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Abstract—The job shop scheduling problem (JSSP) is a 

notoriously difficult problem in combinatorial optimization. This 

paper presents a hybrid artificial immune system for the JSSP with the 

objective of minimizing makespan. The proposed approach combines 

the artificial immune system, which has a powerful global exploration 

capability, with the local search method, which can exploit the optimal 

antibody. The antibody coding scheme is based on the operation based 

representation. The decoding procedure limits the search space to the 

set of full active schedules. In each generation, a local search heuristic 

based on the neighborhood structure proposed by Nowicki and 

Smutnicki is applied to improve the solutions. The approach is tested 

on 43 benchmark problems taken from the literature and compared 

with other approaches. The computation results validate the 

effectiveness of the proposed algorithm. 

 

Keywords—Artificial immune system, Job shop scheduling 

problem, Local search, Metaheuristic algorithm  

I. INTRODUCTION 

HE job shop scheduling problem (JSSP) is one of the most 

difficult problems in combinatorial optimization that has 

garnered considerable attention due to both its practical 

importance and its solution complexity. Efficient methods for 

solving the JSSP have significant effects on profitability and 

product quality. During the last three decades, many solution 

methods have been proposed to solve the JSSP. Those 

approaches can be divided into two categories: exact methods 

and approximation algorithms. Exact methods, such as branch 

and bound, linear programming and decomposition methods, 

guarantee global convergence and have been successful in 

solving small instances. In manufacturing systems, most 

scheduling problems are very complex in nature and very 

complicated to be solved by exact methods to obtain a global 

optimal schedule. For the big instances there is a need for 

approximation algorithms, which include priority dispatch, 

shifting bottleneck approach, local search, and heuristic 

methods. Recently, using a high-level strategy to guide other 

heuristics, known as metaheuristics, led to better and more 

appreciated results in a relatively short period. Therefore, a 

number of metaheuristics were proposed in literature for the 

past two decades to deal with the JSSP such as genetic 
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algorithm (GA) [1], simulated annealing (SA) [2], taboo search 

(TS) [3], artificial immune system (AIS) [4]-[6], greedy 

randomized adaptive search procedure (GRASP) [7] etc. A 

comprehensive survey of job shop scheduling techniques has 

been done by Jain and Meeran [8]. 

Artificial Immune System is an evolutionary computation 

technique inspired by the biological immune system. Several 

concepts from the immune system have been extracted and 

applied for solution to real world science and engineering 

problems. In recent years there have been a lot of reported 

works focusing on the AIS in [4]-[6], [9]-[11], which has been 

applied widely in the function optimization and some other 

fields. As AIS became popular in the mid 1990s, many 

researchers started to apply this metaheuristic method to the 

JSSP. Hart[4] tackled a job shop scheduling problem by an AIS 

approach in which an antibody represents a scheduling, while 

an antigen represents a set of changes that can occur and cause 

the schedule to be modified. Coello[6] proposed a clonal 

selection based algorithm to solve JSSP. Due to the NP-hard 

nature of the JSSP, using simple AIS to solve the difficult 

problem may not be efficient in practice. Much effort in the 

literature has focused on hybrid methods. Tsai, Ho, Liu and 

Chou[12] proposed an improved immune algorithm for job 

shop scheduling problem. Ge, Sun, Liang and Qian [13] 

designed a hybrid algorithm of combining particle swarm 

optimization and AIS for solving JSSP. 

In this paper, an effective hybrid intelligent algorithm for 

JSSP based on artificial immune system and local search is 

presented. The remainder of the paper is organized as follows. 

An introduction for the job shop scheduling problem is given in 

Section II. Detailed description of the proposed job shop 

scheduling algorithm is presented in Section III. Section IV 

discusses the experimental results. Finally, we summarize the 

paper and present our future work in Section V.  

