 300 400 500 ≥ 600
3 sources 3 3 0 0 0 0
5 sources 3 2 1 1 0 0
7 sources 7 3 3 0 1 0

where s̄ = s − E(s) = (s̄1, s̄2, . . . , s̄n)T , λi = E(s̄i
2),

μi = E(s̄i
4) +

∑n
l=1,l �=i E(s̄l

2)E(s̄i
2), i = 1, 2, ..., n. Then

the kurtosis of all components in source are

μi −
n∑

j=1,j �=i

λjλi − 3λ2
i , 1 ≤ i ≤ n, (6)

where the eigenvalue order of two matrices is determined by
the orthogonal decomposition of E(v̄v̄T ) and E(|̄s|2v̄v̄T ) with
the same orthogonal matrix.

The proof of the theorem can be found in author’s another
paper [10].

From the theorem, v and |s|2 can be obtained from whitened
observertion data, and E(v̄v̄T ) and E(|̄s|2v̄v̄T ) must be ex-
pressed in Eq.(4) and Eq.(5). Actually, columns in U just are
common eigenvectors of E(v̄v̄T ) and E(|̄s|2v̄v̄T ).

Based on the theorem, for si in s, to extract its the kurtosis
sign from their noiseless mixture, the following algorithm from
the definition of the kurtosis can be obtained:

(i) whiten x = As such that v=Us;
(ii) v̄ = v − E(v);
(iii) computer eigenvalues of E(v̄v̄T ) : λi;
(iv) computer eigenvalues of E(|̄s|2v̄v̄T ) : μi;
(v) extract the sign of the kurtosis for si

ki = Sign(μi −
n∑

j=1,j �=i

λjλi − 3λ2
i ). (7)

From the algorithm, it is clear that the total number of
super-Gaussian components in mixed data equals the number
that the value of ki is equal to 1, where ki(1 ≤ i ≤ n)
which are defined in Eq.(7) can be obtained by the calculation
of eigenvalues of E(v̄v̄T ) and E(|̄s|2v̄v̄T ) with Eq.(7). In
order to test the validity and reliability of the algorithm,
some experiments on three sets of mixed data were conducted
respectively, where the first is three independent sources from
two super-Gaussian and one sub-Gaussian distributions, the
second is five independent sources from three super-Gaussian
and two sub-Gaussian distributions, and the third is seven
independent sources from four super-Gaussian and three sub-
Gaussian distributions.

For each set of mixed data, experiments were performed
with 15 groups of iid data, and the i-th group consists of i ×
100 data (i=1,2,...,15). The algorithm in section 2 was carried
out 20 times on each group of data, and in each time the
mixing matrix was randomly generated . The times that the
identification is not correct in 20 operations for each group
are listed in Table 1.

From the table, one can see that if data are enough, the
algorithm can correctly identify the numbers of super-Gaussian
component in noiseless mixed data.

III. THE ADAPTIVE DE-MIXING ALGORITHM ON STIEFEL
MANIFOLD

The Stiefel manifold Vn,p consists of n-by-p(n ≥ p)
orthogonal matrices. For each X ∈ Vn,p, its p column vectors
are pair-wised orthogonal in R

n. In the case of n = p, the
Stiefel manifold Vn,n consists of n × n orthogonal matrices.
For a smooth function F (X) defined on Vn,n, its gradient is

∇F = FX − XFT
XX, (8)

where FX is the conventional gradient of F (X) with respect
to X [11].

With the x pre-whitened, that is E(x) = 0, E(xxT ) = In,
for y = Wx on the Stiefel manifold, then

E(y) = 0 , E(yyT ) = In. (9)

So

In = E(yyT ) = WE(xxT )WT = WWT . (10)

Thus,W ∈ Vn,n. Therefore, if the observed x and the output
y are pre-whitened during learning process, then for the
orthogonal W, one can solve it on the Stifel manifold.

On the other hand, the objective function J(W) based on
information theory is given as in Section 1, and its decent
learning rule is (refer to [1] for details)

�W ∝ [In − ϕ(u)uT ]W. (11)

where

ϕ(u) = −
∂p(u)

∂u
p(u)

= (−p′1(u1)
p1(u1)

, ...,−p′n(un)
pn(un)

)T , (12)

and p(u) is the model probability density function.
For the ICA problem on the manifold, Ma et al. proposed the

one-bit-matching learning algorithm [8]. Under the condition
of the one-bit-matching [6], The first p model pdfs are selected
as super-Gaussians, and the left n − p model pdfs are sub-
Gaussians. Thus, after selecting p(u), ϕ(u) in Eq.(11) is

ϕ(u) = K1tanh(u) − K2u, (13)

where K1 = diag [−Ip, In−p], K2 = diag [0p, In−p],
tanh(u) = (tanh(u1), tanh(u2), . . . , tanh(un))T . With
Eq.(11), the one-bit-matching learning algorithm of W on the
Stiefel manifold as follows

JW ∝[In − (K1tanh(u) − K2u)uT ]W,

ΔW ∝JW − WJT
W W. (14)

Note that the p in K1 or K2 is unknown now, and it is just
the number of super-Gaussian sources in model pdfs. Before
the algorithm is carried out, the p must be known.

