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Abstract—Transient eddy current problem is solved in the 

present paper by the method of the Laplace transform for the case of 
a double conductor line located parallel to a conducting half-space. 
The Fourier sine and cosine integral transforms are used in order to 
find the Laplace transform of the solution. The inverse Laplace 
transform of the solution is found in closed form. The integrated 
electromotive force per unit length of the double conductor line is 
calculated in the form of an improper integral.  
 

Keywords—Transient eddy currents, Laplace transform, double 
conductor line.  

I. INTRODUCTION 

HEORY of an eddy current method for the case  where a 
coil is excited by an alternating current is well-developed 

in the literature [1]-[4]. Current excitation in the form of a 
pulse represents an alternative to traditional eddy current 
methods. There are two basic methods that are usually used to 
analyze non-periodic time-dependent signals in eddy current 
testing: fast Fourier transform and Laplace transform. The 
difficulty in using the Laplace transform is that the inverse 
transform is not always available in closed form. However, 
several authors [5]-[8] have obtained analytical solutions for 
problems where a single-turn coil or a coil with finite 
dimensions is located above a conducing half-space assuming 
that the excitation current is in the form of a step current or 
exponential source current.  

In the present paper we consider transient eddy current 
problem for the case where an excitation coil is assumed to be 
of the form of a double conductor line formed by two infinitely 
long wires located parallel to a conducting half-space. The 
inverse Laplace transform is found in closed form for the case 
of an excitation current in the form of a unit step function.  
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II. MATHEMATICAL FORMULATION OF THE PROBLEM 

   Different types of eddy current coils are used in applications. 
One example is a coil in the form of a rectangular frame. If the 
ratio of the sides of the frame is 4:1 or larger then such a coil 
can be modeled by a double conductor line [9] with a 
relatively small error. Suppose that two horizontal infinitely 
long parallel wires are situated above a conducting half-space 
with electrical conductivity σ and relative magnetic 
permeability µ (see Fig. 1).  

 

 

 

 
 
 
 

Fig. 1 A double conductor line above a conducting half-space 
 

   Assume that the current in the wires is 
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at the points ),( 0 hy and ),( 1 hy , respectively, where 0I is a 

constant, and )(tϕ is the Heaviside function of the form 
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   We assume that the electric field 0E
r

and 1E
r

in regions 

}0{0 >= zR and }0{1 <= zR , respectively, has only one 

non-zero component in the −x direction:  
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where xe
r

is the unit vector in the positive −x direction. The 

system of Maxwell’s equations in this case can be transformed 
to one equation for the electric field which has the following 

form in regions 0R  and 1R : 
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where  )(ξδ   is the Dirac delta-function.  

The boundary conditions are 
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In addition, the following conditions hold at infinity: 
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The initial conditions are 
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III.  LAPLACE TRANSFORM OF THE SOLUTION 

Applying the Laplace transform to (4)-(7) we obtain 
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where 10 , EE  and I are the Laplace transforms of the 

functions 10 , EE and I , respectively, s is the parameter of 

the Laplace transform, and  
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It is convenient to represent the function ),,( szyf in (13) as 

the sum of even and odd functions of the form 

),,,(

),,()],,(),,([
2

1

)],,(),,([
2

1
),,(

szyf

szyfszyfszyf

szyfszyfszyf

odd

even

+

=−−+

−+=

           (14) 

 
where  
 

)],(

)()[(
2

)(
),,(

1

0
0

yy

yyhz
sIs

szyf even

−−

−−=

δ

δδµ
           (15) 

)].(

)()[(
2

)(
),,(

1

0
0

yy

yyhz
sIs

szyfodd

−−

−−=

δ

δδµ
 

 
The following properties of the delta-function are used in 

order to derive (14) and (15): (a) )()( yy δδ =− and (b) 

0)(,0)( 10 =+=+ yyyy δδ if 0≥y and 

.0,0 10 >> yy  

Thus, the solution to (9)-(12) is sought in the form  
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The Fourier cosine transform of the form 
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is used to find the even component of the solution. Applying 
the Fourier cosine transform (17) to (9)-(12) where the 

function ),,( szyf in (9) is replaced by ),,( szyf even we 

obtain 
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where .0
2 sq µσµλ +=  

In order to solve (18) we consider two sub-regions, 

}0{00 hzR <<= and }.{01 hzR >= , of region 0R . The 
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solutions to (18) in 00R and 01R are denoted by )(
00

cE and 

)(
01

cE , respectively.  

   The general solution to (18) in 00R is 
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The general solution to (18) in 01R which is bounded as 

+∞→z has the form 
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Finally, the general solution to (19) which remains bounded as 

−∞→z can be written as follows 
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Since there are four unknown constants in (21)-(23) and only 
two boundary conditions (20), we need two additional 

conditions at .hz =  One additional condition represents 

continuity of the electric field at hz = and has the form 
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Integrating (18) with respect to z from ε−h to ε+h and 

taking the limit as 0+→ε we obtain the second additional 
condition in the form 
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The constants 321 ,, CCC   and 4C in (21)-(23) are 

determined from (20), (24)-(25) and have the form 
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Using the inverse Fourier cosine transform of the form 
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we obtain the solution ),,( szyE eveni in regions 0R and 1R : 
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Here ),,()(
0 szyE free

even is the even component of the electric 

field in free space while ),,()(
0 szyE ind

even is the even 

component of the induced electric field due to the presence of 
the conducting half-space. 
    The Fourier sine transform of the form 
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and the inverse Fourier sine transform 
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can be used in order to find the odd components of the 
solution. It can easily be shown that the odd components of the 

solution, ),,(0 szyE odd and ),,(1 szyE odd are given by (31) 

and (32) where cosine is replaced by sine.  
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Finally, the solution to (9)-(12) is obtained as the sum of the 
even and odd components and can be written as follows 
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is the electric field of the double conductor line in free space 
and  
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is the induced electric field in free space due to the presence of 
the conducting half-space.  
    In order to determine the inverse Laplace transform of (40) 

we rewrite the expression 
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where 2
0 / λµσµτ = . The inverse Laplace transform of the 

solution is found in the next section.                                                                    
 

IV.  TRANSIENT SOLUTION 

Consider the case of a step current in the form (1). The 

Laplace transform of (1) is sIsI /)( 0=  so that  
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The inverse Laplace transform of (41) can be written as 
follows (see [10]): 
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Using (40)-(42) we obtain the inverse Laplace transform of the 

induced electric field in region 0R in the form 
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The Laplace transform of the induced electromotive force 
(EMF) in a double conductor line per unit length due to the 
presence of the conducting half-space is given by (see [8]): 
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where C is the contour of the double conductor line of length 
one unit in the −x direction. Using (40)-(44) we obtain the 
induced EMF in the form 
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Using (45) we calculate the integral of the EMF with respect to 
time. The result is 
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V. CONCLUSIONS 

Closed-form analytical solution of a transient eddy current 
problem is found in the present paper. Excitation coil is in the 
form of a double conductor line formed by two parallel 
infinitely long wires located above a conducting half-space. 
The current in the coil is modeled by a unit step function of 
time. The Laplace transform of the solution is found by the 
method of Fourier sine and cosine integral transforms. The 
inverse Laplace transform of the solution is found in the form 
of an improper integral.  
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