II. JOB SHOP SCHEDULING PROBLEM 

The problem studied in the paper is a deterministic and static 

n-job, m-machine JSSP. In this problem, n jobs are to be 

processed by m machines. Each job consists of a predetermined 

sequence of task operations, each of which needs to be 

processed without preemption for a given period of time on a 

given machine. Tasks of the same job cannot be processed 

concurrently and each job must visit each machine exactly 

once. Each operation cannot be commenced until the 

processing is completed, if the precedent operation is still being 

processed. A schedule is an assignment of operations to time 

slots on the machines. The makespan is the maximum 

completion time of the jobs. The objective of the JSSP is to find 
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a schedule that minimizes the makespan. 

Explaining the problem more specifically, let J={1, 2,..., n} 

denote the set of jobs, M={1,2,…,m}  represent the set of 

machines, and O={0, 1, 2, …, n×m, n×m+1}  be the set of 

operations to be scheduled, where 0 and n×m+1 represent the 

dummy initial and final operations, respectively. The 

operations are interrelated by the precedence constraints, which 

force each operation j to be scheduled after all predecessor 

operations Ej are completed. Moreover, operation j can only be 

scheduled if the required machine is idle. Furthermore, let pj 

and cj denote the fixed processing time and the finish time of 

operation j, respectively. Let B(t) be the set of operations being 

processed at time t, and let θjm=1 if operation j is required to 

process on machine m (θjm=0 otherwise). 

The conceptual model of the JSSP can be stated as [14] 

 

1min
+×mnc             (1) 

..ts  jjk pcc −≤ , 1,,2,1 +×= mnj K , jEk ∈  (2) 

1
)(

≤∑
∈ tBj

jmθ , Mm ∈ , 0≥t         (3) 

0≥jc , 1,,2,1 +×= mnj K        (4) 

 

The objective function (1) minimizes the finish time of the 

last operation, namely, the makespan. Constraint (2) imposes 

the precedence relations between operations. Constraint (3) 

represents that one machine can only process one operation at a 

time, and constraint (4) forces the finish times to be 

nonnegative. 

III. HYBRID ARTIFICIAL IMMUNE SYSTEM 

The artificial immune system is based on two main principles 

[15]: clonal selection and affinity maturation principles. In the 

first principle, antibodies that have better affinities are selected 

for reproduction and the numbers of clones of each antibody is 

proportional to its affinity value. The latter principle consists of 

two main processes: hypermutation and receptor editing. The 

hypermutation operator performs an affinity maturation process 

inversely proportional to the fitness values generating the 

matured clone population. After cloning, sorting and deleting 

the repetition, the receptor editing process is conducted by 

eliminating antibodies from the population based on the desired 

percentage of antibody elimination. The whole process is 

repeated until the termination criterion is satisfied. Before AIS 

can be run, a suitable representation for the problem must be 

devised. A fitness function is also required, which assigns a 

figure of merit to each encoded solution. During the run, 

antibodies must be selected for cloning and hypermutation to 

generate offspring. 

A. Antibody Representation 

In solving JSSP using AIS, the first thing is the 

representation of the problem. Each antibody represents a 

possible solution to the problem. Some popular representations 

for solving JSSP are: operation based, job based, preference list 

based, priority rule based, and job pair relationship based 

representations [16]. In this paper, an operation based 

representation is adopted, which uses an unpartitioned 

permutation with m-repetitions of job numbers for problems 

with n jobs and m machines. Within the representation, each job 

number occurs m times in the antibody. By scanning the 

antibody from left to right, the k-th occurrence of a job number 

refers to the k-th operation in the technological sequence of this 

job. 

For example, suppose that a antibody is given as [2 3 1 1 3 3 

1 2 2] in a three jobs and three machines problem. Because each 

job consists of three operations, the job number occurs exactly 

three times in the antibody. The fifth gene of the permutation 

implies the second operation of job 3 because number 3 has 

been repeated twice. Similarly, the sixth gene represents the 

third operation of job 3, and so on. The prominent advantage of 

operation based representation is that the permutation is always 

feasible. Moreover, it eliminates the deadlock schedules that 

are incompatible with the technological constraints and can 

never be finished. However, it will produce redundancy in the 

search space and will cause the search-space size to expand to 

(n×m)!/(m!)
n
. 