This algorithm is different from the flexible ICA algorithm
proposed by Choi et al [7], it is easy and understood. But
the obvious drawback of the algorithm is that the number
of super- or sub-Gaussian sources must be known before the
operation of the algorithm. So on the manifold the algorithm
is not used in the case that super- and sub-Gaussian sources
coexist in an unknown mode. With the identifying algorithm
of the independent component sign in section 2, the algorithm
can be revised as follows.
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With the identifying algorithm of the kurtosis sign in the
above section, one can estimate the p at first before the oper-
ation of the above algorithm. When the p is obtained, K1 and
K2 are immediately determined. Then, the gradient learning
algorithm provided with Eq.(14) is carried out. Obviously, in
this adaptive mode, the adaptive blind separation of sources
on the manifold can completely be implemented.

To test the validity of the adaptive algorithm, an exper-
iment on the noiseless ICA problem of five independent
sources was conducted, in which there are three super-
Gaussian sources generated from the exponential distribution
E(0.5), the Chi-square distribution χ2(6), and the the Gamma
distribution γ(1,4), and two sub-Gaussian sources generated
from the Beta distribution β(2,2) and the Uniform distribution
U([0,1]),respectively. 100000 iid samples were generated to
form a source from each distribution. The linearly mixed
signals were generated via the following orthogonal matrix
A:

A =

⎛
⎜⎜⎜⎜⎝

−0.4466 0.3602 −0.7987−0.0265−0.1844
−0.3491 0.1407 0.0455 0.2944 0.8772
−0.5950−0.1917 0.3217 0.5766 −0.4162
−0.4815 0.3369 0.4524 −0.6694−0.0445
−0.3076−0.8368−0.2277−0.3635 0.1456

⎞
⎟⎟⎟⎟⎠

. (15)

The learning rate was chosen as η = 0.001 and the algorithm
operated in the adaptive mode and was stopped when all the
100000 data points of the mixed signals had been passed only
once through our learning algorithm.

As a feasible solution of the ICA problem, the obtained
W will make WA =ΛP, where Λ =diag[λ1, λ2, . . . , λn] with
λi �= 0, and P is a permutation matrix. The result of the
adaptive learning algorithm on the Stiefel manifold is as
follows:

WA =

⎛
⎜⎜⎜⎜⎝

0.0151 0.9998 −0.0016−0.0088−0.0023
−0.0006 0.0016 1.0000 −0.0017−0.0037
0.9999 −0.0151 0.0006 −0.0041 0.0033
0.0042 0.0087 0.0017 0.9998 0.0172
−0.0034 0.0022 0.0037 −0.0172 0.9998

⎞
⎟⎟⎟⎟⎠

.

(16)

Meanwhile, with the extended infomax algorithm process-
ing the mixed signals, the result is

WA =

⎛
⎜⎜⎜⎜⎝

−1.6024 0.0068 0.0024 0.0547 −0.0574
0.0474 −0.2291−0.0044−0.0842 0.0027
0.0065 −0.0033−0.1918−0.0432 0.1068
−0.0297−0.0035 0.0032 6.4640 −0.1931
−0.0084 0.0002 0.0017 0.1171 −5.0005

⎞
⎟⎟⎟⎟⎠

.

(17)

As a performance measure, the performance index defined
by [2]

n∑
i=1

(
n∑

j=1

|gij |
maxk|gik| − 1) +

n∑
j=1

(
n∑

i=1

|gij |
maxk|gkj | − 1) (18)

is often used in literature, where gij is the (i,j)th element of
n × n matrix G=WA. For a perfect separation, this index
is zero. The index using the adaptive learning algorithm on
the Stiefel manifold and that using the extended infomax

algorithm are 0.7117 and 1.8722, respectively. One can see
that the performance of the adaptive learning algorithm on
the Stiefel manifold is much better than that of the extended
infomax algorithm.

IV. CONCLUSION

With the identifying algorithm of the kurtosis sign, a com-
plement adaptive de-mixing algorithm on Stiefel manifold has
been obtained when the super- and sub-Gaussian components
coexist in an unknown mode in observation data, but this
algorithm is still complicated. Actually, if we know the mixing
matrix is orthogonal beforehand, we can estimated source
signal with the simpler approach [10].
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