B. Antibody Decoding 

In general, schedules can be classified into three types: 

semiactive schedule, active schedule and non-delay schedule 

[17]. Semiactive schedules contain no excess idle time, but they 

can be improved by shifting some operations to the front 

without delaying others. Active schedules contain no idle time, 

and no operation can be finished earlier without delaying other 

operations. The set of non-delay schedules is a subset of active 

schedules. In a non-delay schedule, no machine is kept idle at a 

time when it could begin processing other operations. In order 

to further reduce the solution space, Zhang, Rao and Li [18] 

proposed a new type of schedule: full active schedule (FAS), 

which can be defined as a schedule with no more permissible 

left shifts and right shifts. Fig. 1 shows the relationships 

between the classes of schedules. The optimal schedule is 

guaranteed to be a full active schedule. Therefore, we only need 

to find the optimum solution in the set of full active schedules. 

 

 
Fig. 1 Classes of schedules 

 

The objective of the antibody decoding procedure is to 

transform the antibodies to schedules and obtain their 

makespans. An active schedule is decoded from a antibody 

with the following decoding procedure: firstly translate the 

antibody to a list of ordered operations, and then generate the 

schedule by a one-pass heuristic based on the list. The first 

operation in the list is scheduled first, then the second operation, 
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and so on. Each operation under treatment is allocated in the 

best available processing time for the corresponding machine 

the operation requires. The process is repeated until all 

operations are scheduled. Using the same algorithm to the 

active schedule, we can get a full active schedule with only 

small modifications. By reversing the antibody based on the 

operation based representation and all of the technological 

sequences, a given schedule can be converted to another 

schedule. The new schedule is equivalent to the original one 

with the same makespan (the same critical path) and the 

reversed antibody (i.e., reversed job processing sequences on 

same machine). Through left shifting the new schedule, we can 

obtain the makespan and antibody of the full active schedule. 

C. Affinity Evaluation 

Each antibody a  has a makespan value makespan(a) . 

Affinity value f(a)  of the antibody is calculated from the 

affinity function. The affinity function is defined as (5). 

 

)(/1)( amakespanaf =           (5) 

 

From this relation, a lower makespan value gives a higher 

affinity value. Further the cloning of antibodies is done directly 

proportional to their affinity function values. Therefore, there 

will be more clones of antibodies that have lower makespan 

values than those with higher makespan values in the new 

generated clone population. 

D. Proliferation and hypermutation 

Proliferation operation is to generate copies of every 

individual in an antibody population proportionally to its 

affinity value. The amount of clones of antibody ai is calculated 

according to (6). 

 

))(/)((
_

1

∑
=

⋅=

sizepop

i

iici afafNroundn         (6) 

 

Where Nc is a given value relating to the clone scale. f(ai) is 

the affinity of the antibody ai, pop_size is the size of population. 

round() is the operator that rounds its argument towards the 

closest integer. Obviously, the higher the affinity is, the greater 

the number of copies is, and vice versa. 

After producing clones, the hypermutation stage is 

implemented. Two types of mutation operators named insertion 

mutation and displacement mutation are used for generated 

clones. In this work, the two mutation operators alternate 

randomly with equal probability. Two mutations are described 

as follows: 

1) Insertion mutation selects two elements randomly and 

inserts the back one before the front one. 

2) Displacement mutation selects a substring randomly and 

inserts it in a random position. 

E. Selection and Receptor editing 

After cloning and mutation processes, a number of the 

antibodies in the antibody population are eliminated and 

randomly created antibodies replace with them. This 

mechanism allows finding new schedules that correspond to 

new search regions in the total search space. In this paper, 

antibodies with different affinity values are selected as a 

candidate solution population. If the size of the candidate 

population is less than the size of population pop_size, copy 

antibodies from the candidate population into new population 

and fill up the remaining slots of new population with randomly 

generated antibodies. Otherwise, select the best pop_size 

antibodies from candidate population to new population. 

F. Local Search Procedure 

Local search techniques have been proven useful in solving 

combinatorial problems. Local search methods are applied to a 

neighborhood of a current solution. In the case of JSSP, a 

neighborhood is achieved by moving and inserting an operation 

in a machine sequence. In this paper, we focus particularly on 

the approach of Nowicki and Smutnicki [3], which is noted for 

proposing and implementing the most restrictive neighborhood 

in the literature. According to Nowicki and Smutnicki’s work, a 

critical path in the solution is identified first. Then the 

operations on the critical path are called critical operations and 

the maximal sequence of adjacent critical operations that are 

processed on the same machine can be defined as blocks. The 

neighborhood is defined as interchanges of the last two or the 

first two critical operations of the blocks if the blocks are 

neither the first block nor the last block. In the first block only 

the last two operations and symmetrically in the last black of 

the critical path only the first two operations are swapped. If a 

block contains only one operation no swap is made. The 

Nowicki and Smutnicki’s neighborhood is illustrated in Fig. 4. 

 

 
Fig. 4 The Nowicki and Smutnicki’s neighborhood 

 

The proposed local search starts with a feasible schedule S as 

an input. The input schedule is set to Sbest which stands for the 

best found solution. Then, a single arbitrary critical path is 

generated and a neighborhood of schedule Sbest is constructed. 

Randomly select a schedule Snew from the neighborhood. If Snew 

is better (i.e. has a lower makespan) than Sbest, the Sbest is 

replaced by Snew. The procedure is repeated until a maximum 

number of iterations (LOC_ITER) without improving the best 

found solution is reached.  

swapping the first two operations 

swapping the last two operations 
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The brief outline of the local search algorithm can be 

described as follows. 

Step 1) Set the best found solution Sbest = S. Calculate the 

makespan Cmax(Sbest) of Sbest. Set iteration counter count to 1. 

Step 2) Repeat Step 3) – 6) until count > LOC_ITER. 

Step 3) Randomly selecte a schedule Snew from the 

neighborhood of Sbest. Calculate the makespan Cmax(Snew)  of 

Snew. 

Step 4) If Cmax(Snew) < Cmax(Sbest) go to Step 5), else go to 

Step 6) 

Step 5) Update Sbest by setting Sbest = Snew. Set count to 1. 

Step 6) Set count = count + 1. 

 

G. Designing a hybrid artificial immune system  for JSSP 

The brief outline of the proposed algorithm can be described 

as follows. 

Step 1) Set values of population size pop_size, maximum 

number of iterations MAX_GEN, Nc and LOC_ITER. 

Step 2) Generate a population P0 with pop_size antibodies 

randomly and evaluate the antibodies with the decoding 

procedure; set generation counter g = 1 and the current 

population Pold = P0. 

Step 3) Repeat Step 4) – 9) until g > MAX_GEN. 

Step 4) Each antibody in Pold will be cloned independently 

and proportionally to its affinity, generating a repertoire Pc. 

Step 5) The repertoire Pc is submitted to an hypermutation 

process, generating a population Pm. 

TABLE I 

COMPUTATIONAL RESULTS OF FT AND LA TEST INSTANCES 

Instance Size BKS HAIS HIA AIS HGA GRASP TSAB 
Beam 

Search 
RCS SBII 

6×6 55 55 55 55 55 55 55 - 55 55 
10×10 930 930 930 936 930 938 930 1016 930 930 
20×5 1165 1165 1165 1165 1165 1169 1165 - 1165 1178 

10×5 666 666 666 666 666 666 666 666 666 666 

10×5 655 655 655 655 655 655 655 704 655 669 
10×5 597 597 597 597 597 604 597 650 597 605 

10×5 590 590 590 590 590 590 590 620 590 593 

10×5 593 593 593 593 593 593 593 593 593 593 
15×5 926 926 926 926 926 926 926 926 926 926 

15×5 890 890 890 890 890 890 890 890 890 890 

15×5 863 863 863 863 863 863 863 863 863 863 
15×5 951 951 951 951 951 951 951 951 951 951 

15×5 958 958 958 958 958 958 958 958 958 959 

20×5 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 
20×5 1039 1039 1039 1039 1039 1039 1039 1039 1039 1039 

20×5 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 

20×5 1292 1292 1292 1292 1292 1292 1292 1292 1292 1292 
20×5 1207 1207 1207 1207 1207 1207 1207 1207 1207 1207 

10×10 945 945 945 945 945 946 945 988 945 978 

10×10 784 784 784 784 784 784 784 827 784 787 
10×10 848 848 848 848 848 848 848 881 848 859 

10×10 842 842 842 842 842 842 842 882 848 860 

10×10 902 902 902 907 907 907 902 948 907 914 
15×10 1046 1048 1046 1046 1046 1091 1047 1154 1069 1084 

15×10 927 927 932 927 935 960 927 985 937 944 

15×10 1032 1032 1032 1032 1032 1032 1032 1051 1032 1032 
15×10 935 938 950 935 953 978 939 992 942 976 

15×10 977 983 979 979 986 1028 977 1073 981 1017 

20×10 1218 1218 1218 1218 1218 1271 1218 1269 1218 1224 
20×10 1235 1247 1256 1240 1256 1320 1236 1316 1285 1291 

20×10 1216 1216 1227 1216 1232 1293 1216 1373 1216 1250 

20×10 1152 1174 1184 1170 1196 1293 1160 1252 1208 1239 
20×10 1355 1355 1355 1355 1355 1368 1355 1435 1355 1355 

30×10 1784 1784 1784 1784 1784 1784 1784 1784 1784 1784 

30×10 1850 1850 1850 1850 1850 1850 1850 1850 1850 1850 
30×10 1719 1719 1719 1719 1719 1719 1719 1719 1719 1719 

30×10 1721 1721 1721 1721 1721 1753 1721 1780 1721 1721 

30×10 1888 1888 1888 1888 1888 1888 1888 1888 1888 1888 
15×15 1268 1275 1281 1281 1279 1334 1268 1401 1292 1305 

15×15 1397 1397 1415 1408 1408 1457 1407 1503 1411 1423 

15×15 1196 1202 1213 1204 1219 1267 1196 1297 1278 1255 
15×15 1233 1233 1246 1249 1246 1290 1233 1369 1233 1273 

15×15 1222 1224 1240 1228 1241 1259 1229 1347 1247 1269 

Average gap(%) 0.12 0.33 0.18 0.40 1.78 0.06 4.35 0.61 1.39  
No. of instance 43 43 28 43 43 43 41 43 43  

No. of BKS obtained 35 32 33 31 23 37 18 31 20  
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Step 6) Select antibodies with different affinity from 

population P = Pold X Pm, generating population Ps. 

Step 7) If the size of Ps is less than pop_size, copy antibodies 

from Ps into new population Pnew and fill up the remaining slots 

of Pnew with randomly generate antibodies, otherwise copy the 

best pop_size antibodies from Ps into Pnew. 

Step 8) Implement local search on every antibody in Pnew. 

Step 9) Set Pold = Pnew 

IV. COMPUTATIONAL RESULTS 

In this paper, we use 43 instances that are taken from the 

ORLibrary [19] as test benchmarks to test our new proposed 

hybrid AIS, named HAIS. In the 43 instances, FT06, FT10 and 

FT20 were designed by Fisher and Thompson and instances 

LA01–LA40 that were designed by Lawerence. The algorithm 

was implemented in C++ and the tests were run on a computer 

with Pentium IV2.4G and 1GB RAM. In our experiments, 

population size pop_size = 100, Nc = 3 , LOC_ITER is the 

smallest integer number not less than n/2. The algorithm was 

terminated when after MAX_GEN = 2×n×m generations of the 

algorithm, and each instance is randomly run 20 times. 

Numerical results are compared with those reported in some 

existing literature works using some heuristic and metaheuristic 

algorithms, including HIA [13], HGA [14], AIS [6], GRASP 

[7], TSAB [3], Beam Search [20], RCS [21], and SBII [22]. 

Table I summarizes the results of the experiments. The 

contents of the table include the name of each test problem 

(Instance), the scale of the problem (Size), the value of the best 

known solution for each problem (BKS), the value of the best 

solution found by using the proposed algorithm (HAIS) and the 

best results reported in other research works. 

 

 
 

It can be seen from Table I that the proposed algorithm is 

able to find the best known solution for 35 instances, i.e. in 

about 81% of the instances, and the deviation of the minimum 

found makespan from the best known solution is only on 

average 0.12%. The proposed algorithm yields a significant 

improvement in solution quality with respect to almost all other 

algorithms, expected for the approach proposed by Nowicki 

and Smutnicki. The superior results indicate the successful 

incorporation of the improved AIS and LS, which facilitates the 

escape from local minimum points and increases the possibility 

of finding a better solution. Therefore, it can be concluded that 

the proposed hybrid AIS solves the JSSP fairly efficiently. 

As mentioned above, the algorithm is performed 20 times for 

each instance. Table II lists the best solution (Best), the relative 

deviation of the best solution (BRD), the mean solutions 

(Mean), the relative deviation of the mean solution (MRD), and 

the average computing time (t-avg) of some typical instances 

with different size. The MRD is commonly zero for small-size 

problem and is not more than 1.5% for most other problems. 

 

 
Fig. 5 Representative convergence curve for la39 

 

To illustrate the simulated results more intuitively, the 

problem la39 as one of the hardest problems is specially 

described as an example. Fig. 5 plots the representative 

convergence curve finding best solution. Fig. 6 shows a Gantt 

chart of a best solution. 

V. CONCLUSION AND PERSPECTIVES 

This paper presents a hybrid algorithm combining artificial 

immune system with local search for the JSSP. In the algorithm 

a new selection strategy and receptor editing of artificial 

immune system for JSSP is designed and a Nowicki and 

Smutnicki’s neighborhood based local search algorithm is 

incorporated. This allows the AIS to explore more solution 

space whereas LS does the exploitation part. The approach is 

tested on a set of 43 benchmark problems taken from the 

literature and compared with other approaches. The 

computational results show that the proposed approach 

produced optimal or near-optimal solutions on all instances 

tested. Overall, the algorithm produced solutions with an 

average relative deviation of 0.12% to the best known solution. 

In our future work we aim to extend the proposed algorithm in 

order that it can be applied to more practical and integrated 

manufacturing problems such as dynamic arrivals, machine 

breakdown, or other factors that affect job status over time. 
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TABLE II 

SUMMARY OF RESULTS FOR TYPICAL INSTANCES 

Insta

nce 
Size BKS Best 

BRD

(%) 
Mean 

MRD

(%) 

t-avg 

(s) 

ft06 6×6 55 55 0.00 55 0.00 1.45 
ft10 10×10 930 930 0.00 936.55 0.70 16.50 

ft20 20×5 1165 1165 0.00 1180.75 1.35 20.36 

la01 10×5 666 666 0.00 666 0.00 3.50 
la06 15×5 926 926 0.00 926 0.00 9.04 

la11 20×5 1222 1222 0.00 1222 0.00 19.96 

la16 10×10 945 945 0.00 945.7 0.07 14.71 
la21 15×10 1046 1048 0.19 1060.35 1.37 40.83 

la26 20×10 1218 1218 0.00 1219.1 0.09 87.65 

la31 30×10 1784 1784 0.00 1784 0.00 280.69 
la36 15×15 1268 1275 0.55 1286.9 1.49 90.19 
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Fig. 6 Gantt chart of an optimal schedule for la39 
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